CN113433189A - 一种石墨炔/血红素复合材料及其制备方法和应用 - Google Patents

一种石墨炔/血红素复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113433189A
CN113433189A CN202110528037.1A CN202110528037A CN113433189A CN 113433189 A CN113433189 A CN 113433189A CN 202110528037 A CN202110528037 A CN 202110528037A CN 113433189 A CN113433189 A CN 113433189A
Authority
CN
China
Prior art keywords
heme
hem
gdy
composite material
graphdiyne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110528037.1A
Other languages
English (en)
Other versions
CN113433189B (zh
Inventor
郭春显
郝喜娟
宋钊
胡芳馨
杨鸿斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Ruisi Medical Technology Co ltd
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202110528037.1A priority Critical patent/CN113433189B/zh
Publication of CN113433189A publication Critical patent/CN113433189A/zh
Application granted granted Critical
Publication of CN113433189B publication Critical patent/CN113433189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于功能材料技术领域,具体涉及一种石墨炔/血红素复合材料及其制备方法和应用,所述石墨炔/血红素复合材料的制备方法,包括以下步骤:将石墨炔和血红素分散于溶剂I中,避光搅拌,离心去除上清液得到所述石墨炔/血红素复合材料。本发明首次将石墨炔应用于细胞释放NO的实时检测;通过GDY和HEM自组装制备GDY/HEM复合材料,改善了HEM容易团聚失去NO催化活性的缺点;以GDY/HEM复合材料为电极材料构建了NO传感平台,具有优异的NO传感性能,实现了细胞释放NO的实时快速检测,在生物传感和医学等领域有潜在的应用价值。

Description

一种石墨炔/血红素复合材料及其制备方法和应用
技术领域
本发明属于功能材料技术领域,具体涉及一种石墨炔/血红素复合材料及其制备方法和应用。
背景技术
一氧化氮(NO)作为细胞内的一种信使分子,参与多种生理和病理过程。正常水平的NO具有调节生物功能的作用,如血管舒张和伤口愈合。而细胞内 NO异常浓度与呼吸道炎症、心血管疾病等疾病密切相关。然而,活细胞释放的 NO具有痕量、扩散快、半衰期短和易转化为的其他物质的特点。因此,实现细胞释放NO的实时快速检测具有重要的意义,但仍具有挑战性。
多种检测技术已被用于NO检测,如化学发光法、荧光光度计法和x射线光电子能谱法等。但这些检测技术总是受到耗时和复杂程序的困扰。
电化学法具有相对简单、操作方便和灵敏度高的优点,可以实时检测细胞释放的NO。对于电化学传感器来说,其性能很大程度上取决于传感材料。
血红素(HEM)是一种铁的络合物,具有很好的NO催化活性,但其在水中容易团聚,生成无催化活性的二聚体(Jiang S,Cheng R,Wang X,et al. Real-time electricaldetection of nitric oxide in biological systems with sub-nanomolarsensitivity.Nature Communications,2013,4.;Hao Lin Zou,Li B L, Luo H Q,et al.Anovel electrochemical biosensor based on hemin functionalized graphene oxidesheets for simultaneous determination ofascorbic acid,dopamine and uricacid.Sensors andActuators B:Chemical,2015.)。
石墨炔(GDY)是一种新兴的碳材料,由sp和sp2杂化碳原子组成。与石墨烯等其他碳材料相比,GDY具有丰富的炔基碳原子、高度π共轭结构和小电容等独特的物化性能。GDY良好的电子结构和功能化能力,为开发高活性催化剂提供了理想的平台(CN201610342904、CN201811535431、CN201910940621)。通过合理的设计将GDY和活性原子/分子物种结合起来,开发出先进的传感材料,实现细胞释放NO的实时快速检测是可行的。
发明内容
本发明旨在提供一种石墨炔/血红素复合材料及其制备方法和应用,能够改善HEM容易团聚失去NO催化活性的缺点,用于构建NO传感平台,能够实现细胞释放NO的实时快速检测。
按照本发明的技术方案,所述石墨炔/血红素复合材料的制备方法,包括以下步骤:将石墨炔和血红素分散于溶剂I中,避光搅拌,离心去除上清液得到所述石墨炔/血红素复合材料。
进一步的,所述石墨炔和血红素的质量比为1:0.5-2。
优选的,所述石墨炔和血红素的质量比为1:1。
进一步的,所述溶剂I为异丙醇或乙醇。
具体的,所述石墨炔/血红素复合材料的制备方法,可以包括以下步骤:将 GDY和HEM以质量比为1:0.5-2的比例称量好,分散于1-3mL的异丙醇中,然后进行超声处理;将超声后的溶液在室温避光的条件下,以200-500rpm的转速,搅拌36-60小时;将搅拌后的溶液以10000-14000rpm的转速离心8-12min 后,去除上清液,所得沉淀物即为GDY/HEM复合材料。
本发明的第二方面提供了上述任一制备方法制得的石墨炔/血红素复合材料。
本发明的第三方面提供了上述石墨炔/血红素复合材料用于构建NO传感平台的应用。
进一步的,所述NO传感平台用于细胞释放NO的实时检测。
进一步的,包括以下步骤:将石墨炔/血红素复合材料分散于溶剂II中,将入粘结剂,将混合溶液滴在电极表面,晾干。
进一步的,所述溶剂II为乙醇和水的体积比为1:0.5-3的混合溶剂。优选的,乙醇和水的体积比为1:1。
进一步的,所述粘结剂为Nafion或壳聚糖。
具体的,上述石墨炔/血红素复合材料用于构建NO传感平台的应用,可以包括以下步骤:将GDY/HEM分散在乙醇和水的体积比为1:0.5-3的混合溶液中,并加入上述混合溶液总体积的5%的粘结剂Nafion,制备成0.5-2mg mL-1的GDY/HEM墨水,将GDY/HEM墨水滴在抛光干净的玻碳电极表面,晾干。
本发明的第四方面提供了一种生物传感器,包括上述任一NO传感平台。
本发明的技术方案相比现有技术具有以下优点:
1、首次将石墨炔应用于细胞释放NO的实时检测;
2、通过GDY和HEM自组装制备GDY/HEM复合材料,改善了HEM容易团聚失去NO催化活性的缺点:GDY与HEM之间不仅具有π-π相互作用,而且 GDY上的炔基碳原子与HEM上的氮、铁原子之间的强相互作用,使HEM以单体形式分散在GDY上,从而增加了原子级别的铁催化活性位点,避免了HEM 团聚形成无催化活性的二聚体;
3、以GDY/HEM复合材料为电极材料构建了NO传感平台,具有优异的 NO传感性能,实现了细胞释放NO的实时快速检测,在生物传感和医学等领域有潜在的应用价值。
附图说明
图1是GDY/HEM复合材料的元素Mapping图;
图2是GDY和GDY/HEM复合材料的扫描电镜图;
图3是HEM和GDY/HEM复合材料的N元素X射线光电子能谱;
图4是不同HEM/GDY质量比对NO检测性能的影响;
图5是GDY/HEM电极对NO的计时电流图;
图6是GDY/HEM电极对NO的安培响应时间;
图7是GDY/HEM电极对NO的检测标准曲线图;
图8是GDY/HEM电极对NO的选择性图;
图9是GDY/HEM电极在不同药物刺激下细胞的电流响应;
图10是GDY/HEM电极对不同细胞密度MCF-7释放NO的电流响应。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:合成GDY/HEM复合材料
将GDY和HEM以质量比1:1称量好,分散于适量异丙醇中,然后进行超声处理;超声后的溶液室温避光500rpm搅拌48小时;12000rpm离心10min 收集GDY/HEM复合材料。
实施例2
分别将1mg的GDY/HEM、GDY、HEM分散在乙醇和水的体积比为1:1 的混合溶液中,并加入适量粘结剂Nafion。将5μL的1mg mL-1GDY/HEM、GDY、 HEM墨水分别滴在抛光干净的玻碳电极表面,晾干分别制得GDY/HEM电极、 GDY电极和HEM电极。
检测实施例
1、GDY/HEM复合材料的检测
2、GDY/HEM电极对NO的电化学性能测试:将实施例2制备好的电极在电化学工作站上进行电化学响应测试,测试池为0.01M磷酸盐缓冲溶液
3、GDY/HEM对细胞释放NO的实时检测:将实施例2制备好的电极在电化学工作站上进行电化学响应测试,测试池为含有MCF-7细胞的磷酸盐缓冲溶液
检测结果如下:
图1为GDY/HEM复合材料的元素Mapping图,从图中可以看出,GDY/HEM 含有碳、氮、氧、铁等元素,分布均匀。这表明,在GDY/HEM中,HEM均匀分布在GDY上。
图2(a)的SEM图像所示,GDY具有相对均匀的纳米颗粒形貌,纳米颗粒形成片状团簇结构。将GDY与HEM组装后,GDY/HEM保持了GDY的结构(图2(b))。
图3为GDY/HEM复合材料与HEM的N元素的X射线光电子能谱,在HEM 的XPS N 1s光谱中,398.4eV和400.2eV的主峰分别为N-Fe和吡咯N。与HEM 分子相比,GDY/HEM的N-Fe和吡咯N峰均发生负位移,表明两组分之间存在较强的π-π相互作用,并且促使电荷从GDY分子转移到HEM分子。此外,与 HEM相比,GDY/HEM的吡咯N峰面积与N-Fe峰面积的比值显著增加。这可能是由于HEM中的Fe与GDY中的炔基碳原子之间的相互作用,从而减弱了 HEM内的N-Fe相互作用。
图4为不同HEM/GDY质量比对NO检测性能的影响。加入相同的浓度NO 时,同一电位(0.85V)下,GDY/HEM电极的响应电流为1.92μA,远高于 GDY电极(1.25μA)和HEM电极(1.31μA)(图4),展现了GDY/HEM复合材料中两组分在NO氧化中的协同作用。为获得GDY/HEM对NO的最佳催化活性,对GDY/HEM的组合配比进行了优化。如图4所示,复合材料的催化电流随着HEM在GDY上负载量的增加而增加,并在1:1时达到最大值,当比例进一步增加时,催化电流减小。因此,优化后的质量比为1:1的GDY/HEM对 NO氧化具有最高的催化活性,将用于后续实验。
图5是GDY/HEM电极对NO的计时电流图,可以看出GDY/HEM电极对 NO有很好的电化学氧化性能。图6是GDY/HEM电极对NO的的安培响应时间图,响应时间非常快,达到了最大响应电流的95%仅需0.95s,这是远远低于细胞释放的半衰期时间3秒左右,也低于近来报道的一些材料。(CN201910412976、 CN202011217546)
根据图7的标准曲线可知,灵敏度为0.37μAμM-1cm-2,检测范围为18nM -151.38mΜ。从图8可以看出,出GDY/HEM对NO具有良好的选择性。
图9是GDY/HEM电极在不同药物刺激下对细胞释放NO的电流响应,当将药物Ach加入PBS溶液中MCF-7细胞时,GDY/HEM电极有明显的电流响应,这应该是由于MCF-7细胞释放的NO电化学氧化引起的。同时,还研究了药物 Ach浓度对细胞释放NO分子的影响。保持细胞浓度不变,注入0.5mM和1mM 药物Ach后,GDY/HEM电极对MCF-7细胞释放NO的电流响应分别为4.6μA 和8.1μA,这表明在NO释放具有药物Ach浓度依赖性。
图10是GDY/HEM电极对不同细胞密度MCF-7释放NO的电流响应,当添加1mMAch时,GDY/HEM电极对密度为1×104cell/mL和5×104cell/mL的细胞释放NO的电流响应分别为2.6μA和4.7μA。这表明释放的NO具有细胞密度依赖性的行为。
综上所述,本发明所制备GDY/HEM复合材料可用于细胞释放NO的实时快速检测。此外,还改善了HEM容易团聚失去NO催化活性的缺点。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种石墨炔/血红素复合材料的制备方法,其特征在于,包括以下步骤:将石墨炔和血红素分散于溶剂I中,避光搅拌,离心去除上清液得到所述石墨炔/血红素复合材料。
2.如权利要求1所述的石墨炔/血红素复合材料的制备方法,其特征在于,所述石墨炔和血红素的质量比为1:0.5-2。
3.如权利要求1所述的石墨炔/血红素复合材料的制备方法,其特征在于,所述溶剂I为异丙醇或乙醇。
4.如权利要求1-3任一所述制备方法制得的石墨炔/血红素复合材料。
5.如权利要求4所述的石墨炔/血红素复合材料用于构建NO传感平台的应用。
6.如权利要求5所述的石墨炔/血红素复合材料用于构建NO传感平台的应用,其特征在于,所述NO传感平台用于细胞释放NO的实时检测。
7.如权利要求5所述的石墨炔/血红素复合材料用于构建NO传感平台的应用,其特征在于,包括以下步骤:将石墨炔/血红素复合材料分散于溶剂II中,加入粘结剂,将混合溶液滴在电极表面,晾干。
8.如权利要求7所述的石墨炔/血红素复合材料用于构建NO传感平台的应用,其特征在于,所述溶剂II为乙醇和水的体积比为1:0.5-3的混合溶剂。
9.如权利要求7所述的石墨炔/血红素复合材料用于构建NO传感平台的应用,其特征在于,所述粘结剂为Nafion或壳聚糖。
10.一种生物传感器,其特征在于,包括如权利要求5-9任一所述的NO传感平台。
CN202110528037.1A 2021-05-14 2021-05-14 一种石墨炔/血红素复合材料及其制备方法和应用 Active CN113433189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110528037.1A CN113433189B (zh) 2021-05-14 2021-05-14 一种石墨炔/血红素复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110528037.1A CN113433189B (zh) 2021-05-14 2021-05-14 一种石墨炔/血红素复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113433189A true CN113433189A (zh) 2021-09-24
CN113433189B CN113433189B (zh) 2022-11-18

Family

ID=77802375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110528037.1A Active CN113433189B (zh) 2021-05-14 2021-05-14 一种石墨炔/血红素复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113433189B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368222A (zh) * 2021-06-11 2021-09-10 国家纳米科学中心 一种石墨炔-血红素纳米复合物及其制备方法和应用
CN114280015A (zh) * 2021-11-30 2022-04-05 苏州科技大学 石墨炔/血红素复合材料的应用及采用该材料对还原型小分子检测的方法
CN115201296A (zh) * 2022-07-21 2022-10-18 山东理工大学 一种比率型电化学适配体传感器的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551194A (zh) * 2013-11-14 2014-02-05 厦门大学 石墨烯-血红素及纳米金三元复合材料及制备方法与应用
CN104049015A (zh) * 2014-06-06 2014-09-17 南京理工大学 微波溶剂法热合成的聚吡咯-Hemin-还原石墨烯三元复合材料应用
CN105842314A (zh) * 2016-05-23 2016-08-10 济南大学 一种基于石墨炔和银纳米笼的人麻疹免疫传感器的制备方法
CN106053789A (zh) * 2016-05-23 2016-10-26 济南大学 一种基于石墨炔甲苯胺蓝复合材料的真菌毒素免疫传感器的制备方法及应用
CN108445063A (zh) * 2018-03-23 2018-08-24 广西医科大学 一种生物分子的电化学检测方法
CN112162024A (zh) * 2020-09-18 2021-01-01 苏州科技大学 黑磷/氯化血红素复合材料,其制备方法以及电化学生物传感器
CN112209372A (zh) * 2019-07-12 2021-01-12 中国科学院大连化学物理研究所 一种基于二维全碳纳米材料石墨炔的生物传感器及其应用
CN112630275A (zh) * 2020-11-04 2021-04-09 苏州科技大学 组装有氯化血红素的碳纤维支架及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551194A (zh) * 2013-11-14 2014-02-05 厦门大学 石墨烯-血红素及纳米金三元复合材料及制备方法与应用
CN104049015A (zh) * 2014-06-06 2014-09-17 南京理工大学 微波溶剂法热合成的聚吡咯-Hemin-还原石墨烯三元复合材料应用
CN105842314A (zh) * 2016-05-23 2016-08-10 济南大学 一种基于石墨炔和银纳米笼的人麻疹免疫传感器的制备方法
CN106053789A (zh) * 2016-05-23 2016-10-26 济南大学 一种基于石墨炔甲苯胺蓝复合材料的真菌毒素免疫传感器的制备方法及应用
CN108445063A (zh) * 2018-03-23 2018-08-24 广西医科大学 一种生物分子的电化学检测方法
CN112209372A (zh) * 2019-07-12 2021-01-12 中国科学院大连化学物理研究所 一种基于二维全碳纳米材料石墨炔的生物传感器及其应用
CN112162024A (zh) * 2020-09-18 2021-01-01 苏州科技大学 黑磷/氯化血红素复合材料,其制备方法以及电化学生物传感器
CN112630275A (zh) * 2020-11-04 2021-04-09 苏州科技大学 组装有氯化血红素的碳纤维支架及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368222A (zh) * 2021-06-11 2021-09-10 国家纳米科学中心 一种石墨炔-血红素纳米复合物及其制备方法和应用
CN114280015A (zh) * 2021-11-30 2022-04-05 苏州科技大学 石墨炔/血红素复合材料的应用及采用该材料对还原型小分子检测的方法
CN115201296A (zh) * 2022-07-21 2022-10-18 山东理工大学 一种比率型电化学适配体传感器的制备方法
CN115201296B (zh) * 2022-07-21 2024-04-05 山东理工大学 一种比率型电化学适配体传感器的制备方法

Also Published As

Publication number Publication date
CN113433189B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN113433189B (zh) 一种石墨炔/血红素复合材料及其制备方法和应用
Qiao et al. Enhanced catalytic reduction of p-nitrophenol on ultrathin MoS2 nanosheets decorated with noble metal nanoparticles
Kokulnathan et al. Praseodymium vanadate-decorated sulfur-doped carbon nitride hybrid nanocomposite: the role of a synergistic electrocatalyst for the detection of metronidazole
Wang et al. Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal–metalloporphyrin framework modified electrode
Guo et al. Polyaniline/Pt hybrid nanofibers: high‐efficiency nanoelectrocatalysts for electrochemical devices
Yogeswaran et al. Multi-walled carbon nanotubes with poly (methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid
Chang et al. Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H 2 O 2 and glucose
Wang et al. Selective electro-oxidation of glycerol over Au supported on extended poly (4-vinylpyridine) functionalized graphene
Nehru et al. Cobalt-doped Fe3O4 nanospheres deposited on graphene oxide as electrode materials for electrochemical sensing of the antibiotic drug
Chekin et al. Preparation and characterization of Ni (II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation
Yang et al. Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode
Ho Yang et al. Directed Self‐Assembly of Gold Nanoparticles on Graphene‐Ionic Liquid Hybrid for Enhancing Electrocatalytic Activity
Fatahi et al. Electrocatalytic oxidation and determination of dexamethasone at an Fe 3 O 4/PANI–Cu II microsphere modified carbon ionic liquid electrode
CN109880363B (zh) 聚吡咯@zif-8/石墨烯纳米复合材料的制备方法及应用
JP4041429B2 (ja) 燃料電池用電極およびその製造方法
Rajpurohit et al. Simultaneous determination of amlodipine and losartan using an iron metal–organic framework/mesoporous carbon nanocomposite-modified glassy carbon electrode by differential pulse voltammetry
Lu et al. Bimetallic MOF synergy molecularly imprinted ratiometric electrochemical sensor based on MXene decorated with polythionine for ultra-sensitive sensing of catechol
CN109604629B (zh) 一种复合材料及其制备方法和用途
Saidu et al. Silver nanoparticles-embedded poly (1-naphthylamine) nanospheres for low-cost non-enzymatic electrochemical H 2 O 2 sensor
Martins Alves et al. Influence of complexation processes on the catalytic properties of some polymer-based cobalt compounds for oxygen electroreduction
Dong et al. In situ synthesis of gold nanoparticle on MIL-101 (Cr)-NH2 for non-enzymatic dopamine sensing
Nasr-Esfahani et al. Noble metals and nonnoble metal oxides based electrochemical sensors
Li et al. 2‐Methylimidazole‐assisted Morphology Modulation of a Copper‐based Metal‐organic Framework Transducer for Enhanced Electrochemical Peroxidase‐like Activity
Ramesh et al. Renewable surface electrodes based on dopamine functionalized exfoliated graphite:: NADH oxidation and ethanol biosensing
Zhang et al. An aptamerelectrochemical sensor based on functional carbon nanofibers for tetracycline determination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231226

Address after: A508-509, building 530, No. 18, Qingyuan Road, Xinwu District, Wuxi City, Jiangsu Province, 214115

Patentee after: Wuxi Ruisi Medical Technology Co.,Ltd.

Address before: 215000 Shihu campus, Suzhou University of science and technology, 99 Xuefu Road, Huqiu District, Suzhou City, Jiangsu Province

Patentee before: SUZHOU University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right