CN113441096A - 一种圆台形多孔pegda微颗粒的实验制备装置以及方法 - Google Patents

一种圆台形多孔pegda微颗粒的实验制备装置以及方法 Download PDF

Info

Publication number
CN113441096A
CN113441096A CN202110730263.8A CN202110730263A CN113441096A CN 113441096 A CN113441096 A CN 113441096A CN 202110730263 A CN202110730263 A CN 202110730263A CN 113441096 A CN113441096 A CN 113441096A
Authority
CN
China
Prior art keywords
pegda
microparticles
truncated cone
shaped porous
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110730263.8A
Other languages
English (en)
Other versions
CN113441096B (zh
Inventor
满佳
华泽升
李建勇
刘广旭
李剑峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202110730263.8A priority Critical patent/CN113441096B/zh
Publication of CN113441096A publication Critical patent/CN113441096A/zh
Application granted granted Critical
Publication of CN113441096B publication Critical patent/CN113441096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种圆台形多孔PEGDA微颗粒的实验制备装置及方法,将溶解了光引发剂的紫外光固化材料聚乙二醇二丙烯酸酯(PEGDA),和高粘度的甘油通过共溶剂共溶后,滴入溶解了表面活性剂的油性液体中,并悬浮在空气‑油交界面处,由于共溶液体溶解度的变化和油相对共溶液体界面张力的作用下形成雪人形的液滴,且在空气‑油交界面即雪人形液滴的顶端出现密集排列的甘油小液滴,液滴经过紫外光处发生交联聚合反应,经过清洗、干燥之后得到的圆台形多孔PEGDA微颗粒。基于液相相分离技术,并且利用空气‑油相界面的张力制备的圆台形多孔PEGDA微颗粒具有三维形状特征明显,形状精确可调,简单易行的特点。

Description

一种圆台形多孔PEGDA微颗粒的实验制备装置以及方法
技术领域
本发明涉及多孔微颗粒实验制备领域,尤其涉及圆台形的多孔PEGDA微颗粒的实验制备装置及方法。
背景技术
从人体中的细胞到雾霾中的悬浮颗粒,微颗粒在人们的日常生活中随处可见。当颗粒从宏观尺寸降低到微观尺寸时,其比表面积会大大地提高,这也使其具有了许多特殊的功能。拥有复杂结构的微颗粒,如核壳结构、多孔结构、双面神结构以及多层结构等,在化妆品、药物运载、油回收以及细胞包覆等方向有着重要的应用。
目前,在实验室制备球形微颗粒的方法有搅拌乳化、喷雾干燥、振动分散等,然而,这些传统方法制备出的微颗粒尺寸单分散性较差,形状精度也不高。用于制备非球形微颗粒的传统方法诸如凝胶注模、粉末微注射成型、微挤出成型等方法对模具依赖性大,微颗粒形貌和尺寸可调性差。
液相相分离技术近来也常被用于调控微颗粒的结构。液相相分离技术是指当外界环境发生改变时,原本互相溶解在一起的几种溶液的溶解度发生改变,某一相或某几相溶液从混合溶液中析出的现象。利用相分离技术调控微颗粒的结构,不需要制作复杂的微流控器件,且结构可由材料配伍预先设计,调控精确且易操作,因此是一种调控微颗粒结构的理想技术,但是液相相分离技术主要用于球形微颗粒的制备,限制了微颗粒的进一步发展和应用。因此,迄今为止还没一种比较简易的,连续的,可控的方法可以制备具有三维结构特征的非球形微颗粒。
发明内容
为了弥补现有技术的不足,本发明的目的是提供一种基于相分离技术的圆台形多孔PEGDA微颗粒的实验制备装置及方法。该方法将溶解了光引发剂的紫外光固化材料聚乙二醇二丙烯酸酯(PEGDA),和高粘度的甘油通过共溶剂共溶后滴入溶解了表面活性剂的油性液体中,并悬浮在空气-油交界面处,由于共溶液体溶解度的变化和油相对共溶液体界面张力的作用下形成雪人形的液滴,且在空气-油交界面即雪人形液滴的顶端出现密集排列的甘油小液滴,液滴经过紫外光处发生交联聚合反应,经过清洗、干燥之后得到的圆台形多孔PEGDA微颗粒,具有三维形状特征明显,形状精确可调,简单易行的特点。
为了实现上述目的,本发明的技术方案为:
第一方面,本发明提供了一种基于相分离技术的圆台形多孔PEGDA微颗粒的实验制备装置,包括底板、点胶针头、毛细玻璃管、紫外光源和收集装置;所述点胶针头固定在底板上,底板悬垂在收集装置的正上方;毛细玻璃管的上端口与点胶针头的腔体连通,毛细玻璃管下端口与空气-油相界面接触;紫外光源的发射端朝向毛细玻璃管下端口放置,且紫外光源发出的紫外光线与毛细玻璃管轴线交叉呈设定的夹角。
第二方面,本发明提供一种基于相分离技术制备圆台形多孔PEGDA微颗粒的制备方法,包括如下步骤:
将共溶液体通入点胶针头中,进入毛细玻璃管,然后从毛细玻璃管末端滴入油相,悬浮在空气-油界面处;
由于共溶液体溶解度的变化和油相对共溶液体界面张力的作用下形成雪人形的液滴,且在空气-油交界面即雪人形液滴的顶端出现密集排列的甘油小液滴;
一定时间后,相分离过程结束,紫外光照射雪人形液滴;
雪人形液滴经过曝光固化收集后进行清洗,分别除去油相和未固化的甘油相,然后经过干燥得到圆台形的多孔PEGDA微颗粒。
进一步的,所述共溶液体为PEGDA、甘油、无水乙醇、光引发剂的混合溶液,所述光引发剂的质量和PEGDA的总体积比为(0.1~0.4)g/ml,PEGDA、无水乙醇与甘油的体积比为1:1.5:3;
第三方面,本发明提供所述制备方法制备得到的圆台形多孔PEGDA微颗粒。
与现有技术相比,本发明提出的圆台形多孔PEGDA微颗粒的实验制备装置及方法具有以下有益效果:
(1)本发明基于液相相分离技术,并且利用油相对共溶液体的界面张力作用制备的圆台形多孔PEGDA微颗粒具有形状精密可控、简单可行的特点,为其批量化稳定生产提供了基础。
(2)本发明通过利用上述装置和方法可以在实验室高效地制备具有显著三维形状特征的PEGDA微颗粒,为脱离传统模具方法提供了思路和有益的尝试。
(3)本发明通过调节共溶液体中三种液体的体积比、以及调节共溶液体的流速可精确地制备出不同形状和尺寸的圆台形多孔微颗粒。
(4)本发明提供的方法基于液相相分离技术,能够简单可控地制备功能化的多孔PEGDA微颗粒。根据应用需求的不同,只需在共溶液体中添加多种功能纳米颗粒或功能高分子,便可制备出具有多重响应性的圆台形多孔PEGDA微颗粒,解决了现有技术难以制备功能丰富的多孔微颗粒的问题。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备圆台形多孔PEGDA微颗粒装置的结构示意图。
图2为本发明实施例4中制备圆台形多孔PEGDA微颗粒的流程示意图。
图3为本发明实施例4在共溶液体流速为3μL/min,液量为0.3ul,表面活性剂Sp80浓度为0.25%,制备得到的雪人形液滴的光学显微镜图。
图4为本发明实施例4在共溶液体流速为3μL/min,液量为0.3ul,表面活性剂Sp80浓度为0.8%,紫外灯头和毛细玻璃管交叉角度为30°条件下制备得到的雪人形液滴的光学显微镜图。
图5为本发明实施例4制备得到的圆台形多孔PEGDA微颗粒的扫描电子显微镜图
其中:1-底板,2-点胶针头,3-毛细玻璃管,4-紫外灯头,5-收集皿。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
现结合附图和具体实施方式对本发明进一步进行说明。
实施例1
参考图1,示例本发明基于相分离技术制备圆台形多孔PEGDA微颗粒的实验装置,包括:包括底板1、点胶针头2、毛细玻璃管3、紫外灯头4和收集皿5;点胶针头2固定在底板1上,底板1悬垂在收集皿5的正上方;收集皿5内用于盛装油相;所述毛细玻璃管3的上端口与点胶针头2的腔体连通,所述毛细玻璃管3下端口与收集皿5的空气-油相界面接触;所述紫外灯头4朝向毛细玻璃管3下端口放置,且两者交叉呈设定的夹角。
进一步的,基于相分离技术制备圆台形多孔PEGDA微颗粒的装置,还包括用于注射共溶液体注射器,所述点胶针头2连接有一个注射器,并用流量泵驱动注射器,以便于将共溶液体注射至点胶针头2中。
进一步的,基于相分离技术制备圆台形多孔PEGDA微颗粒的装置,还包括用于提供灯头紫外光的光源,所述紫外灯头4连接至一个紫外光源,并用光源程序控制紫外灯头光强大小。
进一步的,如图1所示,本实施例中所述的底板采用7101型号的载玻片,所述毛细玻璃管3为长度50mm,且所述毛细玻璃管3的内径为0.3mm。所述毛细玻璃管3通过胶粘的方式与所述载玻片固定在一起。所述紫外灯头4通过铁架台夹持的方式置于收集皿的上方。
进一步的,紫外灯头4和毛细玻璃管3之间的夹角为0~90°,具体根据实际需要进行设置即可。
进一步的,在一些实施例中,紫外灯头4的光强为65~75mW/cm2
实施例2
如图2所示,本实施例还提供了一种基于相分离技术制备圆台形多孔PEGDA微颗粒的方法,包括如下步骤:
1、共溶液体的制备:在室温下,将0.02ml hydroxyl-2-methylpropiophenone,1mlPEGDA,以及3ml甘油混合,向所得的混合溶液中滴加1.5ml无水乙醇,旋涡振荡5分钟得到共溶液体。
2、油相制备:量取10ml液体石蜡,0.2ml Span80,混合后旋涡振荡5分钟,得到油相。
3、圆台形多孔PEGDA微颗粒的制备采用实施例1所述的装置执行,具体为:
(1)将本实施例配制好的共溶液体通过注射器注入点胶针头中,待共溶液体从毛细玻璃管滴入油相,且悬浮在空气-油相界面时,由于共溶液体溶解度的变化和油相对共溶液体界面张力的作用下形成雪人形的液滴,且在空气-油交界面即雪人形液滴的顶端出现密集排列的甘油小液滴;共溶液体的流速设置为3μL/min,液量为0.3ul,紫外灯头光强设置为70mW/cm2,进行试验。
(2)紫外光照射液滴后,1mL滴管吸取油相后加入石油醚多次清洗,吸干石油醚并采用氮气进一步吹干后使用去离子水多次清洗除去未固化的甘油。收集固化的微颗粒并将其置于特氟龙薄膜上干燥12小时后即可得到圆台形多孔PEGDA微颗粒,如图3所示。
本实施例中公开的圆台形多孔PEGDA微颗粒可以在多个领域进行使用,例如可以在功能材料、生物技术领域中的应用。
