CN113429207A - 一种石墨负极材料块烧石墨化方法 - Google Patents

一种石墨负极材料块烧石墨化方法 Download PDF

Info

Publication number
CN113429207A
CN113429207A CN202110898180.XA CN202110898180A CN113429207A CN 113429207 A CN113429207 A CN 113429207A CN 202110898180 A CN202110898180 A CN 202110898180A CN 113429207 A CN113429207 A CN 113429207A
Authority
CN
China
Prior art keywords
furnace
block
graphitizing
blocks
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110898180.XA
Other languages
English (en)
Inventor
辛玲
刘明雄
崔强
杨光杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Yicheng Hanbo Energy Technology Co ltd
Original Assignee
Henan Yicheng Hanbo Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Yicheng Hanbo Energy Technology Co ltd filed Critical Henan Yicheng Hanbo Energy Technology Co ltd
Priority to CN202110898180.XA priority Critical patent/CN113429207A/zh
Publication of CN113429207A publication Critical patent/CN113429207A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及电池负极材料制备技术领域,具体涉及一种石墨负极材料块烧石墨化方法,包括以下步骤:(1)磨粉:原料磨粉;(2)混沥青:将磨粉后的原料和沥青粉混合得混合料;(3)混捏;(4)过筛;(5)等静压成型:将过筛后的物料装入模具等静压成型;(6)装炉;(7)石墨化处理;(8)破碎打散;(9)筛分包装。本发明将过筛后的物料装入内腔形状为方形或者圆柱形的模具等静压成型为块料,直接将块料装入石墨化炉中摆放整齐,不再使用坩锅,加大了装炉量,装炉量由50t/炉提升至100t/炉,原料利用率高,还节约用电成本;使用本发明还保证了炉内电流密度的均匀性,确保炉内上下石墨化物料的质量均一性、同质性。

Description

一种石墨负极材料块烧石墨化方法
技术领域
本发明涉及电池负极材料制备技术领域,具体涉及一种石墨负极材料块烧石墨化方法。
背景技术
石墨材料因具有稳定性高、导电性好、来源广等优点,被认为是目前较为理想的锂离子电池负极材料。现有的石墨负极材料制备工艺中包括石墨化步骤,现在的石墨化步骤为将物料装入石墨坩埚再装入石墨化炉。如公开号为CN102227020A名称为一种用于锂离子电池改性石墨负极材料的制备方法的专利,步骤(4)为将氧化处理后的石墨粉体装入坩埚中并轻微压实,直接进行高温石墨化处理,即制得成品。然而物料装入坩锅,再装入石墨化炉中,不但费时费力,劳动强度大,而且坩锅占据石墨化炉的空间,导致负极材料的生产成本高,生产效率低。
发明内容
本发明为了解决现有的石墨化操作中,先将物料装入坩锅,再装入石墨化炉中,不但费时费力,劳动强度大,而且坩锅占据石墨化炉的空间,导致负极材料的生产成本高,生产效率低的问题,提供了一种石墨负极材料块烧石墨化方法。
为了实现上述目的,本发明的技术方案是:
一种石墨负极材料块烧石墨化方法,包括以下步骤:
(1)磨粉:将原料磨粉,使磨粉后的原料粒径为10~13μm;所述原料为石油焦、针状焦或者半石墨化焦炭中的任意一种;
(2)混沥青:将磨粉后的原料和沥青粉混合得混合料,沥青粉的质量占混合料的质量百分比为20%~25%;
(3)混捏:将步骤(2)所得混合料加入混捏锅,在200℃条件下进行搅拌混捏3~4h;
(4)过筛:将混捏后的物料过筛,筛网的筛孔直径为5mm;
(5)等静压成型:将过筛后的物料装入模具,等静压成型,形成块料;
(6)装炉:
a)、围炉板:在石墨化炉内围炉板,所述炉板包括前炉板、两个侧炉板,所述前炉板距离石墨化炉炉头的距离为300~350mm,两个侧炉板距离石墨化炉的两侧边墙的距离均为1米;石墨化炉炉芯的长度为炉头内墙至炉尾内墙的距离、石墨化炉炉芯的宽度为两个侧炉板之间的距离;
b)、装块料:多块块料沿石墨化炉炉芯的宽度方向相互紧靠摆放,构成第一层块料,自第一层块料向上摆放至少15层为一组块料,每块块料的长边即为每块块料的长度方向,每块块料的长边和石墨化炉炉芯的宽度方向平行,每块块料的短边即为每块块料的宽度方向,每块块料的短边和石墨化炉炉芯的长度方向平行,每组块料的首端和尾端分别与临近侧的侧炉板之间有间距且间距相等,间距小于每块块料的长度,然后,沿石墨化炉炉芯长度方向摆放相互平行的多组块料构成n组块料组,n为整数,其中,第一组块料紧贴前炉板内侧摆放,相邻两组块料之间的距离为100mm,最后一组块料距离石墨化炉炉尾内墙的距离不小于300mm且不大于块料的宽度加400mm之和,相邻两组块料之间、块料与侧炉板之间、前炉板与炉头内墙、块料与炉尾内墙之间均填放电阻料,直至与块料组的顶层平齐,块料组顶层和电阻料的顶层再铺设一层电阻料,然后再用保温料覆盖构成顶部保温层,侧炉板和石墨化炉侧边墙之间填充保温料直至与顶部保温层的顶面平齐;第n/3组和第2n/3组块料组的底面中部向上均预留空隙,当n/3和2n/3非整数时,小数点后面的数值小于5取整不进位,小数点后面的数值大于等于5进位取整,空隙部位填充电阻料;所述空隙的长度为3块块料的长度之和,所述空隙的宽度为1块块料的宽度,所述空隙的高度为5块块料的高;
c)、炉板的顶面高于顶部保温层的顶面,抽出炉板;
块料距离炉头和炉尾的距离设置,是为了防止加热后的块料发生形变,对炉头炉尾造成过大的压力;
所述电阻料使用粒度为8~25mm的煅后石油焦,灰分≤0.5%;
保温料使用本领域常用的保温料,有煅后石油焦(粒度小于等于4mm)、冶金焦、炭黑等,优先选用煅后石油焦,生产成本较低;
传统装炉方式:石墨化后的物料经检测,中层和下层灰分均为0.01~0.03%,上层灰分为0.06~0.07%,炉内物料上下层质量差异大,后续需要增加混料工序来提高物料的均质性。
本发明:石墨化后的物料,上中下层分别取6个样进行灰分分析,灰分均在0.02%~0.04%,全部合格,上下石墨化物料的质量均质性好,比较均一,不需要再次混料,减少混料工序。
(7)石墨化处理:石墨化炉内的温度先升温到900~1000℃,保温4~10小时,然后以120~150℃/h的温升速度升至3000℃,断电冷却;
(8)破碎打散;
(9)筛分包装。
进一步地,步骤(5)中所述模具的内腔形状为方形或圆柱形。
进一步地,所述石墨化炉内的温度先升温到900℃,或950℃,或1000℃;所述保温4小时,或8小时,或10小时;然后以120℃/h,或140℃/h,或150℃/h的温升速度升至3000℃。
进一步地,所述破碎打散的具体步骤为:清理掉石墨化后的块料表面的电阻料,然后先进行粗碎至3~5mm,再打散至15~18μm。
进一步地,所述半石墨化焦炭为炭的含量≥92%的半石墨化石油焦。
进一步地,所述模具的内腔形状为方形时,内腔的长度为350mm,宽度为300mm,高度为140mm,则方形块料的长边和石墨化炉炉芯的宽度方向平行,所述块料的短边和石墨化炉炉芯的长度方向平行;当模具的内腔形状为圆柱形时,内腔的直径为380mm,高度为140mm,则圆柱形块料的直径既是块料的长度又是块料的宽度。
进一步地,所述等静压成型时使用的压力为80MPa。
通过上述技术方案,本发明的有益效果为:
本发明提供的一种石墨负极材料块烧石墨化方法,将过筛后的物料装入带有方形、圆柱形内腔的模具等静压成型为块料,直接将块料装入石墨化炉中摆放整齐,不再使用坩锅,所以节省了坩锅的成本,并且将原来坩锅占据的石墨化炉的空间省出,装入石墨化料,从而加大了装炉量,原来的装炉量为50t/炉,现在提升至100t/炉,原料利用率高,还节约用电成本。
本发明提供的一种石墨负极材料块烧石墨化方法,可大幅度降低负极材料石墨化生产成本,相比传统负极材料石墨化方法,可降低40~50%的石墨化生产成本。
本发明装炉方式,较传统装炉方式不一样,本发明放置n组块料组,第n/3组和第2n/3组块料组的底面中部向上均预留空隙,空隙部位填充电阻料,不填充块料。效果为:(1)保证了炉内电流密度的均匀性,确保炉内上下石墨化物料的质量均一性、同质性。(2)减少石墨化后的混料工序。用传统装炉方式石墨化,炉内物料上下层质量差异大,需要增加混料工序来提高物料的均质性。(3)可降低20%的石墨化工艺电单耗。用传统方法装炉石墨化,需要多送电来减少炉内上下层之间的质量差异。本发明装炉方式,在装炉时就保证了炉内电流密度的均匀性,所以,可以减少大功率5~6小时的送电时间,可以降低20%的石墨化工艺电单耗。
具体实施方式
下面结合具体实施方式对本发明作进一步说明:
实施例1
一种石墨负极材料块烧石墨化方法,包括以下步骤:
(1)磨粉:将针状焦磨粉,使磨粉后的针状焦粒径为10~13μm;
(2)混沥青:取800kg磨粉后的针状焦和200 kg沥青粉混合得混合料,混合料的总重量1000kg,沥青粉占总重量的20%。
(3)混捏:将步骤(2)所得混合料加入混捏锅,在200℃条件下进行搅拌混捏4h;
(4)过筛:将混捏后的物料过筛,筛网的筛孔直径为5mm;
(5)等静压成型:将过筛后的物料装入内腔为圆柱形的模具,在80MPa的压力下等静压成型;模具的内腔直径为380mm,高度为140mm。
(6)装炉:
a)、围炉板:在石墨化炉内围炉板,所述炉板包括前炉板、两个侧炉板,所述前炉板距离石墨化炉炉头的距离为350mm,两个侧炉板距离石墨化炉的两侧边墙的距离等于1米;石墨化炉炉芯的长度为炉头内墙至炉尾内墙的距离、石墨化炉炉芯的宽度为两个侧炉板之间的距离,石墨化炉的炉芯长度为24米、炉芯的宽度为2米;炉板为6mm厚的钢板;
b)、装块料:圆柱形块料的直径为380mm,因此,五块块料沿石墨化炉炉芯的宽度方向相互紧靠摆放构成第一层块料,自第一层块料向上摆放15层为一组块料,每组块料的首端与临近侧的侧炉板之间有间距且间距为50mm,尾端与临近侧的侧炉板之间有间距且间距也为50mm,然后,沿石墨化炉炉芯长度方向摆放相互平行的48组块料构成48组块料组,其中,第一组块料紧贴前炉板内侧摆放,相邻两组块料之间的距离为100mm,最后一组块料组距离石墨化炉炉尾内墙的距离为704mm,相邻两组块料之间、块料与侧炉板之间、前炉板与炉头内墙、块料与炉尾内墙之间均填放粒度8~25mm的煅后石油焦,块料顶层和电阻料的顶层再铺设一层厚度为150mm的粒度8~25mm的煅后石油焦,然后再用厚度为950mm的粒度小于等于4mm的煅后石油焦覆盖构成顶部保温层,侧炉板和石墨化炉侧边墙之间填充粒度小于等于4mm的煅后石油焦,直至与顶部保温层的顶面平齐;第16组和第32组块料组的底面中部向上均预留空隙,空隙部位填充粒度8~25mm的煅后石油焦;所述空隙的长度为3块块料的长度之和,所述空隙的宽度为1块块料的宽度,所述空隙的高度为5块块料的高;
c)、炉板的顶面高于顶部保温层的顶面,抽出炉板;
(7)石墨化处理:通电升温炭化,即将石墨化炉内的温度由室温升到1000℃,保温4h,然后以150℃/h的温升速度升至3000℃,实现块料石墨化,随后停电冷却;
(8)破碎打散:将石墨化后的块料表面的电阻料清理干净,先进行粗碎至3~5mm,再打散至15~18μm。
(9)筛分包装。
本实施例所得产品的石墨化度94%,上中下层的灰分均为0.02%。
传统装炉方式所得产品经检测,中层和下层灰分均为0.01~0.03%,上层灰分为0.06~0.07%,炉内物料上下层质量差异大,后续需要增加混料工序来提高物料的均质性。
实施例2
一种石墨负极材料块烧石墨化方法,包括以下步骤:
(1)磨粉:将石油焦磨粉,使磨粉后的石油焦粒径为10~13μm;石油焦原料来源于抚顺石油焦化厂,锦州石油焦化五厂以及大庆石油焦化厂等。
(2)混沥青:取640kg磨粉后的石油焦和160kg沥青粉混合得混合料,混合料的总重量800kg,沥青粉占总重量的20%;
(3)混捏:将步骤(2)所得混合料加入混捏锅,在200℃条件下进行搅拌混捏3h;
(4)过筛:将混捏后的物料过筛,筛网的筛孔直径为5mm;
(5)等静压成型:将过筛后的物料装入内腔为方形的模具,等静压成型,等静压成型时使用的压力为80MPa;所述模具的内腔长度为350mm,宽度为300mm,高度为140mm;
(6)装炉:
a)、围炉板:在石墨化炉内围炉板,所述炉板包括前炉板、两个侧炉板,所述前炉板距离石墨化炉炉头的距离为350mm,两个侧炉板距离石墨化炉的两侧边墙的距离等于1米;石墨化炉炉芯的长度为炉头内墙至炉尾内墙的距离、石墨化炉炉芯的宽度为两个侧炉板之间的距离,石墨化炉的炉芯长度为24米、炉芯的宽度为2米;炉板为6mm厚的钢板;
b)、装块料:因块料为方形,块料的长度为350mm、宽度为300mm,摆放时,每块块料的长边即为每块块料的长度方向,每块块料的长边和石墨化炉炉芯的宽度方向平行,每块块料的短边即为每块块料的宽度方向,每块块料的短边和石墨化炉炉芯的长度方向平行,这样放置是为了使石墨化炉长度方向的块料薄一些,增大电阻,从而提高石墨化内的温度,因此,五块块料沿石墨化炉炉芯的宽度方向相互紧靠摆放,构成一层块料,自第一层块料向上摆放15层为一组块料,每组块料的首端与临近侧的侧炉板之间有间距且间距为125mm,尾端与临近侧的侧炉板之间有间距且间距也为125mm,然后,沿石墨化炉炉芯长度方向摆放相互平行的58组块料构成58组块料组,其中,第一组块料紧贴前炉板内侧摆放,相邻两组块料之间的距离为100mm,最后一组块料组距离石墨化炉炉尾内墙的距离为544mm,相邻两组块料之间、块料与侧炉板之间、前炉板与炉头内墙、块料与炉尾内墙之间均填放粒度8~25mm的煅后石油焦,块料顶层和电阻料的顶层再铺设一层厚度为150mm的粒度8~25mm的煅后石油焦,然后再用厚度为950mm的粒度小于等于4mm的煅后石油焦覆盖构成顶部保温层,侧炉板和石墨化炉侧边墙之间填充粒度小于等于4mm的煅后石油焦,直至与顶部保温层的顶面平齐;第19组和第39组块料组的底面中部向上均预留空隙,空隙部位填充粒度8~25mm的煅后石油焦;所述空隙的长度为3块块料的长度之和,所述空隙的宽度为1块块料的宽度,所述空隙的高度为5块块料的高;
c)、炉板的顶面高于顶部保温层的顶面,抽出炉板;
(7)石墨化处理:通电升温炭化,即将石墨化炉内的温度由室温升到900℃ ,保温10h,然后以120℃/h的温升速度升至3000℃,实现块料石墨化,随后停电冷却;
(8)破碎打散:将石墨化后的块料表面的电阻料清理干净,先进行粗碎至3~5mm,再打散至15~18μm;
(9)筛分包装。
本实施例所得产品的石墨化度92%,上中下层的灰分均为0.04%。
实施例3
一种石墨负极材料块烧石墨化方法,包括以下步骤:
(1)磨粉:将半石墨化焦炭磨粉,使磨粉后的粒径为10~13μm;半石墨化焦炭为本公司石墨化工艺副产品,其中炭的含量≥92%;
(2)混沥青:取600kg磨粉后的半石墨化焦炭和200kg沥青粉混合得混合料,混合料的总重量800kg,沥青粉占总重量的25%;
(3)混捏:将步骤(2)所得混合料加入混捏锅,在200℃条件下进行搅拌混捏4h;
(4)过筛:将混捏后的物料过筛,筛网的筛孔直径为5mm;
(5)等静压成型:将过筛后的物料装入方形模具,等静压成型,等静压成型时使用的压力为80MPa;所述方形模具的长度为350mm,宽度为300mm,高度为140mm;
(6)装炉:
a)、围炉板:在石墨化炉内围炉板,所述炉板包括前炉板、两个侧炉板,所述前炉板距离石墨化炉炉头的距离为350mm,两个侧炉板距离石墨化炉的两侧边墙的距离等于1米;石墨化炉炉芯的长度为炉头内墙至炉尾内墙的距离、石墨化炉炉芯的宽度为两个侧炉板之间的距离,石墨化炉的炉芯长度为24米、炉芯的宽度为2米;炉板为6mm厚的钢板;
b)、装块料:因块料为方形,块料的长度为350mm、宽度为300mm,摆放时,每块块料的长边即为每块块料的长度方向,每块块料的长边和石墨化炉炉芯的宽度方向平行,每块块料的短边即为每块块料的宽度方向,每块块料的短边和石墨化炉炉芯的长度方向平行,这样放置是为了使石墨化炉长度方向的块料薄一些,增大电阻,从而提高石墨化内的温度,因此,五块块料沿石墨化炉炉芯的宽度方向相互紧靠摆放, 构成第一层块料,自第一层块料向上摆放15层为一组块料,每组块料的首端与临近侧的侧炉板之间有间距且间距为125mm,尾端与临近侧的侧炉板之间有间距且间距也为125mm,然后,沿石墨化炉炉芯长度方向摆放相互平行的58组块料构成58组块料组,第一组块料紧贴前炉板内侧摆放,相邻两组块料之间的距离为100mm,最后一组块料组距离石墨化炉炉尾内墙的距离为544mm,相邻两组块料之间、块料与侧炉板之间、前炉板与炉头内墙、块料与炉尾内墙之间均填放粒度8~25mm的煅后石油焦,块料顶层和电阻料的顶层再铺设一层厚度为150mm的粒度8~25mm的煅后石油焦,然后再用厚度为950mm的粒度小于等于4mm的煅后石油焦覆盖构成顶部保温层,侧炉板和石墨化炉侧边墙之间填充粒度小于等于4mm的煅后石油焦,直至与顶部保温层的顶面平齐;第19组和第39组块料组的底面中部向上均预留空隙,空隙部位填充粒度8~25mm的煅后石油焦;所述空隙的长度为3块块料的长度之和,所述空隙的宽度为1块块料的宽度,所述空隙的高度为5块块料的高;
c)、炉板的顶面高于顶部保温层的顶面,抽出炉板;
(7)石墨化处理:首先通电升温炭化,即将石墨化炉内的温度由室温升到950℃ ,保温8小时炭化,然后以140℃/h的温升速度升至3000℃,实现块料石墨化,随后停电冷却;
(8)破碎打散:将石墨化后的块料表面的电阻料清理干净,先进行粗碎至3~5mm,再打散至15~18μm。
(9)筛分包装。
本实施例所得产品的石墨化度93%,上中下层的灰分均为0.03%。
由上述可知,本发明装炉方式的优势是:保证了炉内电流密度的均匀性,确保炉内上下石墨化物料的质量均一性、同质性;减少石墨化后的混料工序;可以减少大功率5~6小时的送电时间,可以降低20%的石墨化工艺电单耗; 提高了石墨化度,石墨化度可达到92-94%。
传统装炉方式:石墨化后的物料经检测,中层和下层灰分均为0.01~0.03%,上层灰分为0.06~0.07%,炉内物料上下层质量差异大,后续需要增加混料工序来提高物料的均质性。
并经测试,本发明所得产品制备的负极材料,进而制备的电池的克容量为362-365mAh/g和首次放电效率为93-94%。
以上所述之实施例,只是本发明的较佳实施例而已,仅仅用以解释本发明,并非限制本发明实施范围,对于本技术领域的技术人员来说,当然可根据本说明书中所公开的技术内容,通过置换或改变的方式轻易做出其它的实施方式,故凡在本发明的原理及工艺条件所做的变化和改进等,均应包括于本发明申请专利范围内。

Claims (7)

1.一种石墨负极材料块烧石墨化方法,其特征在于,包括以下步骤:
(1)磨粉:将原料磨粉,使磨粉后的原料粒径为10~13μm;所述原料为石油焦、针状焦或者半石墨化焦炭中的任意一种;
(2)混沥青:将磨粉后的原料和沥青粉混合得混合料,沥青粉的质量占混合料质量百分比为20%~25%;
(3)混捏:将步骤(2)所得混合料加入混捏锅,在200℃条件下进行搅拌混捏3~4h;
(4)过筛:将混捏后的物料过筛,筛网的筛孔直径为5mm;
(5)等静压成型:将过筛后的物料装入模具,等静压成型,形成块料;
(6)装炉:
a)、围炉板:在石墨化炉内围炉板,所述炉板包括前炉板、两个侧炉板,所述前炉板距离石墨化炉炉头的距离为300~350mm,两个侧炉板距离石墨化炉的两侧边墙的距离均为1米;石墨化炉炉芯的长度为炉头内墙至炉尾内墙的距离、石墨化炉炉芯的宽度为两个侧炉板之间的距离;
b)、装块料:多块块料沿石墨化炉炉芯的宽度方向相互紧靠摆放构成第一层块料,自第一层块料向上摆放至少15层为一组块料,每块块料的长边即为每块块料的长度方向,每块块料的长边和石墨化炉炉芯的宽度方向平行,每块块料的短边即为每块块料的宽度方向,每块块料的短边和石墨化炉炉芯的长度方向平行,每组块料的首端和尾端分别与临近侧的侧炉板之间有间距且间距相等,间距小于每块块料的长度,然后,沿石墨化炉炉芯长度方向摆放相互平行的多组块料构成n组块料组,n为整数,其中,第一组块料紧贴前炉板内侧摆放,相邻两组块料之间的距离为100mm,最后一组块料距离石墨化炉炉尾内墙的距离不小于300mm且不大于块料的宽度加400mm之和,相邻两组块料之间、块料与侧炉板之间、前炉板与炉头内墙、块料与炉尾内墙之间均填放电阻料,直至与块料组的顶层平齐,块料组顶层和电阻料的顶层再铺设一层电阻料,然后再用保温料覆盖构成顶部保温层,侧炉板和石墨化炉侧边墙之间填充保温料直至与顶部保温层的顶面平齐;第n/3组和第2n/3组块料组的底面中部向上均预留空隙,当n/3和2n/3非整数时,小数点后面的数值小于5取整不进位,小数点后面的数值大于等于5进位取整,空隙部位填充电阻料;所述空隙的长度为3块块料的长度之和,所述空隙的宽度为1块块料的宽度,所述空隙的高度为5块块料的高;
c)、炉板的顶面高于顶部保温层的顶面,抽出炉板;
(7)石墨化处理:石墨化炉内的温度先升温到900~1000℃,保温4~10小时,然后以120~150℃/h的温升速度升至3000℃,断电冷却;
(8)破碎打散;
(9)筛分包装。
2.根据权利要求1所述的一种石墨负极材料块烧石墨化方法,其特征在于,步骤(5)中所述模具的内腔形状为方形或圆柱形。
3.根据权利要求1所述的一种石墨负极材料块烧石墨化方法,其特征在于,所述石墨化炉内的温度先升温到900℃,或950℃,或1000℃;所述保温4小时,或8小时,或10小时;然后以120℃/h,或140℃/h,或150℃/h的温升速度升至3000℃。
4.根据权利要求1所述的一种石墨负极材料块烧石墨化方法,其特征在于,所述破碎打散的具体步骤为:清理掉石墨化后的块料表面的电阻料,然后先进行粗碎至3~5mm,再打散至15~18μm。
5.根据权利要求1所述的一种石墨负极材料块烧石墨化方法,其特征在于,所述半石墨化焦炭为炭的含量≥92%的半石墨化石油焦。
6.根据权利要求2所述的一种石墨负极材料块烧石墨化方法,其特征在于,所述模具的内腔形状为方形时,内腔的长度为350mm,宽度为300mm,高度为140mm,则方形块料的长边和石墨化炉炉芯的宽度方向平行,所述块料的短边和石墨化炉炉芯的长度方向平行;当模具的内腔形状为圆柱形时,内腔的直径为380mm,高度为140mm,则圆柱形块料的直径既是块料的长度又是块料的宽度。
7.根据权利要求1所述的一种石墨负极材料块烧石墨化方法,其特征在于,所述等静压成型时使用的压力为80MPa。
CN202110898180.XA 2021-08-05 2021-08-05 一种石墨负极材料块烧石墨化方法 Withdrawn CN113429207A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110898180.XA CN113429207A (zh) 2021-08-05 2021-08-05 一种石墨负极材料块烧石墨化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110898180.XA CN113429207A (zh) 2021-08-05 2021-08-05 一种石墨负极材料块烧石墨化方法

Publications (1)

Publication Number Publication Date
CN113429207A true CN113429207A (zh) 2021-09-24

Family

ID=77762894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110898180.XA Withdrawn CN113429207A (zh) 2021-08-05 2021-08-05 一种石墨负极材料块烧石墨化方法

Country Status (1)

Country Link
CN (1) CN113429207A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455578A (zh) * 2022-01-21 2022-05-10 青岛瀚博电子科技有限公司 一种锂离子电池石墨负极材料的新型石墨化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455578A (zh) * 2022-01-21 2022-05-10 青岛瀚博电子科技有限公司 一种锂离子电池石墨负极材料的新型石墨化方法

Similar Documents

Publication Publication Date Title
CN101723357B (zh) 一种高密度炭素制品的生产工艺
CN105884357B (zh) 一种用于热压成型的石墨模具材料及其制备方法
CN114835493B (zh) 一种负极材料石墨化箱式炉用石墨箱板制造方法
CN110615680B (zh) GHPφ960~φ1420mm超大规格石墨电极及其生产方法
CN105967718A (zh) 耐大电流镁电解用石墨阳极及其制备工艺
CN103601173A (zh) 采用压球工艺生产炭素制品的方法
CN114318421B (zh) 一种树脂基预焙阳极及其制备工艺
CN106784767A (zh) 一种同炉制备锂电池负极用石墨和碳化硅的方法
CN104477891B (zh) 一种等静压石墨制品的石墨化方法
CN113429207A (zh) 一种石墨负极材料块烧石墨化方法
CN102887503B (zh) 一种降低煤沥青含量生产炭素制品的方法
WO2024082709A1 (zh) 一种高强度石墨电极的制备方法
CN114604866A (zh) 一种短流程制备高性能等静压石墨的方法
CN102557016B (zh) 无烟煤石墨化工艺
CN203715283U (zh) 一种生产石墨电极的系统
CN101591190A (zh) 一种铝电解槽侧墙用新型Si3N4-SiC-C耐火砖及其制备方法
CN115259855A (zh) 一种用于锂电池负极材料生产用石墨坩埚及其制备工艺
KR102176380B1 (ko) 석유 또는 석탄으로부터 유래된 코크스를 위한 촉매 활성 첨가제
CN112521152A (zh) 一种φ700mm超高功率石墨电极的制备工艺
CN101343582B (zh) 一种采用压球工艺生产型焦炭的方法
JPH0714804B2 (ja) 高密度等方性炭素材の製造方法
CN115433009A (zh) 一种电池负极石墨化及提纯用匣钵及其制备方法
CN113831126A (zh) 一种等静压负极碳材料的制备方法
CN106986646A (zh) 一种抗氧化石墨电极
CN105112941B (zh) 一种快速导电梯度炭素阳极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210924

WW01 Invention patent application withdrawn after publication