CN113449353A - 考虑地层流体渗流作用的水平井井壁稳定分析方法 - Google Patents

考虑地层流体渗流作用的水平井井壁稳定分析方法 Download PDF

Info

Publication number
CN113449353A
CN113449353A CN202110540109.4A CN202110540109A CN113449353A CN 113449353 A CN113449353 A CN 113449353A CN 202110540109 A CN202110540109 A CN 202110540109A CN 113449353 A CN113449353 A CN 113449353A
Authority
CN
China
Prior art keywords
stress
well wall
horizontal well
rock
seepage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110540109.4A
Other languages
English (en)
Other versions
CN113449353B (zh
Inventor
汤明
敬亚东
何世明
苗娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202110540109.4A priority Critical patent/CN113449353B/zh
Publication of CN113449353A publication Critical patent/CN113449353A/zh
Application granted granted Critical
Publication of CN113449353B publication Critical patent/CN113449353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Mining & Mineral Resources (AREA)
  • Data Mining & Analysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Operations Research (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Algebra (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种考虑地层流体渗流作用的水平井井壁稳定分析方法,在井壁所受剪切应力的基础上叠加井壁所受的附加地层流体渗流压力构成有效剪切应力,将有效剪切应力与岩石剪切强度比较,判断井壁失稳的可能性。本发明不仅从水平井压力和钻井液两角度出发,更考虑了地层流体渗流作用,使得水平井井壁力学模型更加符合实际情况,利于水平井井壁失稳的有效预测,为水平井井壁失稳的判断提供有力的数据支持。

Description

考虑地层流体渗流作用的水平井井壁稳定分析方法
技术领域
本发明属于石油钻井技术领域,具体涉及一种考虑地层流体渗流作用的水平井井壁稳定分析方法。
背景技术
水平井石油钻井技术适合于无法用直井方法开发的特殊油气藏,因其能更多地穿过油气储层,提高油气井单井产量,从而具有非常好的经济效益与使用前景。随着石油行业的发展,复杂地质储层及其岩石力学性质逐渐引起人们的极大关注。相应地,复杂地质水平井施工作业过程中的井壁稳定性也就成为了研究的热门课题。
保持井壁稳定对油气井生产具有重要意义。这是因为水平井钻井形成井眼后,加之钻井液与井壁岩层的接触,打破了复杂地质储层原有的力学平衡,造成井壁周围应力改变,易出现井壁坍塌、井眼缩径和泥浆漏失等井下复杂情况。油、气、水等地层流体到井壁的渗流过程亦对井壁施加了附加压力,造成井壁失稳问题持续存在。
然而,现有水平井井壁稳定性分析往往只从井身压力控制和钻井液调配角度出发,忽略了地层流体渗流作用的影响。这会使得现有的水平井井壁力学模型及其分析方法与实际情况偏差太大,不利于水平井井壁失稳的有效预测,导致潜在的作业风险。因此,结合复杂地质储层及其水平井施工作业的特点,在考虑地层流体渗流作用的基础上,有必要建立一种新的水平井井壁稳定分析模型及方法。这有利于石油安全生产,也为今后水平井石油钻井技术的进一步发展提供理论依据和实践指导。
发明内容
为解决上述问题,本发明的目的在于提供一种考虑地层流体渗流作用的水平井井壁稳定分析方法,不仅从水平井压力和钻井液两角度出发,更考虑了地层流体渗流作用,使得水平井井壁力学模型更加符合实际情况,为水平井井壁失稳的判断提供有力的数据支持。
本发明提供的技术方案是,一种考虑地层流体渗流作用的水平井井壁稳定分析方法,其在井壁所受剪切应力的基础上叠加井壁所受的附加地层流体渗流压力构成有效剪切应力,将有效剪切应力与岩石剪切强度比较,判断井壁失稳的可能性。
具体的,包括以下步骤:
S1、取距离目标井段不同距离的多组岩心,进行渗流模拟实验,计算岩心所在地层点的等效渗透率;
S2、根据所取岩心与目标井段的距离以及等效渗透率变化,将所取岩心的地层点分为线性流区域和椭圆流区域,并建立等效渗流几何模型,对椭圆流区域的长轴和短轴长度进行赋值,计算水平井井壁所受的附加地层流体渗流压力ΔP;
S3、建立水平井井壁单元的柱面坐标受力方程,计算柱面坐标受力方程中的六种应力分量:σr、σθ、σz、τ、τθz、τzr
S4、根据步骤S2和步骤S3的结果,建立地层流体渗流作用下的水平井井壁压力模型,
Figure BDA0003071368400000021
Figure BDA0003071368400000022
Figure BDA0003071368400000023
Figure BDA0003071368400000024
式中,σ1、σ3、τ分别为井壁处最大主应力、最小主应力、岩石破碎面上最大剪切力,Mpa;
Figure BDA0003071368400000025
τe分别为地层流体渗流作用下的井壁处有效最大主应力、有效最小主应力、有效剪切应力,Mpa;αe为有效应力系数,无量纲;υ为泊松比,无量纲;Pwf表示水平井内钻井液柱压力,Mpa;yb、yt分别表示等效地层渗流几何模型中地层流体线性流区域长度与椭圆流区域长度,m;rw表示水平井井眼半径,m;
S5、将步骤4得到的值通过式1进行验算,若式1不成立,则返回步骤S2,对椭圆流区域的长轴和短轴长度重新赋值并计算ΔP,后重复步骤4;若式1成立,遵照岩石力学Mohre-Coulomb准则,判定水平井井壁失稳可能性:
Figure BDA0003071368400000026
式中,
Figure BDA0003071368400000027
为岩石内摩擦角,°,τ0为岩石剪切强度,MPa。
本发明的技术效果是:
本发明不仅从水平井压力和钻井液两角度出发,更考虑了地层流体渗流作用,使得水平井井壁力学模型更加符合实际情况,利于水平井井壁失稳的有效预测,为水平井井壁失稳的判断提供有力的数据支持。
附图说明
图1为实施例1的流程图;
图2为水平井段所处地层取出岩心组的等效渗透率曲线图;
图3为围绕水平井井筒的地层渗流几何模型;
图4为直角坐标系水平井井壁单元体受力分析示意图;
图5为水平井井壁应力产生的剪切破坏示意图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地的详细说明。
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
实施例1
本实施例的技术方案是:在井壁所受剪切应力的基础上叠加井壁所受的附加地层流体渗流压力构成有效剪切应力,将有效剪切应力与岩石剪切强度比较,判断井壁失稳的可能性。
如图1所示,具体包括以下操作步骤:
S1、取距离目标井段不同距离的多组岩心,进行渗流模拟实验,计算岩心所在地层点的等效渗透率。
在该步骤中,其目的是获得与目标井段不同距离的地层的等效渗透率。在对距离目标井段不同距离的岩层进行取样后,开展渗流模拟实验,并根据实验中获得的数据、采用以下公式获得该岩心所在地层的等效渗透率:
Figure BDA0003071368400000031
式中:K表示岩石绝对渗透率,mD;λ表示岩性系数,无量纲;rσ表示岩石孔隙平均毛管半径,μm;σ表示油-汞实验测定的表面张力,mN/m;θσ表示汞在油固界面的润湿角,°;φ、S分别表示岩石孔隙度和孔隙中含水饱和度,%;ε表示岩石孔隙迂曲度,无量纲;Q表示渗流模拟实验时通过岩心柱的流量,m3/s;μ表示地层流体粘度,cP;L表示岩心柱长度,m;A表示岩心柱截面积,m2;p1、p2分别表示岩心柱进液端压力和出液端压力,Mpa;SHg表示压汞实验中岩心含汞饱和度,%;pc表示岩石孔隙毛管力,Mpa。
由于所取岩心的测量渗透率并不能够代表该岩心所在地层的渗透率,因此,我们采用了等效渗透率的方式对其进行等效替代。同时,在对岩心进行取样时,在靠近目标井段的地层中取样密度较大,远离目标井段的地层中取样密度较小,图2给出了本实施例的一种取样方式以及取样后经过实验、计算得到的等效渗透率。本领域技术人员可参照图2中的取样方式进行取样,同时也可采用其余的方式。
S2、根据步骤S1中测得的等效渗透率,分析距离目标井段不同距离的地层的等效渗透率变化,将所取岩心的地层点分为线性流区域和椭圆流区域,并建立等效渗流几何模型,随后的椭圆流区域的长轴和短轴的长度进行赋值,计算得出水平井井壁所受的附加地层流体渗流压力ΔP;
将所取岩心的地层点分为线性流区与和椭圆流区域的方法为:若岩心所在地层点的等效渗透率K增减幅度不超过1%时,则这些岩心所在的地层点划分为为线性流区域;若岩心所在地层点的等效渗透率K朝目标井段为递增变化时,则这些岩心所在的地层点为椭圆流区域,具体如图2-图3所示。
其中,从图1中我们可以看出,椭圆流区域和线性流区域的等效渗透率之间具有一个较为明显的拐点,该拐点我们称之为渗透率突变处。
本步骤中,所建立的等效渗流几何模型如下所示:
Figure BDA0003071368400000041
附加地层流体渗流压力ΔP通过下式计算得出:
Figure BDA0003071368400000042
式中,yb、yt分别表示等效地层渗流几何模型中地层流体线性流区域长度与椭圆流区域长度,m;h表示目标地层总厚度,m;rw表示水平井井眼半径,m;ΔP表示附加地层流体渗流压力,Mpa;Pwf表示水平井内钻井液柱压力,Mpa;Po表示原始地层压力,Mpa;Mt表示地层剖面渗透率突变处与目标井段的距离和井壁处椭圆流区域长轴的长度之比,Mw表示地层剖面渗透率突变处与目标井段的距离和井壁处椭圆流区域短轴的长度之比,无量纲。
从等效渗流几何模型以及附加地层流体压力的计算式中可以看出,用于计算附加地层流体渗流压力ΔP的过程中存在Mt、Mw两个变量,对于这两个量中又包括渗透率突变处和目标井段的距离、椭圆流区域长短轴的长度,渗透率突变处可通过步骤S1中的等效渗透率得出其具体位置,但是,椭圆流区域的长轴和短轴的长度是目前无法准确确定的,因此,在本实施例中,采用赋值的方法对其进行计算,并在后续的步骤中采用验算公式对计算结果进行验算,用以判断在本步骤中的赋值是否正确。
S3、在得出附加地层流体渗流压力ΔP后,还需要计算出目标井段所受到的常规应力。
首先,参见图4建立基于地层三维直角坐标系的水平井井壁单元体受力方程:
Figure BDA0003071368400000051
式中,σxx、σyy、σzz、τxy、τyz、τzx分别是水平井单元体六种应力分量,Mpa;σH、σh、σv分别是地层中原地应力场最大水平应力、最小水平应力、剪切应力,Mpa;i、α分别为井斜角与相对方位角,°。
随后对上述方程采用柱面坐标进行变换,变换后的水平井井壁单元体的受力方程为:
Figure BDA0003071368400000061
式中,式中:σr、σθ、σz、τ、τθz、τzr分别是柱面坐标变换后的六种新应力分量,Mpa;θ为从井筒轴线出发的任一径向矢量方向与其横截面夹角,°;r为水平井井筒轴线至地层某点的径向距离,m。
S4、通过步骤S2和步骤S3,我们得到了目标井段的附加地层流体渗流压力ΔP和目标井段的应力模型,如图5所示,接下来需要根据步骤S2和步骤S3建立地层流体渗流作用下的水平井井壁压力模型:
Figure BDA0003071368400000062
Figure BDA0003071368400000063
Figure BDA0003071368400000064
Figure BDA0003071368400000065
式中:σ1、σ3、τ分别为井壁处最大主应力、最小主应力、岩石破碎面上最大剪切力,Mpa;
Figure BDA0003071368400000066
τe分别为井壁处地层流体渗流作用下的有效最大主应力、有效最小主应力、有效剪切应力,Mpa;αe为有效应力系数,无量纲;υ为泊松比,无量纲;Pwf表示水平井内钻井液柱压力,Mpa;yb、yt分别表示等效地层渗流几何模型中地层流体线性流区域长度与椭圆流区域长度,m;rw表示水平井井眼半径,m。
S5、在将步骤S4得到的结果带入地层流体渗流作用下的水平井井壁压力模型中计算后得到井壁所受到的有效剪切应力,但是,该结果是基于我们在步骤S2中对椭圆流区域的长轴、短轴的长度进行赋值得到的,为了对赋值的准确性进行验算,遵照岩石力学Mohre-Coulomb准则,我们给出了以下公式:
Figure BDA0003071368400000071
式中,
Figure BDA0003071368400000072
为岩石内摩擦角,°;τ0为岩石剪切强度,MPa。
将步骤S4的结果带入上式进行验算后,若等式不成立,则返回步骤2,对椭圆流区域的长短轴重新进行赋值,多次迭代直至上述验算等式成立;若等式成立,则步骤S4计算得到的τe为准确值,将其与岩石剪切强度进行对比,判断井壁失稳的可能性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (6)

1.一种考虑地层流体渗流作用的水平井井壁稳定分析方法,其特征在于,在井壁所受剪切应力的基础上叠加井壁所受的附加地层流体渗流压力构成有效剪切应力,将有效剪切应力与岩石剪切强度比较,判断井壁失稳的可能性。
2.根据权利要求1所述的方法,其特征在于,包括以下步骤:
S1、取距离目标井段不同距离的多组岩心,进行渗流模拟实验,计算岩心所在地层点的等效渗透率;
S2、根据所取岩心与目标井段的距离以及等效渗透率变化,将所取岩心的地层点分为线性流区域和椭圆流区域,并建立等效渗流几何模型,对椭圆流区域的长轴和短轴长度进行赋值,计算水平井井壁所受的附加地层流体渗流压力ΔP;
S3、建立水平井井壁单元的柱面坐标受力方程,计算柱面坐标受力方程中的六种应力分量:σr、σθ、σz、τ、τθz、τzr
S4、根据步骤S2和步骤S3的结果,建立地层流体渗流作用下的水平井井壁压力模型,
Figure FDA0003071368390000011
Figure FDA0003071368390000012
Figure FDA0003071368390000013
Figure FDA0003071368390000014
式中,σ1、σ3、τ分别为井壁处最大主应力、最小主应力、岩石破碎面上最大剪切力,Mpa;
Figure FDA0003071368390000015
τe分别为地层流体渗流作用下的井壁处有效最大主应力、有效最小主应力、有效剪切应力,Mpa;αe为有效应力系数,无量纲;υ为泊松比,无量纲;Pwf表示水平井内钻井液柱压力,Mpa;yb、yt分别表示等效地层渗流几何模型中地层流体线性流区域长度与椭圆流区域长度,m;rw表示水平井井眼半径,m;
S5、将步骤4得到的值通过式1进行验算,若式1不成立,则返回步骤S2,对椭圆流区域的长轴和短轴长度重新赋值并计算ΔP,后重复步骤4;若式1成立,遵照岩石力学Mohre-Coulomb准则,判定水平井井壁失稳可能性:
Figure FDA0003071368390000021
式中,
Figure FDA0003071368390000022
为岩石内摩擦角,°,τ0为岩石剪切强度,MPa。
3.根据权利要求2所述的方法,其特征在于,所述步骤S1的具体操作为:在距离目标水平井段的不同距离取多组岩心,进行渗流模拟实验获取相应实验数据,并根据获取的实验数据以及文献数据、按照式2计算岩心所在地层点的等效渗透率,
Figure FDA0003071368390000023
式中,K为岩心所在地层点的等效渗透率,mD;λ表示岩性系数,无量纲;rσ表示岩石孔隙平均毛管半径,μm;σ表示油-汞实验测定的表面张力,mN/m;θσ表示汞在油固界面的润湿角,°;
Figure FDA0003071368390000024
S分别表示岩石孔隙度和孔隙中含水饱和度,%;ε表示岩石孔隙迂曲度,无量纲;Q表示渗流模拟实验时通过岩心柱的流量,m3/s;μ表示地层流体粘度,cP;L表示岩心柱长度,m;A表示岩心柱截面积,m2;p1、p2分别表示岩心柱进液端压力和出液端压力,Mpa;SHg表示压汞实验中岩心含汞饱和度,%;pc表示岩石孔隙毛管力,Mpa。
4.根据权利要求2所述的方法,其特征在于,步骤S2中,所述等效渗流几何模型如式3所示,附加地层流体渗流压力ΔP的计算方法如式4所示
Figure FDA0003071368390000025
Figure FDA0003071368390000026
式中,h表示目标地层总厚度,m;rw表示水平井井眼半径,m;β表示地层压力梯度,MPa/100m;Pwf表示水平井内钻井液柱压力,Mpa;Po表示原始地层压力,Mpa;Mt表示等效渗透率突变处与目标井段的距离和井壁处椭圆流区域长轴的长度之比,Mw表示等效渗透率突变处与目标井段的距离和井壁处椭圆流区域短轴的长度之比,无量纲。
5.根据权利要求2或4所述的方法,其特征在于,所述线性流区域和所述椭圆流区域的确定方式如下:距目标井段一定距离的岩心所在地层点的等效渗透率K增减幅度不超过1%时,则这些岩心所在的地层点为线性流区域;若岩心所在地层点的等效渗透率K朝目标井段为递增时,则这些岩心所在的地层点为椭圆流区域。
6.根据权利要求1所述的方法,其特征在于,步骤S3的具体过程如下:
首先建立如式5所示的基于地层三维直角坐标系的水平井井壁单元体受力方程:
Figure FDA0003071368390000031
式中:σxx、σyy、σzz、τxy、τyz、τzx分别是水平井单元体六种应力分量,Mpa;σH、σh、σv分别是地层中原地应力场最大水平应力、最小水平应力、剪切应力,Mpa;i、α分别为井斜角与相对方位角,°。
后将其变换为如式6所示的基于柱面坐标的水平井井壁单元体受力方程:
Figure FDA0003071368390000032
式中:σr、σθ、σz、τ、τθz、τzr分别是柱面坐标变换后的六种应力分量,Mpa;θ为从井筒轴线出发的任一径向矢量方向与其横截面夹角,°;r为水平井井筒轴线至地层某点的径向距离,m。
CN202110540109.4A 2021-05-18 2021-05-18 考虑地层流体渗流作用的水平井井壁稳定分析方法 Active CN113449353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110540109.4A CN113449353B (zh) 2021-05-18 2021-05-18 考虑地层流体渗流作用的水平井井壁稳定分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110540109.4A CN113449353B (zh) 2021-05-18 2021-05-18 考虑地层流体渗流作用的水平井井壁稳定分析方法

Publications (2)

Publication Number Publication Date
CN113449353A true CN113449353A (zh) 2021-09-28
CN113449353B CN113449353B (zh) 2022-05-24

Family

ID=77810074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110540109.4A Active CN113449353B (zh) 2021-05-18 2021-05-18 考虑地层流体渗流作用的水平井井壁稳定分析方法

Country Status (1)

Country Link
CN (1) CN113449353B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115293066A (zh) * 2022-08-09 2022-11-04 西南石油大学 考虑地层渗流传热效应的气井温度场计算方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011105942A (ru) * 2011-02-18 2012-08-27 Юрий Федорович Коваленко (RU) Способ определения устойчивости ствола наклонных скважин
CN103161455A (zh) * 2011-12-15 2013-06-19 长江大学 高温高压泥页岩井壁稳定性评价装置
CN105735980A (zh) * 2016-03-17 2016-07-06 成都创源油气技术开发有限公司 一种气体钻井井壁稳定性评价方法
CN107038290A (zh) * 2017-03-31 2017-08-11 中国石油天然气股份有限公司 一种考虑增压效应力的井壁坍塌压力的计算方法
CN109356567A (zh) * 2018-05-04 2019-02-19 中国石油集团海洋工程有限公司 深水浅部地层井壁稳定性预测方法
US20190241791A1 (en) * 2018-02-07 2019-08-08 Southwest Petroleum University Strong plugging drilling fluid suitable for shale gas wells and preparation method thereof
CN110821481A (zh) * 2019-11-15 2020-02-21 西南石油大学 一种空气钻井井壁稳定性评价方法
CN111963164A (zh) * 2020-09-17 2020-11-20 西南石油大学 一种针对多裂缝发育储层的井壁坍塌压力评价方法
CN111980696A (zh) * 2020-09-18 2020-11-24 中国石油天然气集团有限公司 坍塌压力和失稳区域确定方法、以及井眼轨迹优化方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011105942A (ru) * 2011-02-18 2012-08-27 Юрий Федорович Коваленко (RU) Способ определения устойчивости ствола наклонных скважин
CN103161455A (zh) * 2011-12-15 2013-06-19 长江大学 高温高压泥页岩井壁稳定性评价装置
CN105735980A (zh) * 2016-03-17 2016-07-06 成都创源油气技术开发有限公司 一种气体钻井井壁稳定性评价方法
CN107038290A (zh) * 2017-03-31 2017-08-11 中国石油天然气股份有限公司 一种考虑增压效应力的井壁坍塌压力的计算方法
US20190241791A1 (en) * 2018-02-07 2019-08-08 Southwest Petroleum University Strong plugging drilling fluid suitable for shale gas wells and preparation method thereof
CN109356567A (zh) * 2018-05-04 2019-02-19 中国石油集团海洋工程有限公司 深水浅部地层井壁稳定性预测方法
CN110821481A (zh) * 2019-11-15 2020-02-21 西南石油大学 一种空气钻井井壁稳定性评价方法
CN111963164A (zh) * 2020-09-17 2020-11-20 西南石油大学 一种针对多裂缝发育储层的井壁坍塌压力评价方法
CN111980696A (zh) * 2020-09-18 2020-11-24 中国石油天然气集团有限公司 坍塌压力和失稳区域确定方法、以及井眼轨迹优化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何世明 等: "渗流对欠平衡钻井井壁稳定性的影响", 《石油钻采工艺》 *
汤明 等: "大牛地气田欠平衡水平井井壁稳定性分析", 《石油钻采工艺》 *
王维: "不同岩石介质下欠平衡钻水平井井壁失稳机理研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
袁和义 等: "川西北部地区九龙山构造深井井壁稳定性分析", 《2018年全国天然气学术年会论文集(04工程技术)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115293066A (zh) * 2022-08-09 2022-11-04 西南石油大学 考虑地层渗流传热效应的气井温度场计算方法
CN115293066B (zh) * 2022-08-09 2023-09-01 西南石油大学 考虑地层渗流传热效应的气井温度场计算方法

Also Published As

Publication number Publication date
CN113449353B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN110532592B (zh) 一种缝洞油气藏压裂井大溶洞试井解释方法
CN108868748B (zh) 一种页岩气水平井重复压裂裂缝开启压力的计算方法
CN112593907B (zh) 计算裂缝面积、体积和滤失速率的系统和方法、程序产品
CN109614736B (zh) 一种海上稠油油田蒸汽吞吐开发定向井与直井产能倍数的确定方法
CN111222252B (zh) 一种用于低饱和度油藏油水两相压后产能预测方法及系统
CN109162701B (zh) 一种煤层裸眼井破裂压力预测方法
CN112682016B (zh) 油气田薄互层储层穿层压裂参数的确定方法及压裂方法
WO2018204566A1 (en) Multi-layer reservoir well drainage region
CN105822298A (zh) 基于产气指数的页岩气层绝对无阻流量的获取方法
CN107169248B (zh) 一种特殊地层安全泥浆密度窗口确定方法
CN111274714A (zh) 一种采用u型各向异性强度准则的层状储层坍塌压力预测方法
CN113449353B (zh) 考虑地层流体渗流作用的水平井井壁稳定分析方法
CN108678672A (zh) 深水浅部复杂岩性地层导管高效置入及井口稳定预测方法
Lu et al. Predicting the critical drawdown pressure of sanding onset for perforated wells in ultra‐deep reservoirs with high temperature and high pressure
Karev et al. Directional unloading method is a new approach to enhancing oil and gas well productivity
CN114169204B (zh) 一种用于海上油气田开发生产的防砂时机确定方法
CN113958315B (zh) 一种基于自吸-本构模型的页岩地层坍塌压力预测方法
CN109033698B (zh) 一种用于层状地层水平井破裂压力计算的方法
CN115522918A (zh) 深层砂岩油藏射孔井出砂压差剖面预测方法
CN113326599A (zh) 一种裸眼井破裂压力剖面计算方法
Davani et al. Numerical simulation and three-phase pressure transient analysis considering capillary number effect–case study of a gas condensate reservoir
CN113530534A (zh) 储层改造方法及装置
CN110145286B (zh) 一种低渗透油藏或气藏完井工程的设计方法
US20200018159A1 (en) Systems and Methods to Identify and Inhibit Spider Web Borehole Failure in Hydrocarbon Wells
CN116066092B (zh) 一种基于硬度实验的页岩地层坍塌压力增量预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant