CN113429962B - 一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用 - Google Patents

一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用 Download PDF

Info

Publication number
CN113429962B
CN113429962B CN202110863011.2A CN202110863011A CN113429962B CN 113429962 B CN113429962 B CN 113429962B CN 202110863011 A CN202110863011 A CN 202110863011A CN 113429962 B CN113429962 B CN 113429962B
Authority
CN
China
Prior art keywords
photonic crystal
aggregation
induced emission
microsphere
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110863011.2A
Other languages
English (en)
Other versions
CN113429962A (zh
Inventor
赵阳
李广涛
刘程程
常颖
高利生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Institute of Forensic Science Ministry of Public Security PRC
Original Assignee
Tsinghua University
Institute of Forensic Science Ministry of Public Security PRC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Institute of Forensic Science Ministry of Public Security PRC filed Critical Tsinghua University
Priority to CN202110863011.2A priority Critical patent/CN113429962B/zh
Publication of CN113429962A publication Critical patent/CN113429962A/zh
Application granted granted Critical
Publication of CN113429962B publication Critical patent/CN113429962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用。该传感微球包括光子晶体微球组成;光子晶体微球上具有面心立方有序大孔结构,其孔壁含有聚集诱导发光分子。它包括如下步骤制备:1)外相包括硅油,内相为二氧化硅纳米颗粒的水相分散液,将外相和内相流入混合,完成晶体生长,得到光子晶体球;2)将咪唑离子液体单体、交联剂、HMPP光引发剂溶解在聚集诱导发光分子水溶液中,得到含有聚集诱导发光分子的预聚液;将制备好的光子晶体模板球浸渍在预聚液中,进行聚合反应,得到复合模板球;将复合模板球中二氧化硅刻蚀,即得。本发明将传感阵列、聚集诱导发光与光子晶体技术集成联用,应用于毒品检测中。

Description

一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其 制备方法与应用
技术领域
本发明涉及一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用,属于光子晶体技术领域。
背景技术
传感阵列识别方法模仿了哺乳动物的鼻子和舌头的嗅觉和味觉。虽然人类只有400个活跃的嗅觉受体,但是可以识别并区分超过10000种气味。嗅觉系统的特异性并不来源于与分析物对应的特异性受体,而是利用几百个受体产生的综合响应模式去识别。受此启发,阵列中的受体可能会和多种分析物结合,但是对每种分析物都会产生不同程度的响应。得到的指纹信息为独立的分析物或者是多种分析物组成的混合物提供了特征响应模式。这些受体是具有交叉响应性的,而非对某一种分析物具有高度特异性。事实上,选择性较差的受体可能反而利于阵列识别,因为交叉响应性增强了,可以提取更多的信息。另外,传感阵列可以实现某种结构未知的分析物或者成分未知的混合物的鉴别。
荧光材料在传感器和生物医学成像中具有广泛的应用。在传统荧光化合物浓度较高的情况下,荧光强度会减弱甚至不发光。这种现象称为“浓度猝灭”。其主要原因与聚集体的形成有关,这称为“聚集引起的荧光猝灭”。然而,2001年唐本忠等发现一种与传统的荧光淬灭ACQ相反的现象,一些分子在溶液中完全不发光或者发光很弱,但是在聚集态或者固体时,荧光出现或者比之前增强几十或者几百倍,由于是聚集导致的这种现象,所以被称为“聚集诱导发光”。聚集诱导发光的原理多是基于分子运动受限引起的π-π共轭及导致荧光增强。
光子晶体是一种具有鲜艳的结构颜色的光子纳米材料它具有空间有序的晶格结构。由于介电材料的周期性排列,电介质晶格散射的光干涉(如布拉格散射)使光子晶体具有光子禁带。如果某种光的波长或频率与禁带匹配,那么这些光无法在光子晶体中传播。光子禁带的带宽受以下几个因素影响:高低介电材料折射率的对比度(低介电材料通常是空气)、结构的对称性和周期性以及高折射率材料的填充率和形貌。光子禁带这种特性使得光子晶体材料,在高效微波天线、微型激光器、传感器、显示器、光纤等领域取得了重要的应用成果。
发明内容
本发明的目的是提供一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用。本发明可实现将传感阵列、聚集诱导发光与光子晶体技术集成联用,对于复杂分析物体系的多维度分析,满足对毒品现场检测、多批次抽检的检测需求。
本发明提供的一种集成聚集诱导发光荧光分子与光子晶体的传感微球,该传感微球包括光子晶体微球组成;
所述光子晶体微球上具有面心立方有序大孔结构,其孔壁含有聚集诱导发光分子。
本发明中,所述光子晶体微球的反射波长可为400~750纳米,光子晶体微球的粒径可为0.3~3毫米。
本发明集成聚集诱导发光荧光分子与光子晶体的传感微球可在聚离子液体水凝胶反模板膨胀或收缩时产生颜色变化与荧光强度变化。
本发明还提供了上述的集成聚集诱导发光荧光分子与光子晶体的传感微球的制备方法,包括如下步骤:1)光子晶体球的制备:外相包括硅油,内相为二氧化硅纳米颗粒的水相分散液,将所述外相和所述内相流入混合,完成晶体生长,得到光子晶体球;
2)光子晶体微球的制备:将咪唑离子液体单体、交联剂、HMPP光引发剂溶解在聚集诱导发光分子水溶液中,得到含有聚集诱导发光分子的预聚液;将制备好的光子晶体模板球浸渍在所述的预聚液中,进行聚合反应,得到复合模板球;将所述复合模板球中二氧化硅刻蚀,即得到集成聚集诱导发光荧光分子与光子晶体的传感微球。
上述的制备方法中,所述硅油的粘度为50~2000cst,具体可为50cst;
所述外相和所述内相的流速分别为0.1~1mL/h和和1~10mL/h,所述外相的流速具体可为0.6mL/h、0.1~0.6mL/h、0.6~1mL/h或0.3~0.8mL/h,所述外相的流速具体可为4mL/h、1~4mL/h、4~10mL/h或2~6mL/h。
上述的制备方法中,所述外相还包括表面活性剂;所述硅油与所述表面活性剂的质量比可为1~3:100。
上述的制备方法中,所述表面活性剂包括表面活性剂749;
制备所述二氧化硅纳米颗粒的方法按照如下步骤:将四乙氧基硅氧烷溶解于乙醇中,记为溶液A;将氢氧化铵与去离子水及乙醇混合,记为溶液B;将溶液A迅速倒入溶液B,室温下反应,得到白色悬浊液,将其离心,倒掉上清液,加入乙醇清洗,再离心后倒掉上清液,进行至少一次;加入去离子水超声清洗,离心倒掉上清液,进行至少一次,得到二氧化硅纳米颗粒;
所述晶体生长的条件为:温度为常温,时间可为1~3h,具体可为3h。本发明中,所述常温为本领域公知的常识,一般指的是10~30℃。
上述的制备方法中,步骤1)中,所述光子晶体球的后处理包括如下步骤:将所述光子晶体球用石油醚清洗干净以去除残留的硅油,待所述石油醚挥发干后,用马弗炉对所述光子晶体球进行煅烧(煅烧的温度具体可为800℃和时间具体可为3h),冷却至室温。
上述的制备方法中,所述咪唑离子液体单体、所述交联剂、所述HMPP光引发剂与所述聚集诱导发光分子水溶液的质量与体积比可为0.3g:0.01g~0.05g:1~10μL:50~200μL,具体可为0.3g:0.034g:5μL:100μL;
所述聚集诱导发光分子水溶液的质量百分浓度为0.01~0.05%;
所述聚合反应的条件如下:紫外光照下,聚合时间为15~30min,具体可为15min。
上述的制备方法中,所述咪唑离子液体单体包括烷基乙烯基咪唑溴盐、烷基乙烯基咪唑氯盐、烷基乙烯基咪唑四氟硼酸盐和烷基乙烯基咪唑六氟磷酸盐中的至少一种,上述烷基的碳原子数均具体可为1~10,具体可为正丁基;
所述交联剂包括含有两个以上不饱和侧基芳环或杂环衍生物,具体包括亚烷基连接的亚烷基链乙烯基咪唑二溴盐或亚烷基链乙烯基咪唑二氯盐,具体如(1,4-亚丁基)乙烯基咪唑二溴盐、(1,4-亚乙基)乙烯基咪唑二溴盐和(1,4-亚己基)乙烯基咪唑二溴盐中的至少一种;
所述聚集诱导发光分子为含有苯并噻唑单元,且含有不饱和键的化合物,具体包括二苯乙烯基苯并噻唑或如下式Ⅰ所示的化合物。
Figure BDA0003186467240000031
上述的制备方法中,步骤2)中,所述光子晶体微球的后处理包括如下步骤:所述复合模板球从块状聚合物中抠出,用质量分数为5%氢氟酸水溶液将二氧化硅刻蚀,用去离子水清洗3次以去除残留的氢氟酸,得到光子晶体微球,保存在去离子水中备用。
本发明还提供了上述的制备方法制备得到的集成聚集诱导发光荧光分子与光子晶体的传感微球。
本发明所述集成聚集诱导发光荧光分子与光子晶体的传感微球应用于毒品检测中。
本发明具有以下优点:
本发明将传感阵列、聚集诱导发光与光子晶体技术集成联用,应用于毒品检测,实现对于毒品检测对于复杂分析物体系的多维度交互分析需求。
附图说明
图1为印迹D-甲基苯丙胺光子晶体传感器检测D-甲基苯丙胺待测物(浸泡48小时后)反射光谱图。
图2为印迹D-甲基苯丙胺光子晶体传感器干扰物反射光谱图:L-甲基苯丙胺、甲卡西酮、麻黄碱、伪麻黄碱、水。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例、
利用改良的
Figure BDA0003186467240000041
法合成单分散的SiO2纳米颗粒。将4.5mL四乙氧基硅氧烷溶解于40mL乙醇中,记为溶液A。将10.5mL氢氧化铵与去离子水及乙醇混合,记为溶液B。各自搅拌均匀后,将溶液A迅速倒入溶液B,室温下反应20小时。将得到的白色悬浊液离心(7min、8000rpm),倒掉上清液,加入乙醇在超声振荡器中清洗,再离心后倒掉上清液,重复3次。加入去离子水超声清洗,离心(8min、10000rpm)倒掉上清液,重复3次。将得到的纳米颗粒超声至均匀分散在去离子水中备用。
利用共流型微流控装置制备蛋白石结构光子晶体球,外相为硅油(粘度50cst)和表面活性剂749(二者的具体用量比为3:100)的混合物,内相为二氧化硅纳米颗粒的水相分散液。内外相流速分别为0.6mL/h和和4mL/h。将液滴收集至表面皿中,置于烘箱内静置完成晶体生长(生长条件是常温25℃,3h)过程。将液滴收集至表面皿中,置于烘箱内完成晶体生长过程。将组装好的光子晶体球用石油醚清洗干净以去除残留的硅油,待石油醚挥发干后,用马弗炉对光子晶体球进行煅烧(800℃、3h),冷却至室温(25℃)后将光子晶体球置于干燥阴凉处备用。
配制含有AIE分子的预聚液:将咪唑离子液体单体(具体为正丁基乙烯基咪唑溴盐,0.3g)、(1,4-亚丁基)乙烯基咪唑二溴盐交联剂(0.034g)、以及HMPP光引发剂(5μL)溶解在100μL的AIE分子水溶液中,经振荡器振荡充分混合形成均一的溶液。将制备好的光子晶体模板球浸渍在预聚液中,放在冰箱中静置。将渗入了预聚液的光子晶体模板球置于紫外光照下聚合15分钟,得到复合模板球。将复合模板球从块状聚合物中抠出,用5%氢氟酸水溶液将二氧化硅刻蚀,得到骨架为聚离子液体的反蛋白石光子晶体微球(PIL光子晶体微球),用去离子水清洗3次以去除残留的氢氟酸,将PIL光子晶体微球保存在去离子水中置于干燥阴凉处备用。
本文聚离子液体AIE光子晶体微球对苯丙胺类待测物的检测方法如下:
a)采集未加苯丙胺类待测物之前的聚离子液体光子晶体微球的反射光谱,结果如图1所示;
b)加入相应浓度待测物毒品溶液,放置两天,然后采集其反射光谱与荧光光谱,结果如图2所示;
c)比较与待测物溶液浸泡前后,反射光谱主峰位置,结果如表1所示。
由图1、图2和表1可知,所有印迹D-甲基苯丙胺光子晶体传感器的初始值均在599.8±2.3nm,波长分布较为集中,具有良好的批次稳定性。
从图1及表1对于D-甲基苯丙胺的待测物的测试结果看,对于高浓度(0.1M)目标待测物,产生了-42.5nm的平均响应值,低浓度(10-7M)也有-30.0nm。对照其他干扰物结果(图2和表1,干扰物平均响应值均显著低于目标待测物。显示了印迹D-甲基苯丙胺光子晶体传感器良好的检测限和抗干扰性能。
表1印迹D-甲基苯丙胺光子晶体传感器对待测物及干扰物的检测响应结果
Figure BDA0003186467240000051

Claims (8)

1.一种集成聚集诱导发光荧光分子与光子晶体的传感微球在毒品检测中的应用;
所述集成聚集诱导发光荧光分子与光子晶体的传感微球包括光子晶体微球;
所述光子晶体微球上具有面心立方有序大孔结构,其孔壁含有聚集诱导发光分子;
所述聚集诱导发光分子为二苯乙烯基苯并噻唑;
所述毒品为D-甲基苯丙胺。
2.根据权利要求1所述的应用,其特征在于:所述集成聚集诱导发光荧光分子与光子晶体的传感微球的制备方法,包括如下步骤:1)光子晶体球的制备:外相为硅油和表面活性剂的混合物,内相为二氧化硅纳米颗粒的水相分散液,将所述外相和所述内相流入混合,完成晶体生长,得到光子晶体球;
2)光子晶体微球的制备:将咪唑离子液体单体、交联剂、HMPP光引发剂溶解在聚集诱导发光分子水溶液中,得到含有聚集诱导发光分子的预聚液;将制备好的光子晶体模板球浸渍在所述的预聚液中,进行聚合反应,得到复合模板球;将所述复合模板球中二氧化硅刻蚀,即得到集成聚集诱导发光荧光分子与光子晶体的传感微球;
所述聚集诱导发光分子为二苯乙烯基苯并噻唑。
3.根据权利要求2所述的应用,其特征在于:所述硅油的粘度为50~2000cst;
所述外相和所述内相的流速分别为0.1~1mL/h和1~10mL/h;
所述外相还包括表面活性剂;所述硅油与所述表面活性剂的质量比为1~3:100。
4.根据权利要求2或3所述的应用,其特征在于:所述表面活性剂包括表面活性剂749;
制备所述二氧化硅纳米颗粒的方法按照如下步骤:将四乙氧基硅氧烷溶解于乙醇中,记为溶液A;将氢氧化铵与去离子水及乙醇混合,记为溶液B;将溶液A迅速倒入溶液B,室温下反应,得到白色悬浊液,将其离心,倒掉上清液,加入乙醇清洗,再离心后倒掉上清液,进行至少一次;加入去离子水超声清洗,离心倒掉上清液,进行至少一次,得到二氧化硅纳米颗粒;
所述晶体生长的条件为:温度为常温,时间为1~3h。
5.根据权利要求2或3所述的应用,其特征在于:步骤1)中,所述光子晶体球的后处理包括如下步骤:将所述光子晶体球用石油醚清洗干净以去除残留的硅油,待所述石油醚挥发干后,用马弗炉对所述光子晶体球进行煅烧,冷却至室温。
6.根据权利要求2或3所述的应用,其特征在于:所述咪唑离子液体单体、所述交联剂、所述HMPP光引发剂与所述聚集诱导发光分子水溶液的质量与体积比为0.3g:0.01g~0.05g:1~10μL:50~200μL;
所述聚集诱导发光分子水溶液的质量百分浓度为0.01~0.05%;
所述聚合反应的条件如下:紫外光照下,聚合时间为15~30min。
7.根据权利要求2或3所述的应用,其特征在于:所述咪唑离子液体单体包括烷基乙烯基咪唑溴盐、烷基乙烯基咪唑氯盐、烷基乙烯基咪唑四氟硼酸盐和烷基乙烯基咪唑六氟磷酸盐中的至少一种;
所述交联剂包括含有两个以上不饱和侧基芳环或杂环衍生物,具体包括亚烷基连接的亚烷基链乙烯基咪唑二溴盐或亚烷基链乙烯基咪唑二氯盐。
8.根据权利要求2或3所述的应用,其特征在于:步骤2)中,所述光子晶体微球的后处理包括如下步骤:所述复合模板球从块状聚合物中抠出,用5%氢氟酸水溶液将二氧化硅刻蚀,用去离子水清洗3次以去除残留的氢氟酸,得到光子晶体微球,保存在去离子水中备用。
CN202110863011.2A 2021-07-29 2021-07-29 一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用 Active CN113429962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110863011.2A CN113429962B (zh) 2021-07-29 2021-07-29 一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110863011.2A CN113429962B (zh) 2021-07-29 2021-07-29 一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113429962A CN113429962A (zh) 2021-09-24
CN113429962B true CN113429962B (zh) 2022-10-04

Family

ID=77762086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110863011.2A Active CN113429962B (zh) 2021-07-29 2021-07-29 一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113429962B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279806B2 (en) * 2005-04-22 2016-03-08 The Hong Kong University Of Science And Technology Water-soluble AIE luminogens for monitoring and retardation of fibrillation of amyloid proteins
CN101702060A (zh) * 2009-11-05 2010-05-05 东南大学 一种阵列式显示器件及其制备方法
CN103804318B (zh) * 2014-02-14 2016-09-07 中山大学 含三苯乙烯或四苯乙烯结构的具有聚集诱导发光性能的苯并噻唑衍生物及其制备方法和应用
WO2019204508A1 (en) * 2018-04-18 2019-10-24 University Of Houston System Systems and method for detection of analytes in high volumetric flow applications

Also Published As

Publication number Publication date
CN113429962A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
Gallei Functional Polymer Opals and Porous Materials by Shear‐Induced Assembly of Tailor‐Made Particles
Peng et al. Synthesis of monodisperse, highly cross-linked, fluorescent PMMA particles by dispersion polymerization
Fleischhaker et al. Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots
CN106040114B (zh) 一种水凝胶光子晶体微球及其制备与应用
Fedeyko et al. Formation and structure of self-assembled silica nanoparticles in basic solutions of organic and inorganic cations
CN101787163B (zh) 一种磁性荧光微球及其制备方法
Zhang et al. A new approach to hybrid nanocomposite materials with periodic structures
Bradley et al. Distribution of CdSe quantum dots within swollen polystyrene microgel particles using confocal microscopy
Jakob et al. A novel approach to monodisperse, luminescent silica spheres
de Dood et al. Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO2 spheres
Botzung-Appert et al. Polyaromatic luminescent nanocrystals for chemical and biological sensors
CN104961906A (zh) 一种兼具pH值和离子强度响应的光子晶体水凝胶薄膜、其制备方法及应用
Gourevich et al. Polymer multilayer particles: a route to spherical dielectric resonators
Birch et al. Sol-gel particle growth studied using fluorescence anisotropy: an alternative to scattering techniques
CN101358242A (zh) 基于光子晶体的复合式生物芯片
Potdevin et al. Luminescent nanocomposites made of finely dispersed Y3Ga5O12: Tb powder in a polymer matrix: promising candidates for optical devices
Hagemans et al. Synthesis of cone-shaped colloids from rod-like silica colloids with a gradient in the etching rate
Zhang et al. Versatile dendrimer-derived nanocrystal microreactors towards fluorescence colloidal photonic crystals
CN106221692A (zh) 一种单分散二氧化硅荧光微球的制备方法
Lu et al. Bioinspired thermoresponsive photonic polymers with hierarchical structures and their unique properties
Guan et al. Fluorescent CdTe-QD-encoded nanocellulose microspheres by green spraying method
CN107015380B (zh) 变色层材料、制品及其制备方法
Geddes 1 and 2-photon fluorescence anisotropy decay to probe the kinetic and structural evolution of sol-gel glasses: a summary
Zhang et al. Anisotropic biphase frontal polymerization toward in situ generation of dual-component polymers
CN113429962B (zh) 一种集成聚集诱导发光荧光分子与光子晶体的传感微球及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant