CN113436818B - 一种自发形成拓扑磁畴结构的稀土基材料及其制备方法 - Google Patents
一种自发形成拓扑磁畴结构的稀土基材料及其制备方法 Download PDFInfo
- Publication number
- CN113436818B CN113436818B CN202110703728.0A CN202110703728A CN113436818B CN 113436818 B CN113436818 B CN 113436818B CN 202110703728 A CN202110703728 A CN 202110703728A CN 113436818 B CN113436818 B CN 113436818B
- Authority
- CN
- China
- Prior art keywords
- rare earth
- based material
- domain structure
- magnetic domain
- topological magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/007—Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Soft Magnetic Materials (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明公开了一种自发形成拓扑磁畴结构的稀土基材料,稀土基材料的化学式为R(Co1‑ xZx)5,其中R为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y中的一种或多种的混合,Z为主族或过渡族元素中的一种或多种,0≤x≤1;稀土基材料R(Co1‑xZx)5在较宽的温度区间具有稳定的拓扑磁畴结构。本发明采用上述一种自发形成拓扑磁畴结构的稀土基材料及其制备方法,在高温、室温附近和低温区具有拓扑磁畴结构,在合适的条件下该材料中的斯格明子能自发形成,克服了斯格明子形成温区窄和需要磁场稳定的不足,可在较大的成分范围里调控,而且材料制备简单。
Description
技术领域
本发明涉及稀土磁性功能材料技术领域,尤其是涉及一种自发形成拓扑磁畴结构的稀土基材料及其制备方法。
背景技术
当前爆发式增长的海量数据对信息的读和写的速度、密度和能耗等提出了更高更严格的要求,探索以更低的能耗、更高的读写速度实现信息高密度存储的途径是信息存储材料和技术的研究面对的巨大挑战,也是必须完成的紧迫任务。在新型磁性存储介质的探索方面,磁性斯格明子(skyrmion)因具有受拓扑对称性保护且可利用低密度的电流对其进行调控的纳米尺度(10-100nm)特殊磁矩构型,有望突破传统磁存储介质的超顺磁性物理极限,降低读和写的能量消耗,进而有望成为新一代高密度、高速度、低能耗的信息存储单元。
磁性斯格明子是一种特殊的涡旋状纳米磁畴结构,其形成主要是由于材料中不同相互作用竞争导致磁矩呈非共线/非共面排列的结果。目前,磁性斯格明子的形成机制主要分为四类,分别是:长程磁偶极相互作用、Dzyaloshinskii-Moriya(DM)相互作用、阻挫交换相互作用和四自旋交换相互作用。磁性斯格明子的材料可以简单地分为两类,分别是中心对称材料和非中心对称材料。目前虽然已经在很多材料中发现了磁性斯格明子,但在目前所报道的材料中,通常需要施加适当的外磁场才能使斯格明子形成,撤掉外场后斯格明子随之消失,不利于器件的设计。此外,目前大部分材料中斯格明子存在的温区很窄(只在居里温度附近几K的范围里稳定存在),阻碍了其在器件中的应用。虽然在Fe/Ir薄膜材料中观察到了自发形成的零场磁性斯格明子,但该薄膜中的斯格明子只在极低温11K下存在且温区较窄,远离实际应用。
现有磁性斯格明子材料存在的这些不足限制了其在器件中的应用,因此需要开发一种在宽温区自发形成磁性斯格明子的材料,使得磁性斯格明子这种特殊结构能应用于非易失的高密度磁性储存器件中。
发明内容
本发明的目的是提供一种自发形成拓扑磁畴结构的稀土基材料及其制备方法,在高温、室温附近和低温区具有拓扑磁畴结构,在合适的条件下该材料中的斯格明子能自发形成,克服了斯格明子形成温区窄和需要磁场稳定的不足,可在较大的成分范围里调控,而且材料制备简单。
为实现上述目的,本发明提供了一种自发形成拓扑磁畴结构的稀土基材料,包括稀土基材料,所述稀土基材料的化学式为R(Co1-xZx)5,其中R为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y中的一种或多种的混合,Z为主族或过渡族元素中的一种或多种,0≤x≤1;所述稀土基材料R(Co1-xZx)5在较宽的温度区间具有稳定的拓扑磁畴结构。
优选的,所述Z为Al、Ga、Si、Cu、Fe、Ni中的一种或多种。
优选的,所述稀土基材料R(Co1-xZx)5中的R与Co1-xZx的质量比为1∶5,且两者的纯度为99.9%。
优选的,所述稀土基材料R(Co1-xZx)5中的R为Nd,x=0。
一种自发形成拓扑磁畴结构的稀土基材料的制备方法,包括以下步骤:
(1)按质量比R∶(Co1-xZx)=1∶5的比例,分别称量纯度为99.9%的R、Co和Z原料;