本发明基于液相相分离技术,并且利用油相对共溶液体的界面张力作用制备的圆台形多孔PEGDA微颗粒具有形状精密可控、简单可行的特点,为其批量化稳定生产提供了基础。
本发明通过利用上述装置和方法可以高效地制备具有显著三维形状特征的PEGDA微颗粒,为脱离传统模具方法提供了思路和有益的尝试。
本发明通过调节共溶液体中三种液体的体积比、以及调节共溶液体的流速可精确地制备出不同形状和尺寸的圆台形多孔微颗粒。
本发明提供的方法基于液相相分离技术,能够简单可控地制备功能化的多孔PEGDA微颗粒。根据应用需求的不同,只需在共溶液体中添加多种功能纳米颗粒或功能高分子,便可制备出具有多重响应性的圆台形多孔PEGDA微颗粒,解决了现有技术难以制备功能丰富的多孔微颗粒的问题。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种圆台形多孔PEGDA微颗粒的实验制备装置,其特征在于:包括底板、点胶针头、毛细玻璃管、紫外光源和收集装置;所述点胶针头固定在底板上,底板悬垂在收集装置的正上方;毛细玻璃管的上端口与点胶针头的腔体连通,毛细玻璃管下端口与空气-油相界面接触;紫外光源的发射端朝向毛细玻璃管下端口放置,且紫外光源发出的紫外光线与毛细玻璃管轴线交叉呈设定的夹角。
2.根据权利要求1所述的圆台形多孔PEGDA微颗粒的实验制备装置,其特征在于:还包括注射器和注射泵,注射器与流量泵连接,注射器通过软管与点胶针头连接。
3.根据权利要求1所述的圆台形多孔PEGDA微颗粒的实验制备装置,其特征在于:还包括接触软管,接触软管与毛细玻璃管的下端口过盈配合。
4.根据权利要求1所述的圆台形多孔PEGDA微颗粒的实验制备装置,其特征在于:所述毛细玻璃管的内径为0.1~0.5mm。
5.根据权利要求1所述的圆台形多孔PEGDA微颗粒的实验制备装置,其特征在于:紫外光源发出的紫外光线和毛细玻璃管之间的夹角为0~90°。
6.利用权利要求1所述的圆台形多孔PEGDA微颗粒的实验制备装置制备圆台形多孔PEGDA微颗粒的方法,其特征在于:包括如下步骤:
将共溶液体通入点胶针头中,进入毛细玻璃管,然后从毛细玻璃管下端口滴入收集装置中的油相,悬浮在空气-油界面处;
由于共溶液体溶解度的变化和油相对共溶液体界面张力的作用下形成雪人形的液滴,且在空气-油交界面即雪人形液滴的顶端出现密集排列的甘油小液滴;
一定时间后,相分离过程结束,紫外光照射雪人形液滴;
雪人形液滴经过曝光固化收集后进行清洗,分别除去油相和未固化的甘油相,然后经过干燥得到圆台形的多孔PEGDA微颗粒。
7.根据权利要求6所述的圆台形多孔PEGDA微颗粒的制备方法,其特征在于:所述共溶液体为PEGDA、甘油、无水乙醇、光引发剂的混合溶液;所述光引发剂的质量和PEGDA的总体积比为(0.1~0.4)g/ml;所述PEGDA、无水乙醇与甘油的体积比为1:1.5:3。
8.根据权利要求6所述的圆台形多孔PEGDA微颗粒的制备方法,其特征在于:所述油相为油性液体和表面活性剂混合振荡得到。
9.根据权利要求6所述的圆台形多孔PEGDA微颗粒的制备方法,其特征在于:所述清洗过程依次采用石油醚和去离子水对雪人形液滴进行清洗。
10.一种利用权利要求6-9任一所述制备方法制备得到的圆台形多孔PEGDA微颗粒。
CN202110730263.8A 2021-06-29 2021-06-29 一种圆台形多孔pegda微颗粒的实验制备装置以及方法 Active CN113441096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110730263.8A CN113441096B (zh) 2021-06-29 2021-06-29 一种圆台形多孔pegda微颗粒的实验制备装置以及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110730263.8A CN113441096B (zh) 2021-06-29 2021-06-29 一种圆台形多孔pegda微颗粒的实验制备装置以及方法

Publications (2)

Publication Number Publication Date
CN113441096A true CN113441096A (zh) 2021-09-28
CN113441096B CN113441096B (zh) 2022-04-29

Family

ID=77814166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110730263.8A Active CN113441096B (zh) 2021-06-29 2021-06-29 一种圆台形多孔pegda微颗粒的实验制备装置以及方法

Country Status (1)

Country Link
CN (1) CN113441096B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204382A (ja) * 2006-01-31 2007-08-16 Kyoto Univ リポソームの製造方法
CN101342472A (zh) * 2008-08-20 2009-01-14 东南大学 均一尺寸纳米颗粒荧光微球的制备方法
CN103846068A (zh) * 2014-03-19 2014-06-11 中国科学技术大学 一种粒径和形貌可控的单分散极性异性Janus微球及其制备方法和所用的微流体控制装置
CN104450891A (zh) * 2014-11-17 2015-03-25 中国科学院微生物研究所 基于微液滴的数字核酸扩增定量分析方法及系统
US20170225142A1 (en) * 2014-11-01 2017-08-10 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Reflecting spherical microcapsules and methods of their production
CN110639450A (zh) * 2019-09-29 2020-01-03 山东大学 一种微反应器制备海藻酸钙微球的装置及方法和应用
CN111892686A (zh) * 2020-08-10 2020-11-06 四川大学 一种连续可控制备两亲性雪人形微颗粒的方法
CN112044371A (zh) * 2020-09-07 2020-12-08 山东大学 一种制备单分散性海藻酸钙微球的装置、方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204382A (ja) * 2006-01-31 2007-08-16 Kyoto Univ リポソームの製造方法
CN101342472A (zh) * 2008-08-20 2009-01-14 东南大学 均一尺寸纳米颗粒荧光微球的制备方法
CN103846068A (zh) * 2014-03-19 2014-06-11 中国科学技术大学 一种粒径和形貌可控的单分散极性异性Janus微球及其制备方法和所用的微流体控制装置
US20170225142A1 (en) * 2014-11-01 2017-08-10 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Reflecting spherical microcapsules and methods of their production
CN104450891A (zh) * 2014-11-17 2015-03-25 中国科学院微生物研究所 基于微液滴的数字核酸扩增定量分析方法及系统
CN110639450A (zh) * 2019-09-29 2020-01-03 山东大学 一种微反应器制备海藻酸钙微球的装置及方法和应用
CN111892686A (zh) * 2020-08-10 2020-11-06 四川大学 一种连续可控制备两亲性雪人形微颗粒的方法
CN112044371A (zh) * 2020-09-07 2020-12-08 山东大学 一种制备单分散性海藻酸钙微球的装置、方法及应用

Also Published As

Publication number Publication date
CN113441096B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN101279232B (zh) 基于微流体的微球制备方法
CN109201130B (zh) 一种双重乳化玻璃毛细管微流控芯片及其制成的相变微胶囊
Zhang et al. A microfluidic approach to fabricate monodisperse hollow or porous poly (HEMA–MMA) microspheres using single emulsions as templates
WO2017049066A1 (en) Apparatus for culturing and interacting with a three-dimensional cell culture
CN108289797A (zh) 用于制备和使用凝胶微球的系统和方法
CN110639450B (zh) 一种微反应器制备海藻酸钙微球的装置及方法和应用
CN109806918A (zh) 基于微流控技术的明胶甲基丙烯酰胺核壳微球的制备方法
CN103588920A (zh) 单分散多孔聚合物纳米微囊的新型制备方法
Li et al. High-throughput generation of microgels in centrifugal multi-channel rotating system
CN111892686B (zh) 一种连续可控制备两亲性雪人形微颗粒的方法
CN111195371A (zh) 一种微异型载细胞海藻酸凝胶及其制备方法和应用
CN113441096B (zh) 一种圆台形多孔pegda微颗粒的实验制备装置以及方法
CN113975250A (zh) 一种具有核壳结构的双水相多孔胰岛微胶囊的制备及应用
CN106669556A (zh) 一种利用变换微流控通道制备毫米级颗粒的方法
CN112409553A (zh) 微流控冰晶法制备可注射多孔水凝胶微球的方法及其应用
KR101654790B1 (ko) 다중성분 마이크로입자의 제조방법
CN108499498A (zh) 一种制备聚合物微空心微球的方法
Yu et al. Monodisperse macroporous microspheres prepared by microfluidic methods and their oil adsorption performance
CN103389391B (zh) 一种粘结涂覆法制备不同聚合物膜探针的方法
CN112452251B (zh) 月牙形及其变形陶瓷微颗粒、其制备方法、应用及制备装置
CN103788385A (zh) 一种使用喷雾干燥法制备水凝胶光子晶体颗粒的方法
CN111423971A (zh) 一种用于循环肿瘤细胞捕获的聚合物微球及其制备方法
CN113773521A (zh) 基于液滴自破裂现象制备尺寸小于10纳米的乳液及聚合物颗粒的方法
CN108380148B (zh) 一种模拟微重力的液滴回转固化反应系统
CN114405422B (zh) 一种制备大直径聚合物微球的流体塑形装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant