CN113421730B - 一种自适应满行程检测电磁感应式电位器 - Google Patents

一种自适应满行程检测电磁感应式电位器 Download PDF

Info

Publication number
CN113421730B
CN113421730B CN202110678873.8A CN202110678873A CN113421730B CN 113421730 B CN113421730 B CN 113421730B CN 202110678873 A CN202110678873 A CN 202110678873A CN 113421730 B CN113421730 B CN 113421730B
Authority
CN
China
Prior art keywords
value
range
actual potential
actual
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110678873.8A
Other languages
English (en)
Other versions
CN113421730A (zh
Inventor
于红勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Guli Technology Co ltd
Original Assignee
Shenzhen Guli Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Guli Technology Co ltd filed Critical Shenzhen Guli Technology Co ltd
Priority to CN202110678873.8A priority Critical patent/CN113421730B/zh
Priority to EP21945591.2A priority patent/EP4358102A1/en
Priority to PCT/CN2021/102366 priority patent/WO2022262008A1/zh
Publication of CN113421730A publication Critical patent/CN113421730A/zh
Application granted granted Critical
Publication of CN113421730B publication Critical patent/CN113421730B/zh
Priority to US18/540,902 priority patent/US20240112837A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/103Adjustable resistors adjustable by mechanical pressure or force by using means responding to magnetic or electric fields, e.g. by addition of magnetisable or piezoelectric particles to the resistive material, or by an electromagnetic actuator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/218Input arrangements for video game devices characterised by their sensors, purposes or types using pressure sensors, e.g. generating a signal proportional to the pressure applied by the player
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/22Setup operations, e.g. calibration, key configuration or button assignment
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/14Adjustable resistors adjustable by auxiliary driving means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/0474Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
    • G05G2009/04748Position sensor for rotary movement, e.g. potentiometer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/0474Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
    • G05G2009/04755Magnetic sensor, e.g. hall generator, pick-up coil

Abstract

本发明提出一种自适应满行程检测电磁感应式电位器,包括:活动部,用于获取位置变化输入;永磁体,附着于活动部;磁感应传感器,用于感应永磁体的位置,并产生初始电位信号;以及,自适应满行程输出调节单元,用于采集初始电位信号并自适应地将初始电位信号调整为对应于活动部完整位置变化行程的实际电位信号。本发明可以实现对磁感应传感器采样范围的动态调整,在采样值超过预设范围值时,仍然能够实时自适应地更新预设采样范围,即电位器可根据实际使用情况动态地、自适应地修正输出特性,从而确保能够对满量程范围内的位置进行检测,提升了用户的使用体验,该设置方式无需对每一电位器进行单独校准,提高了生产效率。

Description

一种自适应满行程检测电磁感应式电位器
技术领域
本发明涉及电子技术领域,具体涉及一种自适应满行程输出电磁感应式电位器。
背景技术
电位器是可变电阻器的一种,通常是由电阻体与转动或滑动系统组成,即靠一个动触点在电阻体上移动,获得部分电压输出。传统电位器大多使用碳膜或者电阻丝结构,需要触点接触到碳膜上摩擦,来实现电位器不同位置检测。传统电位器的接触式结构,存在以下方面的不足:(1)碳膜磨损寿命短,生产误差大;(2)由于结触点的摩擦,位置变动时会有接触干扰杂波产生,如果作为音箱等调整音量使用,在调整时,就会有滋啦滋啦的干扰声。
电磁感应式电位器克服了上述不足,使用永磁体作为转动或者滑动部分组件,并使用线性霍尔传感器实时检测永磁体位置。电磁感应式电位器在调整位置时,无接触,无磨损,没有调整时的杂波干扰。申请号为CN201320158412.9的中国专利、申请号为CN201721701957.4的中国专利均公开了电磁感应式电位器方案。
然而,由于永磁体在产生中磁性一致性较差,应用于电磁感应式电位器时则存在输出范围不一致的问题,若对电磁感应式电位器的输出进行逐一校准,则需要耗费额外的时间、人力和设备成本,不便于大批量生产。针对这个问题,目前采用解决方式为:设定一个相对较小、安全的固定值范围对霍尔传感器的输出值进行检测。如图1所示,对应于同样的电位器行程,霍尔传感器的输出范围存在个体差异,在检测时采用一个相对保守的检测范围,并根据输出特性以该检测范围来限定电位器输出范围,超出检测范围的行程位置则直接输出最大值或最小值。这种方式又带来了一个新的问题,即电位器的输出范围仅能对应电位器的部分行程,当传感器输出不在检测范围内时,该处行程位置难以有效检测,无法实现满行程检测,影响了使用体验。
因此,如何克服电磁感应式电位器中永磁体磁性不一致性导致的输出范围差异,并实现电磁感应式电位器满行程检测成为亟待解决的技术问题。
发明内容
为了解决上述问题,本发明提出一种自适应满行程检测电磁感应式电位器,包括:
活动部,用于获取位置变化输入;
永磁体,附着于所述活动部;
磁感应传感器,用于感应所述永磁体的位置,并产生初始电位信号;以及,
自适应满行程输出调节单元,用于采集所述初始电位信号并自适应地将所述初始电位信号调整为对应于所述活动部完整位置变化行程的实际电位信号。
可选地,所述自适应满行程输出调节单元包括:
信息采集模块,用于采集所述初始电位信号,获得初始电位采样值;
信号输出模块,用于输出所述实际电位信号;
控制模块,用于执行如下操作步骤:
S1:读取预设电位采样范围,将所述预设电位采样范围的最小值作为实际电位采样范围的最小值,将所述预设电位采样范围的最大值作为所述实际电位采样范围的最大值;
S2:控制所述信息采集模块对磁感应传感器的输出进行采样,获取初始电位采样值;
S3:根据所述初始电位采样值与所述实际电位采样范围的比较结果,得出实际电位输出值,并控制所述信号输出模块输出所述实际电位信号;
S4:根据所述初始电位采样值与所述实际电位采样范围的比较结果,调整所述实际电位采样范围;
S5:返回执行步骤S2。
可选地,操作步骤S3具体为:
将所述初始电位采样值分别与所述实际电位采样范围的最大值和最小值进行比较,若所述初始电位采样值处于所述实际电位采样范围之内,则以所述初始电位采样值作为实际电位采样值;若所述初始电位采样值小于所述实际电位采样范围的最小值,则以所述实际电位采样范围的最小值作为所述实际电位采样值;若所述初始电位采样值大于所述实际电位采样范围的最大值,则以所述实际电位采样范围的最大值作为所述实际电位采样值;通过所述实际电位采样值、实际电位采样范围和实际电位输出范围确定实际电位输出值,控制所述信号输出模块根据所述实际电位输出值来输出所述实际电位信号。
可选地,所述实际电位采样范围的最大值减去所述实际电位采样范围的最小值之差作为实际电位采样范围幅度,所述实际电位输出范围的最大值减去所述实际电位输出范围的最小值之差作为实际电位输出范围幅度,所述实际电位采样值与所述实际电位采样范围幅度的比值等于所述实际电位输出值与所述实际电位输出范围幅度的比值。
可选地,操作步骤S4具体为:
将所述初始电位采样值分别与实际电位采样范围的最大值和最小值进行比较,若所述初始电位采样值处于所述实际电位采样范围之内,则不对所述实际电位采样范围进行调整;若所述初始电位采样值小于所述实际电位采样范围的最小值,则以所述初始电位采样值来更新所述实际电位采样范围的最小值;若所述初始电位采样值大于所述实际电位采样范围的最大值,则以所述初始电位采样值来更新所述实际电位采样范围的最大值。
可选地,所述活动部为转动件,用于获取转动角度位置变化输入。
可选地,所述活动部为滑动件,用于获取直线位移位置变化输入。
可选地,一种自适应满行程检测电磁感应式电位器还包括外壳,所述转动件相对于所述外壳转动。
可选地,一种自适应满行程检测电磁感应式电位器还包括输出端口,所述磁感应传感器和自适应满行程输出调节单元均嵌设计于所述外壳,所述输出端口连接所述自适应满行程输出调节单元并嵌设于所述外壳,所述实际电位信号从所述输出端口处输出。
可选地,所述实际电位信号为模拟信号或数字信号。
本发明的有益效果:
本发明通过自适应满行程输出调节单元设置预设采样范围,根据初始电位采样值与实际电位采样范围的比较结果来得出实际电位输出值,以及在得出实际电位输出值后根据初始电位采样值与实际电位采样范围的比较结果来调整实际电位采样范围,可以实现对磁感应传感器采样范围的动态调整,在初始电位采样值超过预设电位采样范围时,能够自适应、动态地更新采样范围,确保磁感应传感器输出范围内的数值均能被采集到,即保证电位器在整个行程范围内的任一位置都能被检测到。本发明通过预设采样范围、参数对比、使用当前值输出,以及自适应调整采样范围的步骤,在采样值超过预设范围值时,仍然能够实时自适应地更新预设采样范围,即电位器可根据实际使用情况动态地、自适应地修正输出特性,从而确保能够对满量程范围内的位置进行检测,提升了用户的使用体验,该设置方式无需对每一电位器进行单独校准,提高了生产效率。
附图说明
图1为现有电磁感应式电位器输出范围调节原理示意图。
图2为本发明实施例一结构示意图。
图3为本发明实施例二结构示意图。
图4为本发明实施例二分解示意图。
图5为本发明实施例三结构示意图。
图6为本发明实施例三分解示意图。
图7为本发明实施例四结构示意图。
具体实施方式
为了更加清楚、完整的说明本发明的技术方案,下面结合附图对本发明作进一步说明。
实施例一
请参见图1,本发明提出一种自适应满行程检测电磁感应式电位器100,包括:转动件101、永磁体102、磁感应传感器103和自适应满行程输出调节单元104。转动件101受到外力时绕中心转动,转动件101用于接收外部转动输入,电位器的输出可反映所输入的转动角度位置变化。永磁体102附着于转动件101,可跟随转动件101转动。磁感应传感器103用于感应永磁体102的位置,并产生初始电位信号。自适应满行程输出调节单元104用于采集初始电位信号,并自适应地将初始电位信号调整为对应于转动件101完整位置变化行程的实际电位信号。
本发明实施例提出的一种自适应满行程检测电磁感应式电位器100,可以克服传统电位器因接触点存在摩擦而导致的寿命短、干扰大的不足,通过自适应满行程输出调节单元的设置,能够实现电位器满行程位置检测。
进一步地,作为一种优选实施例,自适应满行程输出调节单元104包括:信息采集模块、信号输出模块和控制模块。信息采集模块用于采集初始电位信号,获得初始电位采样值。信号输出模块用于输出实际电位信号。
控制模块,用于执行如下操作步骤:
S1:读取预设电位采样范围,将预设电位采样范围的最小值作为实际电位采样范围的最小值,将预设电位采样范围的最大值作为实际电位采样范围的最大值;
S2:控制信息采集模块对磁感应传感器的输出进行采样,获取初始电位采样值;
S3:根据初始电位采样值与实际电位采样范围的比较结果,得出实际电位输出值,并控制信号输出模块输出实际电位信号;
S4:根据初始电位采样值与实际电位采样范围的比较结果,调整实际电位采样范围;
S5:返回执行步骤S2。
需要说明的是,在本实施例中,预设采样范围可存储于非易失性存储设备中,即在掉电情况下还能保持数据。预设采样范围是一个相对安全的参数范围,能够适应磁感应传感器103因个体差异所产生的输出范围差异。作为一种示例,预设采样范围的边界可设置于多个磁感应传感器103输出值的边界以内。
本发明实施例通过自适应满行程输出调节单元104设置预设采样范围,根据初始电位采样值与实际电位采样范围的比较结果来得出实际电位输出值,以及在得出实际电位输出值后根据初始电位采样值与实际电位采样范围的比较结果来调整实际电位采样范围,可以实现对磁感应传感器103采样范围的动态调整,在初始电位采样值超过预设电位采样范围时,能够自适应、动态地更新采样范围,确保磁感应传感器103输出范围内的数值均能被采集到,即保证电位器在整个行程范围内的任一位置都能被检测到。
在可选的实施例中,操作步骤S3具体为:
将初始电位采样值分别与实际电位采样范围的最大值和最小值进行比较,若初始电位采样值处于实际电位采样范围之内,则以初始电位采样值作为实际电位采样值;若初始电位采样值小于实际电位采样范围的最小值,则以实际电位采样范围的最小值作为实际电位采样值;若初始电位采样值大于实际电位采样范围的最大值,则以实际电位采样范围的最大值作为实际电位采样值;通过实际电位采样值、实际电位采样范围和实际电位输出范围确定实际电位输出值,控制信号输出模块根据实际电位输出值来输出实际电位信号。
在可选的实施例中,实际电位采样范围的最大值减去实际电位采样范围的最小值之差作为实际电位采样范围幅度,实际电位输出范围的最大值减去实际电位输出范围的最小值之差作为实际电位输出范围幅度,实际电位采样值与实际电位采样范围幅度的比值等于实际电位输出值与实际电位输出范围幅度的比值。通过上述约束关系,可以根据实际电位采样值、实际电位采样范围和实际电位输出范围来计算出实际电位输出值。
在可选的实施例中,操作步骤S4具体为:
将初始电位采样值分别与实际电位采样范围的最大值和最小值进行比较,若初始电位采样值处于实际电位采样范围之内,则不对实际电位采样范围进行调整;若初始电位采样值小于实际电位采样范围的最小值,则以初始电位采样值来更新实际电位采样范围的最小值;若初始电位采样值大于实际电位采样范围的最大值,则以初始电位采样值来更新实际电位采样范围的最大值。
以下通过一个示例说明本实施例的调整效果。以应用于游戏手柄摇杆的磁感应电位器采样为例,默认设置磁感应传感器的预设电位采样范围为0.7V-2.5V,当使用时发现磁感应传感器的初始电位采样值的范围到了0.5V-3V,会动态地把实际电位采样范围调整到0.5V-3V,直到断电,在重新上电后,恢复到默认范围0.7V-2.5V;若使用时磁感应传感器的初始电位采样值的范围为0.8V-2.4V时,则仍然使用默认的预设电位采样范围0.7V-2.5V;若使用时磁感应传感器的初始电位采样值的范围为0.8V-2.8V时,则会动态把实际电位采样范围调整到0.7-2.8V;若使用时磁感应传感器的初始电位采样值采样电压范围为0.5V-2.4V时,则会动态把实际电位采样范围调整到0.5V-2.5V。
本发明实施例通过预设采样范围、参数对比、使用当前值输出,以及自适应调整采样范围的步骤,在采样值超过预设范围值时,仍然能够实时自适应地更新预设采样范围,即电位器可根据实际使用情况动态地、自适应地修正输出特性,从而确保能够对满量程范围内的位置进行检测,提升了用户的使用体验,该设置方式无需对每一电位器进行单独校准,提高了生产效率。
在可选的实施例中,实际电位信号为模拟信号或数字信号。自适应满行程输出调节单元中的信号输出模块可将实际电位信号调整为模拟信号或数字信号进行输出。
在可选的实施例中,磁感应传感器103为霍尔传感器。
实施例二
参见图3、图4,本发明提出一种自适应满行程检测电磁感应式电位器200,包括外壳201、转动件202、永磁体203、磁感应传感器和自适应满行程输出调节单元。转动件202相对于外壳201转动,转动件202扣接于外壳201,永磁体203嵌设于转动件202。磁感应传感器和自适应满行程输出调节单元可另设于外壳201以外的外部电路中,自适应满行程输出调节单元可以为单元机、微处理器或DSP。磁感应传感器用于感应永磁体203的位置,并产生初始电位信号。自适应满行程输出调节单元用于采集初始电位信号,并自适应地将初始电位信号调整为对应于转动件202完整位置变化行程的实际电位信号。
本实施例中,自适应满行程输出调节单元的内部设置与实施例一的自适应满行程输出调节单元104相同,此处不再赘述。
实施例三
参见图5、图6,本发明提出一种自适应满行程检测电磁感应式电位器300,包括外壳301、转动件302、永磁体303、磁感应传感器、自适应满行程输出调节单元和输出端口304。转动件302相对于外壳301转动,转动件302扣接于外壳301,永磁体303嵌设于转动件302。磁感应传感器和自适应满行程输出调节单元均嵌设计于外壳301,输出端口304连接自适应满行程输出调节单元并嵌设于外壳。磁感应传感器用于感应永磁体303的位置,并产生初始电位信号。自适应满行程输出调节单元用于采集初始电位信号,并自适应地将初始电位信号调整为对应于转动件302完整位置变化行程的实际电位信号,实际电位信号从输出端口304处输出。
作为一种优选实施例,参见图6,磁感应传感器和自适应满行程输出调节单元封装为集成电路芯片305。
本实施例中,自适应满行程输出调节单元的内部设置与实施例一的自适应满行程输出调节单元104相同,此处不再赘述。
实施例四
参见图7,本发明提出一种自适应满行程检测电磁感应式电位器400,包括滑动件401、永磁体402、磁感应传感器403和自适应满行程输出调节单元404。滑动件401受到外力时在一定区域内沿直线滑动,滑动件401接收外部输入的直线位移位置变化,电位器的输出可反映所输入的直线位移位置变化。永磁体402附着于滑动件401,可跟随滑动件401移动。磁感应传感器403用于感应永磁体402的位置,并产生初始电位信号。自适应满行程输出调节单元404用于采集初始电位信号,并自适应地将初始电位信号调整为对应于滑动件401完整位置变化行程的实际电位信号。
本实施例中,自适应满行程输出调节单元404的内部设置与实施例一自适应满行程输出调节单元104相同,此处不再赘述。
当然,本发明还可有其它多种实施方式,基于本实施方式,本领域的普通技术人员在没有做出任何创造性劳动的前提下所获得其他实施方式,都属于本发明所保护的范围。

Claims (9)

1.一种自适应满行程检测电磁感应式电位器,其特征在于,包括:
活动部,用于获取位置变化输入;
永磁体,附着于所述活动部;
磁感应传感器,用于感应所述永磁体的位置,并产生初始电位信号;以及,
自适应满行程输出调节单元,用于采集所述初始电位信号并自适应地将所述初始电位信号调整为对应于所述活动部完整位置变化行程的实际电位信号;所述自适应满行程输出调节单元包括:
信息采集模块,用于采集所述初始电位信号,获得初始电位采样值;
信号输出模块,用于输出所述实际电位信号;
控制模块,用于执行如下操作步骤:
S1:读取预设电位采样范围,将所述预设电位采样范围的最小值作为实际电位采样范围的最小值,将所述预设电位采样范围的最大值作为所述实际电位采样范围的最大值;
S2:控制所述信息采集模块对磁感应传感器的输出进行采样,获取初始电位采样值;
S3:根据所述初始电位采样值与所述实际电位采样范围的比较结果,得出实际电位输出值,并控制所述信号输出模块输出所述实际电位信号;
S4:根据所述初始电位采样值与所述实际电位采样范围的比较结果,调整所述实际电位采样范围;
S5:返回执行步骤S2。
2.如权利要求1所述的一种自适应满行程检测电磁感应式电位器,其特征在于,操作步骤S3具体为:
将所述初始电位采样值分别与所述实际电位采样范围的最大值和最小值进行比较,若所述初始电位采样值处于所述实际电位采样范围之内,则以所述初始电位采样值作为实际电位采样值;若所述初始电位采样值小于所述实际电位采样范围的最小值,则以所述实际电位采样范围的最小值作为所述实际电位采样值;若所述初始电位采样值大于所述实际电位采样范围的最大值,则以所述实际电位采样范围的最大值作为所述实际电位采样值;通过所述实际电位采样值、实际电位采样范围和实际电位输出范围确定实际电位输出值,控制所述信号输出模块根据所述实际电位输出值来输出所述实际电位信号。
3.如权利要求2所述的一种自适应满行程检测电磁感应式电位器,其特征在于,所述实际电位采样范围的最大值减去所述实际电位采样范围的最小值之差作为实际电位采样范围幅度,所述实际电位输出范围的最大值减去所述实际电位输出范围的最小值之差作为实际电位输出范围幅度,所述实际电位采样值与所述实际电位采样范围幅度的比值等于所述实际电位输出值与所述实际电位输出范围幅度的比值。
4.如权利要求1所述的一种自适应满行程检测电磁感应式电位器,其特征在于,操作步骤S4具体为:
将所述初始电位采样值分别与实际电位采样范围的最大值和最小值进行比较,若所述初始电位采样值处于所述实际电位采样范围之内,则不对所述实际电位采样范围进行调整;若所述初始电位采样值小于所述实际电位采样范围的最小值,则以所述初始电位采样值来更新所述实际电位采样范围的最小值;若所述初始电位采样值大于所述实际电位采样范围的最大值,则以所述初始电位采样值来更新所述实际电位采样范围的最大值。
5.如权利要求1所述的一种自适应满行程检测电磁感应式电位器,其特征在于,所述活动部为转动件,用于获取转动角度位置变化输入。
6.如权利要求1所述的一种自适应满行程检测电磁感应式电位器,其特征在于,所述活动部为滑动件,用于获取直线位移位置变化输入。
7.如权利要求5所述的一种自适应满行程检测电磁感应式电位器,其特征在于,还包括外壳,所述转动件相对于所述外壳转动。
8.如权利要求7所述的一种自适应满行程检测电磁感应式电位器,其特征在于,还包括输出端口,所述磁感应传感器和自适应满行程输出调节单元均嵌设计于所述外壳,所述输出端口连接所述自适应满行程输出调节单元并嵌设于所述外壳,所述实际电位信号从所述输出端口处输出。
9.如权利要求1所述的一种自适应满行程检测电磁感应式电位器,其特征在于,所述实际电位信号为模拟信号或数字信号。
CN202110678873.8A 2021-06-18 2021-06-18 一种自适应满行程检测电磁感应式电位器 Active CN113421730B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110678873.8A CN113421730B (zh) 2021-06-18 2021-06-18 一种自适应满行程检测电磁感应式电位器
EP21945591.2A EP4358102A1 (en) 2021-06-18 2021-06-25 Electromagnetic induction type potentiometer for self-adaptive full stroke detection
PCT/CN2021/102366 WO2022262008A1 (zh) 2021-06-18 2021-06-25 一种自适应满行程检测电磁感应式电位器
US18/540,902 US20240112837A1 (en) 2021-06-18 2023-12-15 Electromagnetic induction potentiometer adaptive for full-stroke detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110678873.8A CN113421730B (zh) 2021-06-18 2021-06-18 一种自适应满行程检测电磁感应式电位器

Publications (2)

Publication Number Publication Date
CN113421730A CN113421730A (zh) 2021-09-21
CN113421730B true CN113421730B (zh) 2023-03-31

Family

ID=77789069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110678873.8A Active CN113421730B (zh) 2021-06-18 2021-06-18 一种自适应满行程检测电磁感应式电位器

Country Status (4)

Country Link
US (1) US20240112837A1 (zh)
EP (1) EP4358102A1 (zh)
CN (1) CN113421730B (zh)
WO (1) WO2022262008A1 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE665349A (zh) * 1965-06-11 1965-10-01
US6109021A (en) * 1998-07-22 2000-08-29 General Electric Company Vectoring nozzle calibration
DE202005010424U1 (de) * 2005-06-30 2005-12-29 Malzahn, Heinz Herbert Kontaktloser Abgriff auf Widerstandsflächen (Potenziometer) durch Permanentmagnete
US7936144B2 (en) * 2008-03-06 2011-05-03 Allegro Microsystems, Inc. Self-calibration algorithms in a small motor driver IC with an integrated position sensor
CN102496433B (zh) * 2011-11-23 2015-01-28 蒋勤舟 电子电位器及其校准方法
JP2016136837A (ja) * 2016-04-11 2016-07-28 旭化成エレクトロニクス株式会社 線形運動デバイスの制御装置及びその制御方法
CN107086100B (zh) * 2017-05-04 2018-12-18 湖南科技大学 磁敏无触点电位器
CN207781312U (zh) * 2017-12-08 2018-08-28 上海思博机械电气有限公司 一种非接触直线位移电位器
CN110989615B (zh) * 2019-12-20 2023-07-18 潍柴动力股份有限公司 一种用于农用车辆的控制方法及装置
CN111532252B (zh) * 2020-05-07 2022-01-18 福建盛海智能科技有限公司 一种变速箱的控制方法及终端

Also Published As

Publication number Publication date
US20240112837A1 (en) 2024-04-04
WO2022262008A1 (zh) 2022-12-22
EP4358102A1 (en) 2024-04-24
CN113421730A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
US6198275B1 (en) Electronic circuit for automatic DC offset compensation for a linear displacement sensor
US4893502A (en) Angle sensor for throttle valve of internal combustion engine
EP0830563A1 (en) Smart linear angular position sensor
JP3218246B2 (ja) 小型電子位置センサ
JP6758436B2 (ja) マルチターンアブソリュートエンコーダ、エンコード方法、コントローラ及び記憶媒体
US6703827B1 (en) Electronic circuit for automatic DC offset compensation for a linear displacement sensor
JP2009082731A (ja) 生体の抵抗の変化を測定し指示するシステム
US7184564B2 (en) Multi-parameter hearing aid
US10429208B2 (en) Position sensor device and method for providing a filtered position signal
CN110463020A (zh) 电机的初始机械角度的获取方法及系统
US5644225A (en) Method for calibrating an angular position sensor
US5665897A (en) Method of calibrating and zeroing stepper motor gauges
CN113421730B (zh) 一种自适应满行程检测电磁感应式电位器
US6813361B1 (en) Non-contact audio fader control system and method
US7391206B2 (en) Magnetic detection circuit and encoder
CN112146687A (zh) 偏移校正装置和位置测量装置
CN107643503A (zh) 一种电位器的校准检测电路及方法
US8626962B2 (en) Tilt and trim sensor apparatus
KR102234612B1 (ko) 근접 센서에서의 환경 보상 방법 및 개선된 환경 보상 성능을 가진 근접 센서
CA2320484A1 (en) Electronic circuit for automatic compensation of a sensor output signal
JP3777096B2 (ja) 回転位置センサ
WO2022227113A1 (zh) 一种模拟量传感器的动态采样方法及装置
CN109283355A (zh) 基于角度的速度传感器设备
JP2006208242A (ja) 液面検出装置とその出力調整方法
KR101177930B1 (ko) 자기 회전식 엔코더의 노브 회전량 산출 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant