CN113418975A - 一种免电沉积技术的金属离子溶出伏安检测新方法 - Google Patents

一种免电沉积技术的金属离子溶出伏安检测新方法 Download PDF

Info

Publication number
CN113418975A
CN113418975A CN202110773889.7A CN202110773889A CN113418975A CN 113418975 A CN113418975 A CN 113418975A CN 202110773889 A CN202110773889 A CN 202110773889A CN 113418975 A CN113418975 A CN 113418975A
Authority
CN
China
Prior art keywords
mxene
electrode
metal ion
detection method
novel metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110773889.7A
Other languages
English (en)
Inventor
易银辉
朱刚兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202110773889.7A priority Critical patent/CN113418975A/zh
Publication of CN113418975A publication Critical patent/CN113418975A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明属于农业、环境及化学分析领域,公开了一种免电沉积技术的金属离子溶出伏安检测新方法,通过将MXene基纳米材料修饰电极应用于重金属的电化学传感研究。通过优化实验条件,利用MXene基纳米材对重金属的自还原吸附性能,实现对重金属的快速高灵敏检测。本发明具有简单、经济、灵敏度高、操作方便、易于现场检测的特点。

Description

一种免电沉积技术的金属离子溶出伏安检测新方法
技术领域
本发明属于农业、环境及化学分析领域,特别是一种快速测定金属离子的溶出伏安检测法。
背景技术
重金属通常是指相对原子质量在63.5和200.6之间,且相对密度大于或等于4.5g/cm3的金属元素,目前约发现45种。重金属是最危险的污染物之一,具有持久性、高毒性。因此,发展重金属含量的有效分析方法具有非常重大的意义。目前,常用的重金属电化学检测技术通常采用溶出伏安法,其一般包含两个步骤:(a)电沉积和(b)溶出测试。这两个步骤均需要在相应电化学仪器协助下完成,其电沉积步骤是为了将金属离子经电化学还原或氧化程序形成零价金属富集到电极表面。两个步骤均需在电化学仪器协助下完成无疑使得检测程序较为复杂耗时,不利于现场实时检测。
MXene材料是一类具有二维层状结构的金属碳/氮化物,许多MXene基(如碳化钛)纳米材料对多种重金属具有自还原性能,能在无需外加因素下使得重金属自还原到MXene材料表面,即在无需电沉积步骤下可实现对重金属的自还原富集,基于此,在电化学仪器协助下只需溶出步骤一个程序即可实现对重金属的检测。
发明内容
本发明的目的是在于提供一种免电沉积技术的金属离子溶出伏安检测新方法。该方法依次通过将MXene基材料修饰到电极表面、重金属自还原富集和溶出伏安测定,最终实现对重金属的高灵敏检测。
本发明是这样来实现的,其步骤为:
(1)将MXene基材料分散于溶剂中,超声均匀得悬浮液;
(2)移取步骤(1)所得的悬浮液滴加至电极表面,烘干,得到MXene基材料修饰电极;
(3)将重金属待测液的pH调节至5~7;
(4)将步骤(2)所得的MXene基材料修饰电极插入步骤(3)调节pH后的重金属待测液中,自还原富集1-30min后,采用脉冲伏安法进行浓度测定。
步骤(1)中,所述MXene基材料与溶剂的质量比为1:500-1:3000。
步骤(1)中,所述溶剂为水、乙醇或N,N-二甲基甲酰胺。
步骤(2)中,所述电极表面MXene基材料的修饰量为10-60μg/cm2
步骤(2)中,所述电极为玻碳电极或丝网印刷电极。
本发明的有益效果为:
本发明中MXene基纳米材料对重金属的自还原和吸附富集作用,实现了对重金属离子无需电沉积步骤的溶出伏安检测。
附图说明
图1为本发明所得Ti3C2Tx MXene纳米片的扫描电镜图。
图2为本发明所得Ti3C2Tx MXene纳米带的扫描电镜图。
图3为本发明实施例1检测汞离子的浓度校正曲线图。
具体实施方式
下面结合实施例以及说明书附图对本发明做进一步详细说明,但本发明的保护范围并不限于此。
实施例1:
(1)将1.0mg Ti3C2Tx MXene纳米带/碳纳米管(Ti3C2Tx NR/CNTs)分散于2.0mL水中并超声搅拌20分钟。
(2)用移液枪移取(1)步悬浮液,滴加至玻碳电极表面,红外灯烘干,得到Ti3C2TxNR/CNTs电极,电极表面复合物修饰量为50μg/cm2.。
(3)将含有待测物汞离子的溶液调pH值为6.0。
(4)将第(2)步所得的修饰电极插入步骤(3)调节pH后的待测液中,自还原富集10min后,采用差分脉冲伏安法进行浓度测定。
图1和图2分别为通过该实施例制备得到的Ti3C2Tx MXene纳米片(Ti3C2Tx NS)和Ti3C2Tx NR扫描电镜图。
图3为通过该实施例制备的Ti3C2Tx NR/CNTs对汞离子的电化学检测的浓度校正曲线图,线性范围是0.01-7.0μM检测限为2.0nM。
实施例2:
(1)将1.0mg Ti3C2Tx NS分散于2mL乙醇中,超声使其分散均匀。
(2)用移液枪移取(1)步悬浮液,滴加至玻碳电极表面,红外灯烘干,得到Ti3C2TxNS修饰电极,电极表面复合物修饰量为40μg/cm2。
(3)将含有待测物镉离子的溶液调pH值为7.0。
(4)将第(2)步所得的修饰电极插入步骤(3)调节pH后的待测液中,自还原富集10min后,采用脉冲伏安法进行浓度测定。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (5)

1.一种免电沉积技术的金属离子溶出伏安检测新方法,其特征在于,包括如下步骤:
(1)将MXene基材料分散于溶剂中,超声均匀得悬浮液;
(2)移取步骤(1)所得的悬浮液滴加至电极表面,烘干,得到MXene基材料修饰电极;
(3)将重金属待测液的pH调节至5~7;
(4)将步骤(2)所得的MXene基材料修饰电极插入步骤(3)调节pH后的重金属待测液中,自还原富集1-30min后,采用脉冲伏安法进行浓度测定。
2.如权利要求1所述的免电沉积技术的金属离子溶出伏安检测新方法,其特征在于,步骤(1)中,所述MXene基材料与溶剂的质量比为1:500-1:3000。
3.如权利要求1所述的免电沉积技术的金属离子溶出伏安检测新方法,其特征在于,步骤(1)中,所述溶剂为水、乙醇或N,N-二甲基甲酰胺。
4.如权利要求1所述的免电沉积技术的金属离子溶出伏安检测新方法,其特征在于,步骤(2)中,所述电极表面MXene基材料的修饰量为10-60μg/cm2
5.如权利要求1所述的免电沉积技术的金属离子溶出伏安检测新方法,其特征在于,步骤(2)中,所述电极为玻碳电极或丝网印刷电极。
CN202110773889.7A 2021-07-08 2021-07-08 一种免电沉积技术的金属离子溶出伏安检测新方法 Pending CN113418975A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110773889.7A CN113418975A (zh) 2021-07-08 2021-07-08 一种免电沉积技术的金属离子溶出伏安检测新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110773889.7A CN113418975A (zh) 2021-07-08 2021-07-08 一种免电沉积技术的金属离子溶出伏安检测新方法

Publications (1)

Publication Number Publication Date
CN113418975A true CN113418975A (zh) 2021-09-21

Family

ID=77720516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110773889.7A Pending CN113418975A (zh) 2021-07-08 2021-07-08 一种免电沉积技术的金属离子溶出伏安检测新方法

Country Status (1)

Country Link
CN (1) CN113418975A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018148A (zh) * 2019-01-08 2019-07-16 中国科学院金属研究所 一种表面增强拉曼试纸的制备方法
CN110045121A (zh) * 2019-04-30 2019-07-23 山东理工大学 一种基于空心立方体状的三金属纳米复合材料免疫传感器的制备方法及应用
CN111933351A (zh) * 2020-07-27 2020-11-13 邵峥业 一种碳纳米管复合透明导电薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018148A (zh) * 2019-01-08 2019-07-16 中国科学院金属研究所 一种表面增强拉曼试纸的制备方法
CN110045121A (zh) * 2019-04-30 2019-07-23 山东理工大学 一种基于空心立方体状的三金属纳米复合材料免疫传感器的制备方法及应用
CN111933351A (zh) * 2020-07-27 2020-11-13 邵峥业 一种碳纳米管复合透明导电薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YING HE 等: "Preparation and Application of Bismuth/MXene Nano-Composite as Electrochemical Sensor for Heavy Metal Ions Detection", 《NANOMATERIALS》 *

Similar Documents

Publication Publication Date Title
Liu et al. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection
Li et al. Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A
Xuan et al. A fully integrated and miniaturized heavy-metal-detection sensor based on micro-patterned reduced graphene oxide
Wu et al. Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode
Lin et al. Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes
Zhang et al. An electrochemical non-enzymatic immunosensor for ultrasensitive detection of microcystin-LR using carbon nanofibers as the matrix
Zhao et al. Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode
Wu et al. Comparative study of graphene nanosheet-and multiwall carbon nanotube-based electrochemical sensor for the sensitive detection of cadmium
Wang et al. Green preparation of chlorine-doped graphene and its application in electrochemical sensor for chloramphenicol detection
Gao et al. Polydopamine/graphene/MnO2 composite-based electrochemical sensor for in situ determination of free tryptophan in plants
Pahlavan et al. Application of CdO nanoparticle ionic liquid modified carbon paste electrode as a high sensitive biosensor for square wave voltammetric determination of NADH
Sun et al. Simultaneous electrochemical determination of guanosine and adenosine with graphene–ZrO2 nanocomposite modified carbon ionic liquid electrode
Lu et al. A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead (II)
Tang et al. A sensitive acetaminophen sensor based on Co metal–organic framework (ZIF-67) and macroporous carbon composite
Chicharro et al. Adsorptive Stripping Voltammetric Determination of Amitrole at a Multi‐Wall Carbon Nanotubes Paste Electdrode
Liu et al. Simultaneous determination of orange G and orange II in industrial wastewater by a novel Fe2O3/MWCNTs-COOH/OP modified carbon paste electrode
Lv et al. Voltammetric simultaneous ion flux measurements platform for Cu2+, Pb2+ and Hg2+ near rice root surface: Utilizing carbon nitride heterojunction film modified carbon fiber microelectrode
Qiu et al. A low-cost wireless intelligent portable sensor based on disposable laser-induced porous graphene flexible electrode decorated by gold nanoshells for rapid detection of sulfonamides in aquatic products
Wei et al. Facile and green fabrication of electrochemical sensor based on poly (glutamic acid) and carboxylated carbon nanosheets for the sensitive simultaneous detection of Cd (II) and Pb (II)
Chen et al. Electrochemical sensing platform based on tris (2, 2′-bipyridyl) cobalt (III) and multiwall carbon nanotubes–Nafion composite for immunoassay of carcinoma antigen-125
Izadkhah et al. Voltammetric determination of copper in water samples using a Schiff base/carbon nanotube-modified carbon paste electrode
Su et al. Multilayer structured amperometric immunosensor built by self-assembly of a redox multi-wall carbon nanotube composite
Sun et al. Electrochemical behaviors of metol on hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate-modified electrode
Wang et al. A portable screen-printing electrode modified by COFDATA-TP with abundant carboxyl and secondary amine groups for simultaneous detection of Hg2+, Cu2+, Pb2+, and Cd2+
Mehdinia et al. Application of self-assembled monolayers in the preparation of solid-phase microextraction coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210921

RJ01 Rejection of invention patent application after publication