(2)将称好的原料放入水冷坩埚中,在Ar气体的保护下,采用电弧熔炼将原料加热熔化并保持30-40秒;
(3)将步骤(2)所得的产物翻转后,再次利用电弧熔炼加热熔化并保持30-40秒,重复该步骤四次得到铸锭;
(4)将所得的铸锭真空充Ar封管,然后加热,在1000-1100摄氏度下真空或惰性气体保护下退火24-72小时,得到多晶块体,即为拓扑磁畴结构材料R(Co1-xZx)5;
(5)利用磁测量和洛伦兹透射电镜测试上述所得块体,表明材料在特定温度范围内自发形成稳定的拓扑磁畴结构。
因此,本发明采用上述一种自发形成拓扑磁畴结构的稀土基材料及其制备方法,在高温、室温附近和低温区具有拓扑磁畴结构,在合适的条件下该材料中的斯格明子能自发形成,克服了斯格明子形成温区窄和需要磁场稳定的不足,可在较大的成分范围里调控,而且材料制备简单,有利于其在逻辑器件中的应用。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为实施例中得到的NdCo5合金的室温X射线衍射图谱;
图2为实施例中得到的NdCo5合金的低场磁化强度-温度变化曲线;
图3为实施例中利用洛伦兹电镜在NdCo5合金中观察到的不同温度下自发形成的拓扑磁畴结构。
具体实施方式
以下通过附图和实施例对本发明的技术方案作进一步说明。
本发明提供了一种自发形成拓扑磁畴结构的稀土基材料,包括稀土基材料,所述稀土基材料的化学式为R(Co1-xZx)5,其中R为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y中的一种或多种的混合,Z为主族或过渡族元素中的一种或多种,0≤x≤1;所述稀土基材料R(Co1-xZx)5在较宽的温度区间具有稳定的拓扑磁畴结构。稀土基材料R(Co1-xZx)5中的R与Co1-xZx的质量比为1∶5,且两者的纯度为99.9%。
进一步的,所述Z为Al、Ga、Si、Cu、Fe、Ni中的一种或多种。
一种自发形成拓扑磁畴结构的稀土基材料的制备方法,包括以下步骤:
(1)按质量比R∶(Co1-xZx)=1∶5的比例,分别称量纯度为99.9%的R、Co和Z原料;
(2)将称好的原料放入水冷坩埚中,在Ar气体的保护下,采用电弧熔炼将原料加热熔化并保持30-40秒;
(3)将步骤(2)所得的产物翻转后,再次利用电弧熔炼加热熔化并保持30-40秒,重复该步骤四次得到铸锭;
(4)将所得的铸锭真空充Ar封管,然后加热,在1000-1100摄氏度下真空或惰性气体保护下退火24-72小时,得到多晶块体,即为拓扑磁畴结构材料R(Co1-xZx)5;
(5)利用磁测量和洛伦兹透射电镜测试上述所得块体,表明材料在特定温度范围内自发形成稳定的拓扑磁畴结构。
实施例
如图1-3所示,本发明提供了一种自发形成拓扑磁畴结构的稀土基材料,包括稀土基材料,所述稀土基材料的化学式为R(Co1-xZx)5,其中R为Nd,x=0,Z为Al、Ga、Si、Cu、Fe、Ni中的一种或多种;Nd与Co的质量比为1∶5,且两者的纯度为99.9%。
一种自发形成拓扑磁畴结构的稀土基材料的制备方法,包括以下步骤:
(1)按质量比Nd∶Co=1∶5的比例,分别称量纯度为99.9%的Nd和Co金属原料;
(2)将称好的原料放入水冷坩埚中,在Ar气体的保护下,采用电弧熔炼将原料加热熔化并保持30-40秒;
(3)将步骤(2)所得的产物翻转后,再次利用电弧熔炼加热熔化并保持30-40秒,重复该步骤四次得到铸锭;
(4)将所得的NdCo5铸锭真空充Ar封管,然后加热,在1100摄氏度下退火24小时,得到多晶块体,即为拓扑磁畴结构材料NdCo5;
(5)利用磁测量和洛伦兹透射电镜测试上述所得块体,表明材料在120-282K温度范围内自发形成稳定的拓扑磁畴结构。
因此,本发明采用上述一种自发形成拓扑磁畴结构的稀土基材料及其制备方法,在高温、室温附近和低温区具有拓扑磁畴结构,在合适的条件下该材料中的斯格明子能自发形成,克服了斯格明子形成温区窄和需要磁场稳定的不足,可在较大的成分范围里调控,而且材料制备简单。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。
Claims (3)
1.一种自发形成拓扑磁畴结构的稀土基材料,其特征在于:
包括稀土基材料,所述稀土基材料的化学式为R(Co1-xZx)5,其中R为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y中的一种或多种的混合,Z为主族或过渡族元素中的一种或多种,0≤x≤1;所述稀土基材料R(Co1-xZx)5在较宽的温度区间具有稳定的拓扑磁畴结构;
所述稀土基材料R(Co1-xZx)5中的R与(Co1-xZx)的质量比为1∶5,且两者的纯度为99.9%;
上述的自发形成拓扑磁畴结构的稀土基材料的制备方法,包括以下步骤:
(1)按质量比R∶(Co1-xZx)=1∶5的比例,分别称量纯度为99.9%的R、Co和Z原料;
(2)将称好的原料放入水冷坩埚中,在Ar气体的保护下,采用电弧熔炼将原料加热熔化并保持30-40秒;
(3)将步骤(2)所得的产物翻转后,再次利用电弧熔炼加热熔化并保持30-40秒,重复该步骤四次得到铸锭;
(4)将所得的铸锭真空充Ar封管,然后加热,在1000-1100摄氏度下真空或惰性气体保护下退火24-72小时,得到多晶块体,即为拓扑磁畴结构材料R(Co1-xZx)5;
(5)利用磁测量和洛伦兹透射电镜测试上述所得块体,表明材料在特定温度范围内自发形成稳定的拓扑磁畴结构;
所述拓扑磁畴结构为斯格明子结构。
2.根据权利要求1所述的一种自发形成拓扑磁畴结构的稀土基材料,其特征在于:所述Z为Al、Ga、Si、Cu、Fe、Ni中的一种或多种。
3.根据权利要求1所述的一种自发形成拓扑磁畴结构的稀土基材料,其特征在于:所述稀土基材料R(Co1-xZx)5中的R为Nd,x=0。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110703728.0A CN113436818B (zh) | 2021-06-24 | 2021-06-24 | 一种自发形成拓扑磁畴结构的稀土基材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110703728.0A CN113436818B (zh) | 2021-06-24 | 2021-06-24 | 一种自发形成拓扑磁畴结构的稀土基材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113436818A CN113436818A (zh) | 2021-09-24 |
CN113436818B true CN113436818B (zh) | 2023-05-23 |
Family
ID=77753936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110703728.0A Active CN113436818B (zh) | 2021-06-24 | 2021-06-24 | 一种自发形成拓扑磁畴结构的稀土基材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113436818B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114383338B (zh) * | 2021-12-27 | 2023-09-29 | 中国科学院理论物理研究所 | 一种基于新型阻挫磁性材料的级联式无液氦制冷机设计方法 |
CN115125428B (zh) * | 2022-08-09 | 2023-03-10 | 杭州电子科技大学 | 一种宽温区跨室温磁斯格明子材料及其制备方法与应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1269587A (zh) * | 1999-04-05 | 2000-10-11 | 潘树明 | 稀土过渡族永磁体生产中废料磁性再生方法及其产品 |
CN1137274C (zh) * | 2001-08-28 | 2004-02-04 | 中国科学院物理研究所 | 一种制备各向异性RCo5系列永磁薄带的方法 |
US6830725B2 (en) * | 2003-04-01 | 2004-12-14 | Texaco Ovonic Battery Systems, Llc | Hydrogen storage alloys having a high porosity surface layer |
US7344677B2 (en) * | 2004-04-02 | 2008-03-18 | Ovonic Battery Company, Inc. | Hydrogen storage alloys having improved cycle life and low temperature operating characteristics |
CN102304646B (zh) * | 2011-09-02 | 2013-03-27 | 北京航空航天大学 | 用于航空发动机的抗氧化SmCoX-Y(SiaGebSnc)Y高温永磁材料及其制备方法 |
CN109801767A (zh) * | 2019-03-22 | 2019-05-24 | 中国科学院宁波材料技术与工程研究所 | 一种具有旋转磁热效应的钕钴基磁制冷材料及其制备方法 |
-
2021
- 2021-06-24 CN CN202110703728.0A patent/CN113436818B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113436818A (zh) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113436818B (zh) | 一种自发形成拓扑磁畴结构的稀土基材料及其制备方法 | |
Iwanabe et al. | Thermal stability of the nanocrystalline Fe–Co–Hf–B–Cu alloy | |
JPS609852A (ja) | 高エネルギ−積の稀土類−鉄磁石合金 | |
Nguyen et al. | Synthesis of monodispersed fcc and fct FePt/FePd nanoparticles by microwave irradiation | |
US12033777B2 (en) | Amorphous nanocrystalline soft magnetic material, preparation method therefor and use thereof, amorphous ribbon material, amorphous nanocrystalline ribbon material, and amorphous nanocrystalline magnetic sheet | |
Saha et al. | Magnetic properties of the low-temperature phase of MnBi | |
CN104831169A (zh) | 一种铁基纳米晶软磁合金材料及其制备方法 | |
CN111074129B (zh) | 一种稀土基磁性斯格明子材料、制备方法及其应用 | |
Sarkar et al. | Synthesizing the hard magnetic low-temperature phase of MnBi alloy: Challenges and prospects | |
US8999233B2 (en) | Nanostructured Mn-Al permanent magnets and methods of producing same | |
Jia et al. | Roadmap towards optimal magnetic properties in L10-MnAl permanent magnets | |
Yuping et al. | Effect of K2CO3 addition on the microstructure and magnetic properties of Sr-Ferrites | |
Crisan et al. | Development and structural characterization of exchange-spring-like nanomagnets in (Fe, Co)-Pt bulk nanocrystalline alloys | |
Bajenova et al. | Experimental investigation of the phase equilibria in the Tb-Co and Tb-Co-Fe systems and magnetic properties of phases | |
Komabuchi et al. | Influence of cobalt substitution on the magnetocrystalline anisotropy of X-type hexaferrites Sr2CoxFe30− xO46 | |
Ram et al. | Synthesis of norbergite Fe3BO6 of single crystallites from a borate glass | |
Chrobak et al. | Phase structure and magnetic properties of Fe–Nb–B–Tb type of bulk nanocrystalline alloys | |
Anil Kumar et al. | Origin of magnetic anomalies in the spin glass system, La0. 85Sr0. 15CoO3 | |
Navarro et al. | The spin glass state of metastable fcc FeRh | |
CN102254665A (zh) | 铁钴基纳米晶软磁合金及其制备方法 | |
RU2435734C2 (ru) | Монокристаллический железомарганцевый сульфид с колоссальной магнитострикцией | |
Chacon et al. | Determination of the substitution scheme of gallium and magnetic features of Nd 2 Fe 14− x Ga x B | |
Moharana et al. | Enhancement of weak magnetism of 3C–SiC by 3d-transition metal doping | |
Zhao et al. | Magnetic properties of rapidly quenched and annealed Fe10RTi and related alloys | |
Kondo et al. | Electrical Properties of Zn–Mg–RE (RE= Y, Gd) Icosahedral Quasicrystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |