CN113431816A - 对称不均等的负叠合比例阀控非对称缸系统的控制方法 - Google Patents

对称不均等的负叠合比例阀控非对称缸系统的控制方法 Download PDF

Info

Publication number
CN113431816A
CN113431816A CN202110795482.4A CN202110795482A CN113431816A CN 113431816 A CN113431816 A CN 113431816A CN 202110795482 A CN202110795482 A CN 202110795482A CN 113431816 A CN113431816 A CN 113431816A
Authority
CN
China
Prior art keywords
asymmetric
input signal
proportional valve
cylinder system
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110795482.4A
Other languages
English (en)
Other versions
CN113431816B (zh
Inventor
曾乐
李红章
刘金荣
许文斌
杨俊�
谭建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Aeronautical Vocational and Technical College
Original Assignee
Changsha Aeronautical Vocational and Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Aeronautical Vocational and Technical College filed Critical Changsha Aeronautical Vocational and Technical College
Priority to CN202110795482.4A priority Critical patent/CN113431816B/zh
Publication of CN113431816A publication Critical patent/CN113431816A/zh
Application granted granted Critical
Publication of CN113431816B publication Critical patent/CN113431816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram

Abstract

本发明提供一种对称不均等的负叠合比例阀控非对称缸系统的控制方法,包括以下步骤:获取基于模型变换的对称不均等的负叠合比例阀控非对称缸系统的输入信号;对输入信号进行补偿得到补偿后的输入信号,具体是:获取该系统在零速状态时的输入信号;基于零速状态时的输入信号获取对称不均等的负叠合比例阀控非对称缸系统的补偿信号;结合输入信号和补偿信号获得补偿后的输入信号。应用本发明的技术方案,推导了对称不均等负叠合的阀控非对称缸系统理论零点模型,在阀控非对称缸系统的模型变换控制基础上提出了零点在线补偿控制方法,使得阀控非对称缸系统的响应对称,且消除了零点偏移导致的稳态误差,有效提高比例阀控非对称缸系统的控制精度。

Description

对称不均等的负叠合比例阀控非对称缸系统的控制方法
技术领域
本发明涉及机械电子技术领域,具体涉及一种对称不均等的负叠合比例阀控非对称缸系统的控制方法。
背景技术
电液伺服系统在现实生活中具有广泛的应用。比例阀通过阀套和阀芯的相对运动,改变节流口的通流面积,控制液流的压力和流量。阀套和阀芯的预开口形式可分为负开口(正重叠)、零开口(零重叠)和正开口(负重叠)三种,由于电液比例阀存在叠合量以及温度、压力等因素影响,比例阀控液压缸系统的零速平衡点一般不在比例阀的零位,导致了系统采用工业中常用的控制策略存在较大的稳态误差。
针对比例阀存在较大的死区且死区的范围受压力、温度等影响在一定范围内变化,现有的研究主要如下:王庆丰等提出了变死区自学习补偿控制,间接的以系统定位误差为目标,用自学习机理,通过在线搜索,判断是否达到期望的定位精度从而确定补偿值;1999年,彭熙伟等选定一个死区补偿初值,以定位精度为目标,根据系统动态响应过程中的误差和误差变化特征信息,由死区补偿自学习算法寻求合适的死区补偿修正量;2018年,彭熙伟等设计能够基于误差和误差变化率在线调整死区补偿量的模糊死区补偿算法,迭代学习算法和模糊死区补偿算法的综合使用是根据当前的控制经验灵活调整控制量,从而有效地改善由于系统非线性及时变性所带来的影响。加入模糊死区补偿时,系统位置跟踪的滞后性大大改善,系统的控制性能提高。
但是,目前的研究主要针对存在正叠合的电液比例阀,在控制中直接减去正叠合导致的流量死区,控制方法简单,而对于负叠合的比例阀零位随系统压力,液压缸两腔压力,油液温度变化,对于负叠合的比例阀控非对称缸系统零点研究较少。因此,提出一种针对对称不均等的负叠合比例阀控非对称缸系统且能够提高系统精准度的控制方法具有重要意义。
发明内容
本发明目的在于提供一种对称不均等的负叠合比例阀控非对称缸系统的控制方法,操作便捷且能有效提高比例阀控非对称缸系统的控制精度,具体技术方案如下:
一种对称不均等的负叠合比例阀控非对称缸系统的控制方法,包括以下步骤:
获取基于模型变换的对称不均等的负叠合比例阀控非对称缸系统的输入信号ui
对输入信号ui进行补偿得到补偿后的输入信号,具体是:
获取对称不均等的负叠合比例阀控非对称缸系统在零速状态时的输入信号u0
基于零速状态时的输入信号u0获取对称不均等的负叠合比例阀控非对称缸系统的补偿信号Δui
结合输入信号ui和补偿信号Δui获得补偿后的输入信号u’。
本发明中优选的是,获取基于模型变换的对称不均等的负叠合比例阀控非对称缸系统的输入信号ui具体是:利用变换传递函数将对称不均等的负叠合比例阀控非对称缸系统的非对称的数学模型变换成对称的系统模型,实现负载流量模型的对称变化,使得采用统一控制器时正反运动相应一致。
本发明中优选的是,获取对称不均等的负叠合比例阀控非对称缸系统在零速状态时的输入信号u0具体是:通过压力传感器检测对称不均等的负叠合比例阀控非对称缸系统的液压缸两腔的工作压力,采用表达式11)计算比例阀位移的无因次量
Figure BDA0003162553000000021
Figure BDA0003162553000000022
其中:η为液压缸有杆腔面积与无杆腔面积的比值;
Figure BDA0003162553000000023
为对称不均等的负叠合比例阀控非对称缸系统负载压力的无因次量,
Figure BDA0003162553000000024
pS为比例阀的液压缸的供油压力,p1为液压缸的无杆腔的压力,p2为液压缸的有杆腔的压力;χ为比例阀叠合量的不对称度;
结合比例阀位移的无因次量
Figure BDA0003162553000000025
的定义如表达式6)得到对称不均等的负叠合比例阀控非对称缸系统在零速状态时的输入信号u0为表达式12):
Figure BDA0003162553000000026
Figure BDA0003162553000000027
其中:Δ2为比例阀的位移;xV为比例阀芯的位移;u2表示比例阀的位移为Δ2的输入信号。
本发明中优选的是,在满足移动平均数MAt<γ且系统误差的绝对值abs(e)<e0的条件下,补偿信号Δui采用表达式14)获取:
Δui=(u0+k∫edt) 14);
其中:Δui为比例阀的补偿信号,k为积分常数,t为时间,e为系统误差;移动平均数MAt采用表达式13)表示,et为t时刻所在当前周期采集的系统误差值,et-(n-1)T为t时刻以前第n-1个周期的系统误差值,T为采样时间,n为采样次数;
Figure BDA0003162553000000031
本发明中优选的是,补偿后的输入信号u’采用表达式15)获得:
u’=ui+Δui 15)。
应用本发明的技术方案,推导了对称不均等负叠合的阀控非对称缸系统理论零点模型,在阀控非对称缸系统的模型变换控制基础上提出了零点在线补偿控制方法,使得阀控非对称缸系统的响应对称,且消除了零点偏移导致的稳态误差,有效提高比例阀控非对称缸系统的控制精度。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例中比例阀控非对称缸原理图;
图2是本发明实施例中零点在线补偿与负载流量逆变换的复合控制框图;
图3是现有技术中P控制、现有技术中模型变换补偿P控制以及本发明复合补偿控制(P控制+零点补偿)三种情况在压力负载为4000N时液压缸的伸出运动和缩回运动的位移响应曲线;
图4是图3中b1位置的放大图;
图5是图3中c1位置的放大图;
图6是现有技术中PI控制和本发明复合补偿控制在压力负载为4000N时液压缸的位移响应曲线;
图7是现有技术中P控制、现有技术中模型变换补偿P控制以及本发明复合补偿控制(P控制+零点补偿)三种情况在拉力负载为2000N时液压缸的伸出运动和缩回运动的位移响应曲线;
图8是图7中b2位置的放大图;
图9是图7中c2位置的放大图。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。
实施例:
一种对称不均等的负叠合比例阀控非对称缸系统的控制方法,该对称不均等的负叠合比例阀控非对称缸系统(下文简称该系统)的比例阀控非对称缸原理图详见图1,其中:pS为比例阀的液压缸的供油压力,pR为回油的压力,p1为液压缸的无杆腔的压力,p2为液压缸的有杆腔的压力,q1为液压缸无杆腔的流量,q2为液压缸的有杆腔的流量,xV为比例阀芯的位移,y为液压杆的位移,F为液压缸外部负载。
假设阀为对称不均等液压比例阀,即设比例阀节流边的叠合量分别为Δ1和Δ2
本实施例中阀控非对称缸系统负载流量逆变换控制与零速平衡点在线补偿控制框图如图2所示,其中:yd为期望位移值;y为实际位移值;改变控制器的数γ值和k值可以调节控制器的性能。本实施例的控制方法包括以下步骤:
第一步、获取基于模型变换的对称不均等的负叠合比例阀控非对称缸系统的输入信号u,具体是:利用变换传递函数将对称不均等的负叠合比例阀控非对称缸系统的非对称的数学模型变换成对称的系统模型,实现负载流量模型的对称变化,使得采用统一控制器时正反运动相应一致。可参见专利申请号为201510197350.6且发明名称为一种基于模型变换的非对称电液比例系统的控制方法的发明专利。本领域技术人员基于上述发明可实现第一步操作,如先通过PID控制器调节得到输出信号u,再经过负载流量模型变换得到输出信号ui
第二步、对输入信号ui进行补偿得到补偿后的输入信号,包括以下具体操作:
步骤2.1、获取对称不均等的负叠合比例阀控非对称缸系统在零速状态时的输入信号u0,具体是:
获取比例阀的流量:
无杆腔的流量为表达式1):
q1=a(pS-p1)1/2(xV1)-a(p1-pR)1/22-xV) 1);
其中:
Figure BDA0003162553000000051
Cd为流量系数,ρ为油液介质密度,ω为比例阀面积梯度,并假设各个阀口的面积梯度相等;
流入有杆腔的流量为:
q2=a(pS-p2)1/22-xV)=a(p2-pR)1/2(xV1) 2);
当液压缸活塞静止不动时,无杆腔的流量方程表达式1)和无杆腔的流量方程表达式2)满足表达式3):
Figure BDA0003162553000000052
忽略油箱的压力pR,当阀芯位移量为xV满足表达式3)时,液压缸两腔流入的流量为零,系统为零速状态,此时液压缸两腔的压力采用表达式4)表示:
Figure BDA0003162553000000053
比例阀叠合量的不对称度χ和比例阀位移的无因次量
Figure BDA0003162553000000054
采用表达式5)和表达式6)表示:
Figure BDA0003162553000000061
Figure BDA0003162553000000062
系统为零速状态时,比例阀的位移xV在(-Δ12)的范围内,根据表达式5)和表达
式6)得到系统零速状态时比例阀的无因次量值满足表达式7):
Figure BDA0003162553000000063
设液压缸两腔压力的无因次量分别为
Figure BDA0003162553000000064
将表达式4)无因次化,可得液压缸两个控制腔的工作压力采用表达式8)表示:
Figure BDA0003162553000000065
设系统负载压力的无因次量
Figure BDA0003162553000000066
采用表达式9)表示:
Figure BDA0003162553000000067
其中:η为液压缸有杆腔面积与无杆腔面积的比值。
将表达式9)代入表达式8)得到表达式10):
Figure BDA0003162553000000068
通过压力传感器检测系统压力和液压缸两腔的工作压力,可以得到系统负载压力无因次量,根据表达式10)系统零速状态时阀位移的范围关系,可以理论上计算比例阀位移的无因次量为表达式11):
Figure BDA0003162553000000069
比例阀位移量通过控制输入电压和电流量大小来控制,比例阀的位移量与输入信号成比例关系,设比例阀的输入信号为u,比例阀位移为Δ1的输入信号为u1,比例阀位移为Δ2的输入信号为u2,系统零速状态时,比例阀的输入信号为u0
根据表达式6)和表达式11)可以得到系统零速状态时比例阀的输入信号u0如表达式12):
Figure BDA0003162553000000071
步骤2.2、基于零速状态时的输入信号u0获取对称不均等的负叠合比例阀控非对称缸系统的补偿信号Δui,具体是:
该系统中由于阀开口较小,流动状态为层流,流量系数受压差的影响较大,随着阀口压差差值变化,实际的零速平衡点与理论零速平衡点存在较大误差。寻找系统精确的零速平衡点,需要通过在线控制补偿得到。
当误差渐进稳定时,零点补偿控制启动,为了判断误差变化趋势,引入误差绝对值的移动平均线,如表达式13)所示:
Figure BDA0003162553000000072
其中:et为t时刻所在周期采集的系统误差值(此处具体为系统的位移误差值),et-(n-1)T为t时刻所在上第n-1个周期的误差值,T为采样时间,n为平均采样次数。移动平均数MAt为t时刻前n个周期的平均值。
为了提高系统响应速度,一般不需要等到系统误差接近稳态误差后再进行零速平衡点的补偿,当移动平均数MAt<γ且系统误差的绝对值abs(e)<e0时,系统启动零点补偿。为了快速寻找零速平衡点,在计算的理论零速平衡点的基础上,对反馈误差进行比例积分,通过零点补偿控制,稳态误差逐渐减小。本实施例零速平衡点补偿函数为表达式14):
Δui=(u0+k∫edt) 14);
其中:Δui为比例阀的补偿信号,k为积分常数,t为时间,e为系统误差。
步骤2.3、结合输入信号ui和补偿信号Δui采用表达式15)获得补偿后的输入信号u’:
u’=ui+Δui 15)。
采用上述方案,本实施例通过AMESIM仿真模型,验证零点在线补偿与负载流量逆变换的复合控制方法的性能,详情如下:
仿真模型参数确定如表1所示:
表1仿真模型参数统计表
参数 数值 参数 数值
溢流压力Mpa 5 阀名义额定压力MPa 3
泵最大流量L/min 20 阀名义额定流量L/min 9
阀参考电流mA 1 粘性阻尼系数N·s/m 2000
阀临界雷诺数 1000 阀频率Hz 100
无杆腔直径m 0.05 叠合量Δ<sub>1</sub> 0.01
杆径m 0.028 叠合量Δ<sub>2</sub> 0.04
负载质量kg 50 其余 默认
设置外部压力负载为4000N,仿真模型在对称P控制、负载流量变换补偿P控制以及本发明方案的复合补偿控制下(此处为P控制+零点补偿)的位移响应,如图3所示(而本发明采用PI控制+零点补偿的位移响应与图3中复合补偿控制相似,未图示),其中图4-图5为图3的局部放大图,结合图3-图5可知:
如图3所示,在4000N负载力作用下,对称P控制的液压缸伸出运动响应比缩回运动响应慢,而通过负载流量逆变换补偿后,伸出运动响应时间减小,缩回运动响应响应时间增加,伸出和缩回运动响应时间基本一致。如图4和图5,由于4000N负载力作用,导致系统的零点偏移,在对称P控制、负载流量逆变换补偿P控制下,液压缸存在0.25mm的稳态误差,而在零速平衡点在线补偿控制后,较好的消除了稳态误差,误差控制在0.01mm以内。
P控制没有积分I控制,因为负叠合导致系统存在稳态误差,常用的积分I控制可以消除稳态误差,可见本发明在P控制或PI控制下进行零点补偿也能消除系统的稳态误差,与现有技术比较,效果显著。
通过采用PI控制器消除零点偏移产生的稳态误差,对比了现有技术中负载流量变换补偿PI控制以及本发明复合控制下(P控制+零点补偿)的位移响应,如图6所示。通过PI控制能够消除稳态误差,但是造成了系统很大的超调,而本发明零点补偿的复合控制超调较小,且消除了稳态误差,具有较大的优势。
设置外部拉力负载为2000N,仿真模型在对称P控制、负载流量变换补偿P控制以及本发明方案的复合补偿控制下(此处为P控制+零点补偿)的位移响应,如图7所示(而本发明采用PI控制+零点补偿的位移响应与图7中复合补偿控制相近),其中图8-图9为图7局部放大图,结合图7-图9可知:
如图7所示,在拉力负载为2000N作用下,对称P控制的液压缸伸出运动响应比缩回运动响应慢,而通过负载流量逆变换补偿后,伸出运动响应时间减小,缩回运动响应响应时间增加,伸出和缩回运动响应时间基本一致。如图8和图9,由于2000N拉力负载作用,导致系统的零点偏移,在对称P控制、负载流量逆变换补偿P控制下,液压缸存在稳态误差,而在零速平衡点在线补偿控制后,较好的消除了稳态误差,误差控制在0.01mm以内。
在设置外部拉力负载为2000N的条件下,与仅仅采用PI控制(能消除稳态误差,但是存在很大的超调)相比(未图示),本发明的方案(P控制或PI控制+零点补偿)既能消除稳态误差,又能控制超调较小,与现有技术比较取得显著进步。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种对称不均等的负叠合比例阀控非对称缸系统的控制方法,其特征在于,包括以下步骤:
获取基于模型变换的对称不均等的负叠合比例阀控非对称缸系统的输入信号ui
对输入信号ui进行补偿得到补偿后的输入信号,具体是:
获取对称不均等的负叠合比例阀控非对称缸系统在零速状态时的输入信号u0
基于零速状态时的输入信号u0获取对称不均等的负叠合比例阀控非对称缸系统的补偿信号Δui
结合输入信号ui和补偿信号Δui获得补偿后的输入信号u’。
2.根据权利要求1所述的对称不均等的负叠合比例阀控非对称缸系统的控制方法,其特征在于,获取基于模型变换的对称不均等的负叠合比例阀控非对称缸系统的输入信号ui具体是:利用变换传递函数将对称不均等的负叠合比例阀控非对称缸系统的非对称的数学模型变换成对称的系统模型,实现负载流量模型的对称变化,使得采用统一控制器时正反运动相应一致。
3.根据权利要求2所述的对称不均等的负叠合比例阀控非对称缸系统的控制方法,其特征在于,获取对称不均等的负叠合比例阀控非对称缸系统在零速状态时的输入信号u0具体是:通过压力传感器检测对称不均等的负叠合比例阀控非对称缸系统的液压缸两腔的工作压力,采用表达式11)计算比例阀位移的无因次量
Figure FDA0003162552990000011
Figure FDA0003162552990000012
其中:η为液压缸有杆腔面积与无杆腔面积的比值;
Figure FDA0003162552990000013
为对称不均等的负叠合比例阀控非对称缸系统负载压力的无因次量,
Figure FDA0003162552990000014
pS为比例阀的液压缸的供油压力,p1为液压缸的无杆腔的压力,p2为液压缸的有杆腔的压力;χ为比例阀叠合量的不对称度;
结合比例阀位移的无因次量
Figure FDA0003162552990000015
的定义如表达式6)得到对称不均等的负叠合比例阀控非对称缸系统在零速状态时的输入信号u0为表达式12):
Figure FDA0003162552990000016
Figure FDA0003162552990000021
其中:Δ2为比例阀的位移;xV为比例阀芯的位移;u2表示比例阀的位移为Δ2的输入信号。
4.根据权利要求3所述的对称不均等的负叠合比例阀控非对称缸系统的控制方法,其特征在于,在满足移动平均数MAt<γ且系统误差的绝对值abs(e)<e0的条件下,补偿信号Δui采用表达式14)获取:
Δui=(u0+k∫edt) 14);
其中:Δui为比例阀的补偿信号,k为积分常数,t为时间,e为系统误差;移动平均数MAt采用表达式13)表示,et为t时刻所在当前周期采集的系统误差值,et-(n-1)T为t时刻以前第n-1个周期的系统误差值,T为采样时间,n为采样次数;
Figure FDA0003162552990000022
5.根据权利要求4所述的对称不均等的负叠合比例阀控非对称缸系统的控制方法,其特征在于,补偿后的输入信号u’采用表达式15)获得:
u’=ui+Δui 15)。
CN202110795482.4A 2021-07-14 2021-07-14 对称不均等的负叠合比例阀控非对称缸系统的控制方法 Active CN113431816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110795482.4A CN113431816B (zh) 2021-07-14 2021-07-14 对称不均等的负叠合比例阀控非对称缸系统的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110795482.4A CN113431816B (zh) 2021-07-14 2021-07-14 对称不均等的负叠合比例阀控非对称缸系统的控制方法

Publications (2)

Publication Number Publication Date
CN113431816A true CN113431816A (zh) 2021-09-24
CN113431816B CN113431816B (zh) 2022-04-15

Family

ID=77760448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110795482.4A Active CN113431816B (zh) 2021-07-14 2021-07-14 对称不均等的负叠合比例阀控非对称缸系统的控制方法

Country Status (1)

Country Link
CN (1) CN113431816B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294277A (zh) * 2021-12-31 2022-04-08 长江勘测规划设计研究有限责任公司 基于油压调节双缸液压启闭机的同步方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269733B1 (en) * 1999-04-30 2001-08-07 Dennis K. Reust Force servo actuator with asymmetric nonlinear differential hydraulic force feedback
US20100286832A1 (en) * 2009-05-06 2010-11-11 Martin Zipperer Method for operating a mechanical system, particularly a proportioning valve
CN104847715A (zh) * 2015-04-23 2015-08-19 中南大学 一种基于模型变换的非对称电液比例系统的控制方法
CN105003495A (zh) * 2015-07-24 2015-10-28 太原理工大学 一种非对称液压缸实时动态补偿加载装置
EP3112697A1 (en) * 2015-07-01 2017-01-04 Demirer Teknolojik Sistemler Sanayi ve Ticaret Limited Sirketi Shuttle valve for compensating differential flow rate of single-rod actuators in hydrostatic systems
CN109139616A (zh) * 2018-09-17 2019-01-04 中南大学 基于输出反馈的非对称液压系统的对称化控制方法
CN109595223A (zh) * 2018-12-12 2019-04-09 长沙航空职业技术学院 一种基于比例阀精确建模的非对称电液比例系统的控制方法
CN110953205A (zh) * 2019-12-16 2020-04-03 厦门理工学院 一种陶瓷压砖机电液比例阀位置控制方法、装置、设备及系统
CN111577680A (zh) * 2020-05-22 2020-08-25 中国矿业大学 一种负载敏感分流阀、变速同步驱动系统及工作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269733B1 (en) * 1999-04-30 2001-08-07 Dennis K. Reust Force servo actuator with asymmetric nonlinear differential hydraulic force feedback
US20100286832A1 (en) * 2009-05-06 2010-11-11 Martin Zipperer Method for operating a mechanical system, particularly a proportioning valve
CN104847715A (zh) * 2015-04-23 2015-08-19 中南大学 一种基于模型变换的非对称电液比例系统的控制方法
EP3112697A1 (en) * 2015-07-01 2017-01-04 Demirer Teknolojik Sistemler Sanayi ve Ticaret Limited Sirketi Shuttle valve for compensating differential flow rate of single-rod actuators in hydrostatic systems
CN105003495A (zh) * 2015-07-24 2015-10-28 太原理工大学 一种非对称液压缸实时动态补偿加载装置
CN109139616A (zh) * 2018-09-17 2019-01-04 中南大学 基于输出反馈的非对称液压系统的对称化控制方法
CN109595223A (zh) * 2018-12-12 2019-04-09 长沙航空职业技术学院 一种基于比例阀精确建模的非对称电液比例系统的控制方法
CN110953205A (zh) * 2019-12-16 2020-04-03 厦门理工学院 一种陶瓷压砖机电液比例阀位置控制方法、装置、设备及系统
CN111577680A (zh) * 2020-05-22 2020-08-25 中国矿业大学 一种负载敏感分流阀、变速同步驱动系统及工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾乐,杨俊,谭建平,许文斌: "非零开口的阀控非对称缸系统不变性补偿控制", 《华中科技大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294277A (zh) * 2021-12-31 2022-04-08 长江勘测规划设计研究有限责任公司 基于油压调节双缸液压启闭机的同步方法
CN114294277B (zh) * 2021-12-31 2023-12-19 长江勘测规划设计研究有限责任公司 基于油压调节泄洪闸门启闭用双缸液压启闭机的同步方法

Also Published As

Publication number Publication date
CN113431816B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN108873702B (zh) 一种电液位置伺服控制系统的线性自抗扰控制方法及装置
Lyu et al. Energy saving motion control of independent metering valves and pump combined hydraulic system
CN112925355B (zh) 一种负载口独立液压系统的非线性流量建模与补偿方法
CN108958023B (zh) 一种电液位置伺服控制系统、计算机终端、存储介质
CN110515302B (zh) 一种液压位置伺服系统反步自适应神经网络控制方法
CN109595223B (zh) 一种基于比例阀精确建模的非对称电液比例系统的控制方法
CN109630491B (zh) 一种电控补偿二通比例流量阀
WO2022121507A1 (zh) 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法
CN113431816B (zh) 对称不均等的负叠合比例阀控非对称缸系统的控制方法
CN112096696B (zh) 泵控非对称液压位置系统自适应反演控制方法
CN107165892B (zh) 一种电液伺服系统的滑模控制方法
CN111290276A (zh) 一种液压位置伺服系统神经网络分数阶积分滑模控制方法
CN102108994B (zh) 具有快速抑制冲击载荷的电液位置伺服系统
CN112000009A (zh) 一种基于状态与扰动估计的物料转送器强化学习控制方法
CN112476439B (zh) 机器人阀控缸驱动器自适应反馈线性化控制方法及系统
CN106292279B (zh) 基于非线性观测器的电机位置伺服系统输出反馈控制方法
CN110307203B (zh) 一种液压泵马达用的伺服变量机构
CN112555202A (zh) 一种基于参数自适应的液压系统控制方法
CN109281894B (zh) 一种微型容积式远程控制的静液作动器非线性补偿方法
Zhou et al. High precise fuzzy control for piezoelectric direct drive electro-hydraulic servo valve
CN112068447A (zh) 大型装备电液系统高精度鲁棒位置控制方法
CN110273876B (zh) 针对阀控缸力阻抗控制系统的外环阻抗补偿方法及系统
CN116181750A (zh) 一种电液伺服液压缸位置反馈控制系统
Li et al. Characteristics of a piloted digital flow valve based on flow amplifier
Liu et al. Flow match and precision motion control of asymmetric electro-hydrostatic actuators with complex external force in four-quadrants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant