CN113435459A - 基于机器学习的岩石组分识别方法、装置、设备及介质 - Google Patents
基于机器学习的岩石组分识别方法、装置、设备及介质 Download PDFInfo
- Publication number
- CN113435459A CN113435459A CN202110654942.1A CN202110654942A CN113435459A CN 113435459 A CN113435459 A CN 113435459A CN 202110654942 A CN202110654942 A CN 202110654942A CN 113435459 A CN113435459 A CN 113435459A
- Authority
- CN
- China
- Prior art keywords
- component
- image
- sample
- rock
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011435 rock Substances 0.000 title claims abstract description 189
- 238000000034 method Methods 0.000 title claims abstract description 83
- 238000010801 machine learning Methods 0.000 title claims abstract description 53
- 239000002245 particle Substances 0.000 claims abstract description 69
- 238000012545 processing Methods 0.000 claims description 35
- 238000012549 training Methods 0.000 claims description 29
- 230000010287 polarization Effects 0.000 claims description 28
- 239000013618 particulate matter Substances 0.000 claims description 19
- 238000003062 neural network model Methods 0.000 claims description 17
- 239000004568 cement Substances 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 13
- 239000000470 constituent Substances 0.000 claims description 12
- 239000000945 filler Substances 0.000 claims description 7
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 238000012512 characterization method Methods 0.000 abstract description 9
- 239000003208 petroleum Substances 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 29
- 238000005516 engineering process Methods 0.000 description 14
- 238000013473 artificial intelligence Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 8
- 238000013528 artificial neural network Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000000638 solvent extraction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 4
- 239000010433 feldspar Substances 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000003709 image segmentation Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052655 plagioclase feldspar Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013486 operation strategy Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000013526 transfer learning Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
Claims (13)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2021101817734 | 2021-02-08 | ||
CN202110181773.4A CN112730326A (zh) | 2021-02-08 | 2021-02-08 | 一种岩石薄片智能鉴定装置及方法 |
CN202110182027 | 2021-02-10 | ||
CN2021101820277 | 2021-02-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113435459A true CN113435459A (zh) | 2021-09-24 |
CN113435459B CN113435459B (zh) | 2024-07-26 |
Family
ID=77755662
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110653323.0A Pending CN113537235A (zh) | 2021-02-08 | 2021-06-11 | 岩石鉴定方法、系统、装置、终端及可读存储介质 |
CN202110653812.6A Pending CN113435456A (zh) | 2021-02-08 | 2021-06-11 | 基于机器学习的岩石薄片组分识别方法、装置及介质 |
CN202110654212.1A Pending CN113435457A (zh) | 2021-02-08 | 2021-06-11 | 基于图像的碎屑岩成分鉴定方法、装置、终端及介质 |
CN202110654275.7A Active CN113435458B (zh) | 2021-02-08 | 2021-06-11 | 基于机器学习的岩石薄片图像分割方法、装置及介质 |
CN202110654942.1A Active CN113435459B (zh) | 2021-02-08 | 2021-06-11 | 基于机器学习的岩石组分识别方法、装置、设备及介质 |
CN202110655073.4A Pending CN113435460A (zh) | 2021-02-08 | 2021-06-11 | 一种亮晶颗粒灰岩图像的识别方法 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110653323.0A Pending CN113537235A (zh) | 2021-02-08 | 2021-06-11 | 岩石鉴定方法、系统、装置、终端及可读存储介质 |
CN202110653812.6A Pending CN113435456A (zh) | 2021-02-08 | 2021-06-11 | 基于机器学习的岩石薄片组分识别方法、装置及介质 |
CN202110654212.1A Pending CN113435457A (zh) | 2021-02-08 | 2021-06-11 | 基于图像的碎屑岩成分鉴定方法、装置、终端及介质 |
CN202110654275.7A Active CN113435458B (zh) | 2021-02-08 | 2021-06-11 | 基于机器学习的岩石薄片图像分割方法、装置及介质 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110655073.4A Pending CN113435460A (zh) | 2021-02-08 | 2021-06-11 | 一种亮晶颗粒灰岩图像的识别方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240054766A1 (zh) |
EP (1) | EP4290470A4 (zh) |
JP (1) | JP2024508688A (zh) |
CN (6) | CN113537235A (zh) |
WO (1) | WO2022166232A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113688956A (zh) * | 2021-10-26 | 2021-11-23 | 西南石油大学 | 一种基于深度特征融合网络的砂岩薄片分割和识别方法 |
US20230160182A1 (en) * | 2021-11-22 | 2023-05-25 | Minesense Technologies Ltd. | Compositional multispectral and hyperspectral imaging systems for mining shovels and associated methods |
US20230220770A1 (en) * | 2022-01-07 | 2023-07-13 | Schlumberger Technology Corporation | Systems and methods for measuring physical lithological features based on calibrated photographs of rock particles |
CN114565820A (zh) * | 2022-03-01 | 2022-05-31 | 中科海慧(北京)科技有限公司 | 一种基于时空大数据分析的矿产样本识别系统 |
CN114913364B (zh) * | 2022-04-19 | 2024-08-23 | 中海石油(中国)有限公司 | 一种基于机器学习的薄互层油藏储量分类方法及系统 |
CN118039028A (zh) * | 2024-03-01 | 2024-05-14 | 中国海洋大学 | 基于磷灰石成分智能识别中酸性岩浆岩类型的方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190318467A1 (en) * | 2018-04-17 | 2019-10-17 | Saudi Arabian Oil Company | Automated analysis of petrographic thin section images using advanced machine learning techniques |
US20200005013A1 (en) * | 2018-06-29 | 2020-01-02 | Saudi Arabian Oil Company | Identifying geometrical properties of rock structure through digital imaging |
CN111160158A (zh) * | 2019-12-17 | 2020-05-15 | 山东大学 | 偏光显微镜下岩石图像智能识别系统及方法 |
CN111191741A (zh) * | 2020-01-15 | 2020-05-22 | 中国地质调查局发展研究中心 | 一种岩石识别深度学习模型岩石分类约束继承性损失方法 |
CN111563445A (zh) * | 2020-04-30 | 2020-08-21 | 徐宇轩 | 一种基于卷积神经网络的显微镜下岩性识别方法 |
CN112132200A (zh) * | 2020-09-17 | 2020-12-25 | 山东大学 | 基于多维岩石图像深度学习的岩性识别方法及系统 |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1317569C (zh) * | 2004-06-29 | 2007-05-23 | 中国国土资源航空物探遥感中心 | 高光谱矿物分层谱系识别方法 |
EP1789783A1 (en) * | 2004-09-07 | 2007-05-30 | Petromodel EHF | Apparatus and method for analysis of size, form and angularity and for compositional analysis of mineral and rock particles |
CN203490417U (zh) * | 2013-09-22 | 2014-03-19 | 成都西图科技有限公司 | 用于岩石薄片观测的新型显微镜 |
CN104181603A (zh) * | 2014-07-24 | 2014-12-03 | 中国石油大学(华东) | 碎屑岩沉积成岩综合相识别方法 |
CN104134069B (zh) * | 2014-08-06 | 2017-09-26 | 南京大学 | 一种页岩显微薄片自动鉴别方法 |
CN104112126A (zh) * | 2014-08-06 | 2014-10-22 | 南京大学镇江高新技术研究院 | 一种大理岩显微薄片自动鉴别方法 |
CN106294525A (zh) * | 2015-06-25 | 2017-01-04 | 中国石油化工股份有限公司 | 一种录井柱状剖面信息提取方法和系统 |
CN105354600B (zh) * | 2015-09-28 | 2018-10-23 | 南京大学 | 一种砂岩显微薄片的自动分类方法 |
CN106485223B (zh) * | 2016-10-12 | 2019-07-12 | 南京大学 | 一种砂岩显微薄片中岩石颗粒的自动识别方法 |
CN106677708B (zh) * | 2016-11-24 | 2019-08-30 | 上海工程技术大学 | 具备岩石薄片鉴定功能的石油勘探用钻井钻头系统及方法 |
CN106780536A (zh) * | 2017-01-13 | 2017-05-31 | 深圳市唯特视科技有限公司 | 一种基于对象掩码网络的形状感知实例分割方法 |
CN106875406B (zh) * | 2017-01-24 | 2020-04-14 | 北京航空航天大学 | 图像引导的视频语义对象分割方法及装置 |
CA3078983C (en) * | 2017-11-29 | 2022-05-31 | Landmark Graphics Corporation | Geological sediment provenance analysis and display system |
CN108318515A (zh) * | 2018-01-09 | 2018-07-24 | 南京大学 | 一种基于扫描电镜能谱分析的单颗粒矿物相自动识别及定量分析方法 |
CN108510493A (zh) * | 2018-04-09 | 2018-09-07 | 深圳大学 | 医学图像内目标对象的边界定位方法、存储介质及终端 |
CN108805879A (zh) * | 2018-05-24 | 2018-11-13 | 电子科技大学 | 一种基于Spiking神经网络的图像分割方法 |
CN110873722A (zh) * | 2018-09-03 | 2020-03-10 | 中国石油化工股份有限公司 | 一种岩心矿物组分鉴别方法 |
CN109523566A (zh) * | 2018-09-18 | 2019-03-26 | 姜枫 | 一种砂岩薄片显微图像的自动分割方法 |
CN109283148A (zh) * | 2018-09-30 | 2019-01-29 | 核工业北京地质研究院 | 一种基于光谱信息自动识别岩石矿物的方法 |
CN109741358B (zh) * | 2018-12-29 | 2020-11-06 | 北京工业大学 | 基于自适应超图学习的超像素分割方法 |
CN109612943B (zh) * | 2019-01-14 | 2020-04-21 | 山东大学 | 基于机器学习的隧洞岩石石英含量测试系统及方法 |
CN109800728A (zh) * | 2019-01-28 | 2019-05-24 | 济南浪潮高新科技投资发展有限公司 | 一种基于深度学习的矿物质快速识别的方法 |
CN109856029B (zh) * | 2019-02-01 | 2021-07-30 | 中海石油(中国)有限公司上海分公司 | 一种基于图像分析的孔隙度评价方法 |
CN109949317B (zh) * | 2019-03-06 | 2020-12-11 | 东南大学 | 基于逐步对抗学习的半监督图像实例分割方法 |
CN110095388A (zh) * | 2019-04-18 | 2019-08-06 | 中国石油大学(北京) | 碎屑岩颗粒结构的确定方法及装置 |
US20220207079A1 (en) * | 2019-05-09 | 2022-06-30 | Abu Dhabi National Oil Company | Automated method and system for categorising and describing thin sections of rock samples obtained from carbonate rocks |
CN110443862B (zh) * | 2019-06-28 | 2022-10-14 | 中国地质科学院矿产资源研究所 | 基于无人机的岩性填图方法及系统、电子设备 |
CN110286141B (zh) * | 2019-07-15 | 2022-04-12 | 中国石油集团渤海钻探工程有限公司 | 一种基于逻辑回归的自动岩性定名方法 |
CN110443303B (zh) * | 2019-08-04 | 2023-07-11 | 中国矿业大学 | 基于图像分割和分类的煤岩显微组分智能识别方法 |
CN110490880A (zh) * | 2019-08-16 | 2019-11-22 | 重庆邮电大学 | 一种基于局部视觉线索的髋关节x光图像分割方法及系统 |
CN111027538A (zh) * | 2019-08-23 | 2020-04-17 | 上海撬动网络科技有限公司 | 一种基于实例分割模型的集装箱检测方法 |
CN110675403B (zh) * | 2019-08-30 | 2022-05-03 | 电子科技大学 | 一种基于编码辅助信息的多实例图像分割方法 |
CN110837114B (zh) * | 2019-10-16 | 2022-02-01 | 中国石油天然气股份有限公司 | 粗面质火山碎屑岩识别方法、装置及电子设备 |
CN111007064A (zh) * | 2019-12-13 | 2020-04-14 | 常州大学 | 一种基于图像识别的录井岩性智能识别方法 |
CN111220616B (zh) * | 2020-01-21 | 2021-06-01 | 山东大学 | 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 |
CN111382676B (zh) * | 2020-02-25 | 2023-12-22 | 南京大学 | 一种基于注意力机制的沙粒图像分类方法 |
CN111340784B (zh) * | 2020-02-25 | 2023-06-23 | 安徽大学 | 一种基于Mask R-CNN图像篡改检测方法 |
CN111640125B (zh) * | 2020-05-29 | 2022-11-18 | 广西大学 | 基于Mask R-CNN的航拍图建筑物检测和分割方法及装置 |
CN111652142A (zh) * | 2020-06-03 | 2020-09-11 | 广东小天才科技有限公司 | 基于深度学习的题目分割方法、装置、设备和介质 |
CN112084660B (zh) * | 2020-09-10 | 2022-05-31 | 西南石油大学 | 基于岩电解释模型对深层/超深层碳酸盐岩沉积微相精细划分的方法 |
-
2021
- 2021-06-11 CN CN202110653323.0A patent/CN113537235A/zh active Pending
- 2021-06-11 CN CN202110653812.6A patent/CN113435456A/zh active Pending
- 2021-06-11 CN CN202110654212.1A patent/CN113435457A/zh active Pending
- 2021-06-11 CN CN202110654275.7A patent/CN113435458B/zh active Active
- 2021-06-11 CN CN202110654942.1A patent/CN113435459B/zh active Active
- 2021-06-11 CN CN202110655073.4A patent/CN113435460A/zh active Pending
- 2021-09-29 US US18/264,654 patent/US20240054766A1/en active Pending
- 2021-09-29 EP EP21924229.4A patent/EP4290470A4/en active Pending
- 2021-09-29 WO PCT/CN2021/121840 patent/WO2022166232A1/zh active Application Filing
- 2021-09-29 JP JP2023548202A patent/JP2024508688A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190318467A1 (en) * | 2018-04-17 | 2019-10-17 | Saudi Arabian Oil Company | Automated analysis of petrographic thin section images using advanced machine learning techniques |
US20200005013A1 (en) * | 2018-06-29 | 2020-01-02 | Saudi Arabian Oil Company | Identifying geometrical properties of rock structure through digital imaging |
CN111160158A (zh) * | 2019-12-17 | 2020-05-15 | 山东大学 | 偏光显微镜下岩石图像智能识别系统及方法 |
CN111191741A (zh) * | 2020-01-15 | 2020-05-22 | 中国地质调查局发展研究中心 | 一种岩石识别深度学习模型岩石分类约束继承性损失方法 |
CN111563445A (zh) * | 2020-04-30 | 2020-08-21 | 徐宇轩 | 一种基于卷积神经网络的显微镜下岩性识别方法 |
CN112132200A (zh) * | 2020-09-17 | 2020-12-25 | 山东大学 | 基于多维岩石图像深度学习的岩性识别方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113537235A (zh) | 2021-10-22 |
CN113435458B (zh) | 2024-08-06 |
US20240054766A1 (en) | 2024-02-15 |
EP4290470A4 (en) | 2024-08-28 |
CN113435457A (zh) | 2021-09-24 |
CN113435458A (zh) | 2021-09-24 |
CN113435460A (zh) | 2021-09-24 |
CN113435456A (zh) | 2021-09-24 |
EP4290470A1 (en) | 2023-12-13 |
CN113435459B (zh) | 2024-07-26 |
JP2024508688A (ja) | 2024-02-28 |
WO2022166232A1 (zh) | 2022-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113435459A (zh) | 基于机器学习的岩石组分识别方法、装置、设备及介质 | |
Ping et al. | A deep learning approach for street pothole detection | |
Sudharshan et al. | Object recognition in images using convolutional neural network | |
KR102140805B1 (ko) | 위성 영상의 물체 식별을 위한 뉴럴 네트워크 학습 방법 및 장치 | |
Shang et al. | Fuzzy-rough feature selection aided support vector machines for mars image classification | |
CN106127121B (zh) | 一种基于夜间灯光数据的建成区智能化提取方法 | |
CN106204642B (zh) | 一种基于深度神经网络的细胞追踪方法 | |
Tang et al. | Machine learning for point counting and segmentation of arenite in thin section | |
CN104182985B (zh) | 遥感图像变化检测方法 | |
CN103020649A (zh) | 一种基于纹理信息的森林类型识别方法 | |
CN112257665A (zh) | 图像内容的识别方法、图像识别模型的训练方法及介质 | |
CN110689134A (zh) | 执行机器学习过程的方法、装置、设备以及存储介质 | |
CN108257179B (zh) | 一种图像处理方法 | |
CN108363967A (zh) | 一种遥感图像场景的分类系统 | |
Hamplová et al. | Cuneiform reading using computer vision algorithms | |
CN112508000B (zh) | 一种用于ocr图像识别模型训练数据生成的方法及设备 | |
CN109741351A (zh) | 一种基于深度学习的类别敏感型边缘检测方法 | |
Mahardika et al. | Implementation segmentation of color image with detection of color to detect object | |
Prasvita et al. | Deep Learning Model for Automatic Detection of Oil Palm Trees in Indonesia with YOLO-V5 | |
CN112507950B (zh) | 一种生成对抗式多任务多要素样本自动标注方法及装置 | |
Ghiasi-Freez et al. | The automated Dunham classification of carbonate rocks through image processing and an intelligent model | |
Ramya et al. | Real time palm and finger detection for gesture recognition using convolution neural network | |
Konglerd et al. | Quantitative morphological analysis of 2D images of complex-shaped branching biological growth forms: the example of branching thalli of liverworts | |
Sharma | Traffic Sign Recognition & Detection using Transfer learning | |
CN113030958B (zh) | 一种基于深度迁移学习的雷达信号分选方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Yu Xiaolu Inventor after: Tao Cheng Inventor after: Ye Kai Inventor after: Gong Hanning Inventor after: Du Chongjiao Inventor after: Wang Qiang Inventor after: Yao Wei Inventor after: Jiang Hong Inventor before: Yu Xiaolu Inventor before: Tao Cheng Inventor before: Ye Kai Inventor before: Gong Hanning Inventor before: Du Chongjiao Inventor before: Wang Qiang Inventor before: Yao Wei Inventor before: Jiang Hong |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |