CN113418499A - 一种旋转飞行器滚转角解算方法及系统 - Google Patents

一种旋转飞行器滚转角解算方法及系统 Download PDF

Info

Publication number
CN113418499A
CN113418499A CN202110523676.9A CN202110523676A CN113418499A CN 113418499 A CN113418499 A CN 113418499A CN 202110523676 A CN202110523676 A CN 202110523676A CN 113418499 A CN113418499 A CN 113418499A
Authority
CN
China
Prior art keywords
angle
axis
aircraft
geomagnetic
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110523676.9A
Other languages
English (en)
Other versions
CN113418499B (zh
Inventor
安亮亮
周胜洪
魏培平
张玉国
陈晓智
郭建
曲春凯
王翀
林治浩
陶楠楠
王雪松
侯现钦
曹睿
周子坤
刘智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO JARI AUTOMATION CO Ltd
Original Assignee
QINGDAO JARI AUTOMATION CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO JARI AUTOMATION CO Ltd filed Critical QINGDAO JARI AUTOMATION CO Ltd
Priority to CN202110523676.9A priority Critical patent/CN113418499B/zh
Publication of CN113418499A publication Critical patent/CN113418499A/zh
Application granted granted Critical
Publication of CN113418499B publication Critical patent/CN113418499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles

Abstract

本发明公开了一种旋转飞行器滚转角解算方法及系统,通过建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角与俯仰角、偏航角、磁偏角、磁倾角和航向角的关系方程为观测方程,以地磁方位角的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角和偏航角;然后解算地磁矢量基准角;最后解算出高精度的滚转角;本发明的旋转飞行器滚转角解算方法及系统,提高了滚转角的解算精度。

Description

一种旋转飞行器滚转角解算方法及系统
技术领域
本发明属于滚转角测算技术领域,具体地说,是涉及一种旋转飞行器滚转角解算方法及系统。
背景技术
随着飞行器制导化进程的推进,滚转角的实时准确测量技术成了制导或修正控制的关键技术之一,尤其是对于一些高旋高动态的旋转智能飞行器,滚转角的准确测量已经成了核心瓶颈技术之一。
目前,关于旋转飞行器滚转角测量的研究有很多,各有特色,主流测量方法包括卫星导航接收机测量、惯性导航器件测量、地磁传感器测量、太阳方位角测量以及组合测量等方法。在这些方法中,地磁传感器因其低成本、误差不累积、灵敏度高等优势,在完成误差补偿标定之后,非常适合测量低成本旋转飞行器的滚转角。
地磁传感器测量滚转角的传统方法存在着较大的局限,主要思路是根据坐标转移矩阵推导滚转角的解算公式,由于公式中存在着俯仰角和偏航角两个未知参数,传统方法会采用两个横向速度角(即速度高低角和速度方位角)分别代替两个横向姿态角(即俯仰角和偏航角)的方法。然而,通过大量实验发现,在实际的旋转飞行器的飞行轨迹中,初始段和末段会由于初始扰动、气流等原因出现纵轴(飞行器中轴线)剧烈摆动的现象,姿态角与速度角的差值较大,可以达到几度,见图1所述。图1中是一组实测轨迹的地磁方位角变化规律图,它反映出了旋转飞行器在空中的姿态摆动规律。飞行轨迹的初始段和末段,摆动剧烈,摆动幅值较大,姿态角与速度角之间存在较大的差值。若采用速度角代替姿态角来解算滚转角,则在初始段和末段会产生较大的误差。
发明内容
本发明提供了一种旋转飞行器滚转角解算方法,提高了滚转角的解算精度。
为解决上述技术问题,本发明采用下述技术方案予以实现:
一种旋转飞行器滚转角解算方法,包括:
(1)建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure BDA0003065009520000021
偏航角
Figure BDA0003065009520000022
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure BDA0003065009520000023
和偏航角
Figure BDA0003065009520000024
(2)解算地磁矢量基准角γ0
Figure BDA0003065009520000025
Figure BDA0003065009520000026
Figure BDA0003065009520000027
其中,Tη、Tζ分别为地磁强度矢量
Figure BDA00030650095200000211
在弹轴坐标系Oξηζ的Oη轴、Oζ轴的投影分量;在弹轴坐标系Oξηζ中,原点O为旋转飞行器的质心,Oξ轴沿旋转飞行器中轴线方向向前为正,Oη轴位于包含飞行器中轴线的铅垂面内且垂直于Oξ轴向上为正,按右手法则,Oζ轴与Oξη面垂直且向右为正;
TN、TE、TD分别为地磁强度矢量
Figure BDA0003065009520000028
在北东地地理坐标系的三个分量;
(3)解算滚转角γ:
γ=γ0S;其中,φS为自转角,
Figure BDA0003065009520000029
Tby、Tbz分别为地磁强度矢量
Figure BDA00030650095200000210
在载体坐标系OX1Y1Z1的OY1轴、OZ1轴的投影分量;在载体坐标系OX1Y1Z1中,原点O为旋转飞行器的质心,OX1轴沿旋转飞行器中轴线方向向前为正,OY1轴和OZ1轴位于垂直于旋转飞行器中轴线的赤道面内并互相垂直。
进一步的,在所述解算滚转角之后,还包括下述步骤:对滚转角γ进行小波滤波。
又进一步的,所述绕飞行器质心动力学方程组为:
Figure BDA0003065009520000031
其中,ωη、ωζ、ωξ分别为旋转飞行器的角速率在弹轴坐标系的η、ζ、ξ轴的投影分量;v为飞行器的飞行速度,vx、vy、vz为v在地面坐标系的三个分量;A为赤道转动惯量,C为极转动惯量;θa为速度高低角,ψ2为速度方向角;
Figure BDA0003065009520000032
Figure BDA0003065009520000033
kzz=ρSldm′zz/2A,ky=ρSldm″y/2A;ρ为空气密度,S为飞行器横截面积,l为飞行器长度,d为飞行器直径;m′z为静力矩系数导数,m′zz为赤道阻尼力矩系数导数,m″y为马格努斯力矩系数的二阶导数。
更进一步的,所述地磁方位角σM与俯仰角
Figure BDA0003065009520000034
偏航角
Figure BDA0003065009520000035
磁偏角D、磁倾角I和航向角αN的关系方程为:
Figure BDA0003065009520000036
再进一步的,地磁方位角σM的实际测量值通过如下公式求得:
Figure BDA0003065009520000037
Tbx、Tby、Tbz分别由安装在旋转飞行器上的地磁传感器的三个敏感轴Sx、Sy、Sz实际测得;三个敏感轴Sx、Sy、Sz的方向分别对应载体坐标系OX1Y1Z1的OX1轴、OY1轴、OZ1轴的方向。
一种旋转飞行器滚转角解算系统,包括:
俯仰角和偏航角估计模块,用于建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure BDA0003065009520000041
偏航角
Figure BDA0003065009520000042
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure BDA0003065009520000043
和偏航角
Figure BDA0003065009520000044
基准角解算模块,用于解算地磁矢量基准角γ0
Figure BDA0003065009520000045
Figure BDA0003065009520000046
Figure BDA0003065009520000047
其中,Tη、Tζ分别为地磁强度矢量
Figure BDA0003065009520000048
在弹轴坐标系Oξηζ的Oη轴、Oζ轴的投影分量;在弹轴坐标系Oξηζ中,原点O为旋转飞行器的质心,Oξ轴沿旋转飞行器中轴线方向向前为正,Oη轴位于包含飞行器中轴线的铅垂面内且垂直于Oξ轴向上为正,按右手法则,Oζ轴与Oξη面垂直且向右为正;TN、TE、TD分别为地磁强度矢量
Figure BDA0003065009520000049
在北东地地理坐标系的三个分量;
自转角解算模块,用于解算自转角φS
Figure BDA00030650095200000410
Tby、Tbz分别为地磁强度矢量
Figure BDA00030650095200000411
在载体坐标系OX1Y1Z1的OY1轴、OZ1轴的投影分量;在载体坐标系OX1Y1Z1中,原点O为旋转飞行器的质心,OX1轴沿旋转飞行器中轴线方向向前为正,OY1轴和OZ1轴位于垂直于旋转飞行器中轴线的赤道面内并互相垂直;
滚转角计算模块,用于解算滚转角γ;γ=γ0S
进一步的,还包括滤波模块,用于对滚转角γ进行小波滤波。
又进一步的,所述绕飞行器质心动力学方程组为:
Figure BDA0003065009520000051
其中,ωη、ωζ、ωξ分别为旋转飞行器的角速率在弹轴坐标系的η、ζ、ξ轴的投影分量;v为飞行器的飞行速度,vx、vy、vz为v在地面坐标系的三个分量;A为赤道转动惯量,C为极转动惯量;θa为速度高低角,ψ2为速度方向角;
Figure BDA0003065009520000052
Figure BDA0003065009520000053
kzz=ρSldm′zz/2A,ky=ρSldm″y/2A;ρ为空气密度,S为飞行器横截面积,l为飞行器长度,d为飞行器直径;m′z为静力矩系数导数,m′zz为赤道阻尼力矩系数导数,m″y为马格努斯力矩系数的二阶导数。
更进一步的,所述地磁方位角σM与俯仰角
Figure BDA0003065009520000054
偏航角
Figure BDA0003065009520000055
磁偏角D、磁倾角I和航向角αN的关系方程为:
Figure BDA0003065009520000056
再进一步的,地磁方位角σM的实际测量值通过如下公式求得:
Figure BDA0003065009520000057
Tbx、Tby、Tbz分别由安装在旋转飞行器上的地磁传感器的三个敏感轴Sx、Sy、Sz实际测得;三个敏感轴Sx、Sy、Sz的方向分别对应载体坐标系OX1Y1Z1的OX1轴、OY1轴、OZ1轴的方向。
与现有技术相比,本发明的优点和积极效果是:本发明的旋转飞行器滚转角解算方法及系统,通过建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure BDA0003065009520000061
偏航角
Figure BDA0003065009520000062
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure BDA0003065009520000063
和偏航角
Figure BDA0003065009520000064
然后解算地磁矢量基准角γ0;最后解算出高精度的滚转角γ;本实施例的解算方法,提高了滚转角的解算精度。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是飞行器实测轨迹的地磁方位角变化规律图;
图2是N系与V系的转动关系;图3是V系与A2系的转动关系;
图4是三轴正交地磁传感器的三个敏感轴的示意图;
图5是地磁方位角与俯仰角、偏航角、磁偏角、磁倾角、航向角的关系图;
图6是地磁强度矢量
Figure BDA0003065009520000065
在载体坐标系的投影分量示意图;
图7是地磁强度矢量
Figure BDA0003065009520000066
在弹轴坐标系的投影分量示意图;
图8是仿真轨迹的速度角θa、ψ2与姿态角
Figure BDA0003065009520000067
的仿真图;
图9是采用姿态角
Figure BDA0003065009520000068
解算滚转角的误差仿真图;
图10是采用速度角θa、ψ2解算滚转角的误差仿真图;
图11a是全轨迹俯仰角估计结果仿真图;图11b是全轨迹偏航角估计结果仿真图;图11c是俯仰角估计误差仿真图;图11d是偏航角估计误差仿真图;
图12是俯仰角和偏航角的真值加入噪声后的姿态角估计值误差仿真图;
图13是加入噪声后的速度角θa、ψ2和姿态角
Figure BDA0003065009520000069
的仿真图;
图14是采用加噪声速度角和姿态角解算滚转角的误差仿真图;
图15是采用小波滤波之后的滚转角解算误差仿真图;
图16是本发明提出的飞行器滚转角解算方法的一个实施例的流程图;
图17是本发明提出的飞行器滚转角解算系统的一个实施例的结构框图。
具体实施方式
针对目前滚转角解算方法解算出的滚转角误差较大、精度较低的问题,本发明提出了一种旋转飞行器滚转角解算方法及系统,提高了滚转角的解算精度。为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和实施例,对发明的旋转飞行器滚转角解算方法及系统进行详细说明。
实施例一、
本实施例的旋转飞行器滚转角解算方法,主要包括下述步骤,如图16所示。
步骤S1:建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure BDA0003065009520000071
偏航角
Figure BDA0003065009520000072
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波(EKF)估计俯仰角
Figure BDA0003065009520000073
和偏航角
Figure BDA0003065009520000074
首先,需要建立以下坐标系:
(1)地面坐标系O1XYZ:地面坐标系固连于地面,其原点O1为发射炮口断面的中心点;O1X轴沿水平线指向射击方向,与北向呈一个夹角,即航向角αN;O1Y轴位于包含发射炮中轴线的铅垂面内,向上为正;O1Z轴与O1Y、O1X轴构成右手法则向右为正,简称E系。
(2)基准坐标系OXNYNZN:基准坐标系OXNYNZN简称N系。基准坐标系OXNYNZN为右手坐标系,向前上右为正。基准坐标系是由地面坐标系平移到飞行器质心而成,原点O为旋转飞行器的质心,OXN轴指向射击方向,OYN轴垂直于水平面向上为正,根据右手法则,OZN轴与OXNYN面垂直且向右为正。
(3)弹轴坐标系Oξηζ:无滚动坐标系,随着旋转飞行器摆动但不滚转,简称A1系。原点O为旋转飞行器的质心,其Oξ轴沿旋转飞行器纵轴(飞行器中轴线)方向向前为正,Oη轴位于包含飞行器中轴线的铅垂面内且垂直于Oξ轴向上为正,按右手法则,Oζ轴与Oξη面垂直且向右为正。
(4)载体坐标系OX1Y1Z1:固连在旋转飞行器上,随着旋转飞行器旋转,简称B系。这个坐标系是随动系,随着飞行器旋转而旋转。原点O为旋转飞行器的质心,OX1轴沿旋转飞行器纵轴(飞行器中轴线)方向向前为正,OY1轴和OZ1轴位于垂直于旋转飞行器中轴线的赤道面内并互相垂直。
(5)速度坐标系OX2Y2Z2:简称V系。原点O为旋转飞行器的质心,OX2轴与旋转飞行器质心的速度方向一致,OY2轴位于包含旋转飞行器质心的速度矢量的铅垂平面内,垂直于速度矢量方向且向上为正,按右手法则,OZ2轴与OX2Y2面垂直且向右为正。V系是由N系经两次转动而来:第一次是N系绕OZN轴逆时针旋转θa角度到达OX′2Y2ZN位置,第二次是OX′2Y2ZN绕OY2轴顺时针旋转ψ2角,转动关系如附图2所示。其中,θa称为速度高低角,ψ2为速度方向角。
(6)第二弹轴坐标系Oξη2ζ2:简称A2系。原点O为旋转飞行器的质心,Oξ轴沿旋转飞行器纵轴(飞行器中轴线)方向向前为正。A2系由V系经两次旋转而来:第一次是OX2Y2Z2绕OZ2轴逆时针旋转δ1角度到达Oξ″η2Z2位置,第二次是Oξ″η2Z2绕Oη2轴顺时针旋转δ2角度,转动关系如附图3所示。其中,δ1称为高低攻角,δ2为方向攻角。
(7)北东地地理坐标系ONED:用来描述地磁矢量,简称E系。原点O为旋转飞行器的质心,ON轴指向地球北;OE轴指向地球东;OD轴垂直于地球表面并指向下。地磁强度矢量
Figure BDA0003065009520000081
在北东地地理坐标系的三个轴的分量分别为TN、TE和TD
然后,还需要在旋转飞行器上安装三轴正交地磁传感器。旋转飞行器的外壳由无磁合金构成,三轴正交地磁传感器安装在外壳内,如附图4所示,三轴正交地磁传感器的三个敏感轴分别为Sx、Sy和Sz,三个敏感轴的方向分别对应载体坐标系OX1Y1Z1(B系)的OX1轴、OY1轴、OZ1轴的方向。
下面,对俯仰角
Figure BDA0003065009520000082
和偏航角
Figure BDA0003065009520000083
进行估计。
飞行器在地磁场中飞行时,其相对于地磁场矢量的瞬时姿态可以由地磁方位角σM表示,而地磁方位角σM又可以由俯仰角
Figure BDA0003065009520000084
偏航角
Figure BDA0003065009520000085
磁偏角D、磁倾角I和航向角αN五个角度来表示,如图5所示,关系方程表示成如下公式(1):
Figure BDA0003065009520000091
公式(1)中,航向角αN为已知量,磁偏角D和磁倾角I可以通过GNSS提供的位置信息(经纬高信息)由地磁模型IGRF13计算得到。公式(1)可以比较准确地表示方位角与五个角度的关系,为后续准确地估计俯仰角
Figure BDA0003065009520000092
和偏航角
Figure BDA0003065009520000093
提供了基础。
地磁方位角σM的实际测量值可以通过如下公式(2)求得:
Figure BDA0003065009520000094
公式(2)中,Tbx、Tby、Tbz分别为地磁强度矢量
Figure BDA0003065009520000098
在载体坐标系OX1Y1Z1的OX1、OY1轴、OZ1轴的投影分量,分别由安装在旋转飞行器上的地磁传感器的三个敏感轴Sx、Sy、Sz实际测得,为已知量。通过地磁传感器的三个敏感轴Sx、Sy、Sz测得Tbx、Tby、Tbz,并采用公式(1)计算σM的实际测量值,可以简单方便地获得比较准确的实际测量值。
这样,式(1)中就只包含俯仰角
Figure BDA0003065009520000095
和偏航角
Figure BDA0003065009520000096
两个未知信息,可以根据飞行器的姿态运动规律估计出来。
旋转飞行器的姿态运动规律是由绕质心运动规律来体现。假设飞行器为理想轴对称模型,不存在气动偏心和质量分布不均的情况,参考绕质心动力学运动方程组,结合实际问题建立新的动力学方程组如下,
Figure BDA0003065009520000097
其中,ωη、ωζ为旋转飞行器的两个径向角速率,ωξ为飞行器的轴向角速率,远大于两个径向角速率;也即,ωη、ωζ、ωξ分别为旋转飞行器的角速率在弹轴坐标系(A1系)的η、ζ、ξ轴的投影分量。
A为赤道转动惯量,C为极转动惯量,均为已知量。
Mη、Mζ分别为外力矩在A1系的η、ζ轴的投影分量。
由旋转飞行器的受作用外力矩分析可知,稳定旋转的飞行器的受作用力矩主要有静力矩、赤道阻尼力矩、极阻尼力矩和马格努斯力矩。而极阻尼力矩是由飞行器旋转引起的,主要体现在飞行器纵轴上,横向分量可以不用考虑。因此,旋转稳定飞行器的外力矩在A1系中的横向分量Mη、Mζ(即η、ζ轴的投影分量)为:
Figure BDA0003065009520000101
其中,M、M为静力矩在A1系的横向分量,Mzzη、Mzzζ为赤道阻尼力矩在A1系的横向分量,M、M为马格努斯力矩在A1系的横向分量。
静力矩在A1系的横向分量形式如下:
Figure BDA0003065009520000102
公式(5)式,ρ为空气密度,S为飞行器横截面积,l为飞行器长度;vr为考虑风时飞行器相对于风的相对速度;v为不考虑风时飞行器的速度;无风时,vr=v;m′z为静力矩系数导数,根据飞行器的型号即可确定,v、v为相对速度vr在A1系的横向分量(即η、ζ轴的投影分量),且
Figure BDA0003065009520000103
式中,vrη2、vrζ2为vr在A2系的横向分量(即η2、ζ2轴的投影分量)。
假设无风时,vr=v,且根据V系和A2系的转动关系可以得到:
Figure BDA0003065009520000111
δ1为高低攻角,δ2为方向攻角。
则可以得到
Figure BDA0003065009520000112
将公式(8)代入公式(5)中,得到
Figure BDA0003065009520000113
而由于稳定飞行的飞行器具有特性
Figure BDA0003065009520000118
则上式(9)可以改写为
Figure BDA0003065009520000114
将载体参数、气象条件、力矩系数等与姿态角无直接联系的项统写为一项,即令
Figure BDA0003065009520000115
则静力矩分量M、M最终可以写为
Figure BDA0003065009520000116
同理,公式(4)中的赤道阻尼力矩在A1系的横向投影分量形式为:
Figure BDA0003065009520000117
上式中,d为飞行器直径,m′zz为赤道阻尼力矩系数导数,为已知量。令kzz=ρSldm′zz/2A,且假设无风,vr=v,代入公式(12),则赤道阻尼力矩的分量Mzzη、Mzzζ最终可以写为
Figure BDA0003065009520000121
同理,公式(4)中的马格努斯力矩在A1系的横向投影分量形式为:
Figure BDA0003065009520000122
上式中,m″y为马格努斯力矩系数的二阶导数,为已知量。令ky=ρSldm″y/2A,代入上式,可得
Figure BDA0003065009520000123
将式(11)、(13)、(15)代入式(4),Mη、Mζ最终可以写为:
Figure BDA0003065009520000124
将式(16)代入式(3),就得到包含俯仰角
Figure BDA0003065009520000125
和偏航角
Figure BDA0003065009520000126
的绕质心动力学方程组:
Figure BDA0003065009520000127
ωξ约为飞行器转速,作为已知量。
通过GNSS的数据计算出飞行器的飞行速度v,然后计算出飞行速度v在地面坐标系的三个轴的分量vx、vy和vz,再根据公式(18)计算速度高低角θa和速度方向角ψ2,计算公式如下:
Figure BDA0003065009520000131
然后就可以构建EKF滤波器来估计俯仰角
Figure BDA0003065009520000132
偏航角
Figure BDA0003065009520000133
以式(17)为状态驱动方程,以式(1)为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计出飞行器的俯仰角
Figure BDA0003065009520000134
偏航角
Figure BDA0003065009520000135
采用公式(17)作为驱动方程,可以解算出高精度的俯仰角、偏航角。
根据姿态角与速度角的动力学约束方程组(17)取状态变量为
Figure BDA0003065009520000136
式(17)可以写成下式(20):
Figure BDA0003065009520000137
非线性方程组(20)是对状态模型的近似描述,存在一定误差,特引入一个高斯白噪声W,且W~N(0,R),其中
Figure BDA0003065009520000138
在公式(21)中,σ2是指均方差,
Figure BDA0003065009520000139
分别表示ωη、ωζ
Figure BDA00030650095200001310
kz、kzz、ky的均方差。
将地磁方位角σM作为量测值,记量测变量为:y=[σM]T
根据地磁方位角σM与飞行器姿态的几何关系,构建下述量测方程(22)
y=h(x)+V
=arccos(cos(I)cos(D-αN)cos(x3)cos(x4)-sin(I)sin(x3)+cos(I)sin(D-αN)cos(x3)sin(x4))+V式中,V为量测噪声,V~N(0,Q),其中
Figure BDA0003065009520000141
是指σM的均方差。
EKF的基本思想是将非线性系统线性化,然后进行卡尔曼线性滤波。在状态方程或测量方程为非线性时,EKF对非线性函数的Taylor展开式进行一阶线性化截断,忽略其余高阶项,从而将非线性问题转化为线性。
对非线性状态方程(20)进行一阶线性化截断,取前两项为
Figure BDA0003065009520000142
其中,I为单位矩阵,Δt为采样间隔。
由状态方程(20)可得状态方程的雅克比矩阵,为
Figure BDA0003065009520000143
其中,上述矩阵中的非零元素分别为
A11=-x6v+2x1tanx4
Figure BDA0003065009520000144
A13=x7ξ
Figure BDA0003065009520000145
A15=-v2(x42);A16=-x1v;A17=vωξ(x3a);
Figure BDA0003065009520000146
A22=-x6v+x1tanx4;A23=x5v2;A24=x7ξ+x1x2sec2x4
A25=v2(x3a);A26=-x2v;A27=vωξ(x42);
Figure BDA0003065009520000147
A41=-1。
同理,由量测方程(22)可得
Figure BDA0003065009520000148
上式中,矩阵H中的非零元素为
Figure BDA0003065009520000151
Figure BDA0003065009520000152
a=cos(I)cos(D-αN)cos(x4)cos(x3)-sin(I)sin(x3)+cos(I)sin(D-αN)cos(x3)sin(x4)。
至此,EKF滤波器构建完毕,就可以进行俯仰角
Figure BDA0003065009520000153
和偏航角
Figure BDA0003065009520000154
的估计。
步骤S2、解算地磁矢量基准角γ0
如附图6所示,当旋转飞行器在地磁场中运动时,地磁强度矢量
Figure BDA0003065009520000155
在载体坐标系OX1Y1Z1(B系)上的三个轴的投影分量分别为Tbx、Tby和Tbz。其中,Tby和Tbz又构成横向投影分量TH,地磁强度矢量
Figure BDA0003065009520000159
与飞行器纵轴(飞行器中轴线)的夹角即为地磁方位角σM。B系相对于A1系转过的角度,即为滚转角γ。飞行器相对于地磁投影面转过的角度,即飞行器自转角φS。由于飞行器纵轴铅垂面(即图6、图7中的中轴铅垂面)与地磁投影面并不重合,因此飞行器自转角φS与滚转角γ之间相差一个地磁矢量基准角γ0
地磁矢量基准角γ0是飞行器纵轴铅垂面和地磁投影面之间的夹角,而地磁投影面的位置与旋转飞行器的瞬时姿态、当地的地磁矢量有关系。如附图7所示,地磁强度矢量
Figure BDA0003065009520000156
在弹轴坐标系Oξηζ(A1系)的Oη轴和Oζ轴上的投影分量分别为Tη、Tζ,则地磁矢量基准角γ0
Figure BDA0003065009520000157
由式(26)可知,计算地磁矢量基准角γ0需要先计算出投影分量Tη、Tζ,而计算Tη和Tζ需要两次坐标系转移:先由E系转移到N系,再由N系转移到A1系。
则由E系到A1系的转移矩阵可以写为
Figure BDA0003065009520000158
则地磁强度矢量
Figure BDA0003065009520000161
在A1系的投影分量为
Figure BDA0003065009520000162
展开式(28),其中Tη和Tζ分别为:
Figure BDA0003065009520000163
Figure BDA0003065009520000164
航向角αN为实验已知量,三轴地磁分量TN、TE和TD可以通过GNSS提供的位置信息由地磁模型计算得到,俯仰角
Figure BDA0003065009520000165
和偏航角
Figure BDA0003065009520000166
已经通过上一步骤估计了出来,因此,可以计算出投影分量Tη、Tζ,进而计算出地磁矢量基准角γ0
步骤S3:解算滚转角γ。由附图7可以看出,滚转角γ、自转角φS和地磁矢量基准角γ0这三个角度之间存在关系式
γ=γ0S (30)
式中,自转角φS是由安装在飞行器上的地磁传感器的两个横向敏感轴Sy、Sz测出的Tby、Tbz计算得到,计算公式如下:
Figure BDA0003065009520000167
结合(26)、(30)、(31)就可以得到滚转角γ的计算公式为:
Figure BDA0003065009520000168
本实施例的旋转飞行器滚转角解算方法,通过建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure BDA0003065009520000169
偏航角
Figure BDA00030650095200001610
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure BDA00030650095200001611
和偏航角
Figure BDA00030650095200001612
再解算地磁矢量基准角γ0;最后解算出高精度的滚转角γ;本实施例的解算方法,提高了滚转角的解算精度。
为了进一步提高滚转角的解算精度,本实施例的解算方法还包括步骤S4:对滚转角γ进行小波滤波,以进一步提高滚转角的解算精度。滚转角的解算精度与计算过程中俯仰角
Figure BDA0003065009520000171
和偏航角
Figure BDA0003065009520000172
的估计精度有直接关系,而俯仰角
Figure BDA0003065009520000173
和偏航角
Figure BDA0003065009520000174
的最大误差来源是估计值的残余噪声,具有高斯白噪声的特性,因此可以通过小波滤波等方法过滤掉残余噪声,进一步提高滚转角的解算精度。
本实施例的基于GNSS/地磁传感器的旋转飞行器滚转角高精度解算方法,构建了三轴正交地磁传感器,通过分析旋转飞行器在飞行中的滚转姿态变化规律和地球磁场矢量在不同坐标系上的投影关系,推导出了旋转飞行器滚转角γ的解算公式;同时推导了滚转角解算所需要的地磁矢量基准角γ0的计算公式;而对于解算地磁矢量基准角γ0所需要的俯仰角
Figure BDA0003065009520000175
和偏航角
Figure BDA0003065009520000176
则以包含俯仰角
Figure BDA0003065009520000177
和偏航角
Figure BDA0003065009520000178
的绕质心动力学方程组为驱动方程,以地磁方位角σM的角度关系为观测方程,以测量得到的地磁方位角为观测量,通过扩展卡尔曼滤波估计出高精度的俯仰角
Figure BDA0003065009520000179
和偏航角
Figure BDA00030650095200001710
最后根据残余噪声的高斯白噪声特性,采用小波滤波器对滚转角γ进行小波滤波,进一步提高解算精度。
下面进行轨迹仿真验证。由于转台试验无法模拟旋转飞行器全轨迹的绕质心运动,而真实飞行试验又无法获得姿态角真值作为参考,因此,验证阶段将采用六自由度刚体飞行器轨迹仿真验证的方法。仿真初始位置为120.4407°E,36.1358°N,海拔35m。仿真对象为某型号旋转飞行器,直径约为155mm,初速800m/s,初始俯仰角为45°,航向角为100°。通过六自由度刚体飞行器轨迹方程模拟出整条轨迹信息,包括:飞行速度v,飞行器在地面坐标系的位置x、y、z,速度高低角θa,速度方向角ψ2,飞行器在载体坐标系的三轴角速度ωx、ωy、ωz,俯仰角
Figure BDA00030650095200001711
偏航角
Figure BDA00030650095200001712
滚转角γ以及飞行器转速
Figure BDA00030650095200001713
为方便展示细节,部分仿真只取10s时间。同时根据位置信息通过IGRF13地磁模型计算出全轨迹的地磁信息,主要是北东地方向的地磁分量TN、TE和TD
附图8展示了仿真轨迹的速度角θa、ψ2分别与姿态角
Figure BDA00030650095200001714
的区别,可以看到,在轨迹初始段,姿态角出现了剧烈摆动,与速度角出现较大的偏差。
(1)无误差姿态角和速度角分别解算滚转角
首先采用姿态角
Figure BDA0003065009520000181
Figure BDA0003065009520000182
按照式(29)计算出地磁强度矢量
Figure BDA0003065009520000183
在A1系Oη轴和Oζ轴上的投影分量Tη、Tζ,同时模拟的地磁信号计算出地磁强度矢量
Figure BDA0003065009520000184
在载体坐标系上的投影分量Tby和Tbz。最后,通过公式(32)计算出飞行器的滚转角,计算结果如附图9所示。由附图9可以看出,采用姿态角
Figure BDA0003065009520000185
Figure BDA0003065009520000186
按照公式(32)解算的滚转角精度非常高,误差在10-10度的量级。此时误差的主要产生原因应该是软件计算时的误差,这说明公式的计算结果是精确的。
再将式(29)中的姿态角
Figure BDA0003065009520000187
用速度角θa、ψ2代替,按照同样的解算过程计算飞行器滚转角,计算结果如图10所示,由图中看出,解算误差的最大值约为2.5°,出现在飞行器摆动最大的初始段,然后不断随着摆动幅值的减小不断减小。因此可以得出结论,滚转角的解算精度与计算过程中采用的姿态角
Figure BDA0003065009520000188
Figure BDA0003065009520000189
精度有直接关系,俯仰角和偏航角的估计精度越高,滚转角的解算精度越高。
(2)带误差的姿态角估计值解算滚转角
按照本实施例提出的方法,按照EKF滤波器估计出俯仰角和偏航角,与真值进行比较,如附图11所示。图11a、11b中可以看出,飞行器共飞行100多秒,全轨迹的飞行器俯仰角和偏航角的估计值与真值贴近,规律一致,估计效果较好。图11c、11d为全轨迹的俯仰角和偏航角估计误差,从这两幅图中可以看出,俯仰角的误差范围大约为[-0.2°,0.25°],偏航角的误差范围约为[-0.25°,0.15°]。从图中也可以看出,最大的估计误差出现在初始阶段和轨迹顶点阶段。
为了更好的验证本实施例解算方法的效果,为两个姿态角(
Figure BDA00030650095200001810
Figure BDA00030650095200001811
)的真值分别加入高斯白噪声d~N(0,0.2°),模拟EKF滤波后的姿态角估计值,估计值的误差如图12所示,最大误差约为0.8°。同时为两个速度角(θa、ψ2)加入同样的噪声,以对比解算误差的精度效果,如图13所示。
按照本实施例的方法分别采用速度角和姿态角信息解算滚转角,解算误差如附图14所示。由图中可以看出,采用姿态角解算滚转角的最大误差约为0.8°,采用速度角解算滚转角的误差从轨迹初始段的3°逐渐降为0.8°。
从仿真结果可以看出,滚转角的直接计算误差与姿态角的估计误差存在大致相等的关系,可以通过小波滤波等方法进一步提高滚转角的解算精度。附图15展示的是采用了小波滤波之后的滚转角解算误差。采用速度角解算滚转角时,最大误差约为2.5°,变化不大,这是因为,采用速度角解算滚转角的最大误差来源是速度角与姿态角的真值差,无法通过小波滤波去除。而采用姿态角解算滚转角的最大误差来源是姿态角估计值的残余噪声,可以通过小波滤波等方法进一步过滤掉,滤波后精度可以达到0.1°以内,精度明显提高。
通过完善的轨迹仿真验证,证明了本实施例的滚转角解算方法的解算精度可以达到较高水平,解算精度要高于传统方法,可以有效的提供准确的高精度滚转角,为旋转飞行器的测试、参数测量、导航制导与控制提供技术支持。
实施例二、
基于实施例一的旋转飞行器滚转角解算方法的设计,本实施例提出了一种旋转飞行器滚转角解算系统,包括俯仰角和偏航角估计模块、基准角解算模块、自转角解算模块、滚转角计算模块等,参见图17所示。
俯仰角和偏航角估计模块,用于建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure BDA0003065009520000191
偏航角
Figure BDA0003065009520000192
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure BDA0003065009520000193
和偏航角
Figure BDA0003065009520000194
基准角解算模块,用于解算地磁矢量基准角γ0
Figure BDA0003065009520000195
Figure BDA0003065009520000196
Figure BDA0003065009520000197
其中,Tη、Tζ分别为地磁强度矢量
Figure BDA0003065009520000198
在弹轴坐标系Oξηζ的Oη轴、Oζ轴的投影分量;在弹轴坐标系Oξηζ中,原点O为旋转飞行器的质心,Oξ轴沿旋转飞行器中轴线方向向前为正,Oη轴位于包含飞行器中轴线的铅垂面内且垂直于Oξ轴向上为正,按右手法则,Oζ轴与Oξη面垂直且向右为正;TN、TE、TD分别为地磁强度矢量
Figure BDA0003065009520000201
在北东地地理坐标系的三个分量。
自转角解算模块,用于解算自转角φS
Figure BDA0003065009520000202
Tby、Tbz分别为地磁强度矢量
Figure BDA0003065009520000203
在载体坐标系OX1Y1Z1的OY1轴、OZ1轴的投影分量;在载体坐标系OX1Y1Z1中,原点O为旋转飞行器的质心,OX1轴沿旋转飞行器中轴线方向向前为正,OY1轴和OZ1轴位于垂直于旋转飞行器中轴线的赤道面内并互相垂直。
滚转角计算模块,用于解算滚转角γ;γ=γ0S
滚转角解算系统还包括滤波模块,用于对滚转角γ进行小波滤波。
在本实施例中,所述绕飞行器质心动力学方程组为:
Figure BDA0003065009520000204
其中,ωη、ωζ、ωξ分别为旋转飞行器的角速率在弹轴坐标系的η、ζ、ξ轴的投影分量;v为飞行器的飞行速度,vx、vy、vz为v在地面坐标系的三个分量;A为赤道转动惯量,C为极转动惯量;θa为速度高低角,ψ2为速度方向角;
Figure BDA0003065009520000205
Figure BDA0003065009520000206
kzz=ρSldm′zz/2A,ky=ρSldm″y/2A;ρ为空气密度,S为飞行器横截面积,l为飞行器长度,d为飞行器直径;m′z为静力矩系数导数,m′zz为赤道阻尼力矩系数导数,m″y为马格努斯力矩系数的二阶导数。
在本实施例中,所述地磁方位角σM与俯仰角
Figure BDA0003065009520000211
偏航角
Figure BDA0003065009520000212
磁偏角D、磁倾角I和航向角αN的关系方程为:
Figure BDA0003065009520000213
在本实施例中,地磁方位角σM的实际测量值通过如下公式求得:
Figure BDA0003065009520000214
Tbx、Tby、Tbz分别由安装在旋转飞行器上的地磁传感器的三个敏感轴Sx、Sy、Sz实际测得;三个敏感轴Sx、Sy、Sz的方向分别对应载体坐标系OX1Y1Z1的OX1轴、OY1轴、OZ1轴的方向。
具体的旋转飞行器滚转角解算系统的工作过程,已经在上述旋转飞行器滚转角解算方法中详述,此处不予赘述。
本实施例的旋转飞行器滚转角解算系统,通过建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure BDA0003065009520000215
偏航角
Figure BDA0003065009520000216
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure BDA0003065009520000217
和偏航角
Figure BDA0003065009520000218
然后解算地磁矢量基准角γ0;最后解算出高精度的滚转角γ;本实施例的解算系统,提高了滚转角解算精度。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

1.一种旋转飞行器滚转角解算方法,其特征在于:包括:
(1)建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure FDA0003065009510000011
偏航角
Figure FDA0003065009510000012
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure FDA0003065009510000013
和偏航角
Figure FDA0003065009510000014
(2)解算地磁矢量基准角γ0
Figure FDA0003065009510000015
Figure FDA0003065009510000016
Figure FDA0003065009510000017
其中,
Tη、Tζ分别为地磁强度矢量
Figure FDA0003065009510000018
在弹轴坐标系Oξηζ的Oη轴、Oζ轴的投影分量;在弹轴坐标系Oξηζ中,原点O为旋转飞行器的质心,Oξ轴沿旋转飞行器中轴线方向向前为正,Oη轴位于包含飞行器中轴线的铅垂面内且垂直于Oξ轴向上为正,按右手法则,Oζ轴与Oξη面垂直且向右为正;
TN、TE、TD分别为地磁强度矢量
Figure FDA0003065009510000019
在北东地地理坐标系的三个分量;
(3)解算滚转角γ:
γ=γ0S
其中,φS为自转角,
Figure FDA00030650095100000110
Tby、Tbz分别为地磁强度矢量
Figure FDA00030650095100000111
在载体坐标系OX1Y1Z1的OY1轴、OZ1轴的投影分量;在载体坐标系OX1Y1Z1中,原点O为旋转飞行器的质心,OX1轴沿旋转飞行器中轴线方向向前为正,OY1轴和OZ1轴位于垂直于旋转飞行器中轴线的赤道面内并互相垂直。
2.根据权利要求1所述的旋转飞行器滚转角解算方法,其特征在于:在所述解算滚转角之后,还包括下述步骤:对滚转角γ进行小波滤波。
3.根据权利要求1所述的旋转飞行器滚转角解算方法,其特征在于:所述绕飞行器质心动力学方程组为:
Figure FDA0003065009510000021
其中,ωη、ωζ、ωξ分别为旋转飞行器的角速率在弹轴坐标系的η、ζ、ξ轴的投影分量;
v为飞行器的飞行速度,vx、vy、vz为v在地面坐标系的三个分量;
A为赤道转动惯量,C为极转动惯量;
θa为速度高低角,ψ2为速度方向角;
Figure FDA0003065009510000022
Figure FDA0003065009510000023
kzz=ρSldm′zz/2A,ky=ρSldm″y/2A;
ρ为空气密度,S为飞行器横截面积,l为飞行器长度,d为飞行器直径;m′z为静力矩系数导数,m′zz为赤道阻尼力矩系数导数,m″y为马格努斯力矩系数的二阶导数。
4.根据权利要求1所述的旋转飞行器滚转角解算方法,其特征在于:所述地磁方位角σM与俯仰角
Figure FDA0003065009510000024
偏航角
Figure FDA0003065009510000025
磁偏角D、磁倾角I和航向角αN的关系方程为:
Figure FDA0003065009510000031
5.根据权利要求1所述的旋转飞行器滚转角解算方法,其特征在于:地磁方位角σM的实际测量值通过如下公式求得:
Figure FDA0003065009510000032
Tbx、Tby、Tbz分别由安装在旋转飞行器上的地磁传感器的三个敏感轴Sx、Sy、Sz实际测得;三个敏感轴Sx、Sy、Sz的方向分别对应载体坐标系OX1Y1Z1的OX1轴、OY1轴、OZ1轴的方向。
6.一种旋转飞行器滚转角解算系统,其特征在于:包括:
俯仰角和偏航角估计模块,用于建立绕飞行器质心动力学方程组为驱动方程,以地磁方位角σM与俯仰角
Figure FDA0003065009510000033
偏航角
Figure FDA0003065009510000034
磁偏角D、磁倾角I和航向角αN的关系方程为观测方程,以地磁方位角σM的实际测量值为观测量,通过扩展卡尔曼滤波估计俯仰角
Figure FDA0003065009510000035
和偏航角
Figure FDA0003065009510000036
基准角解算模块,用于解算地磁矢量基准角γ0
Figure FDA0003065009510000037
Figure FDA0003065009510000038
Figure FDA0003065009510000039
其中,Tη、Tζ分别为地磁强度矢量
Figure FDA00030650095100000310
在弹轴坐标系Oξηζ的Oη轴、Oζ轴的投影分量;在弹轴坐标系Oξηζ中,原点O为旋转飞行器的质心,Oξ轴沿旋转飞行器中轴线方向向前为正,Oη轴位于包含飞行器中轴线的铅垂面内且垂直于Oξ轴向上为正,按右手法则,Oζ轴与Oξη面垂直且向右为正;TN、TE、TD分别为地磁强度矢量
Figure FDA00030650095100000311
在北东地地理坐标系的三个分量;
自转角解算模块,用于解算自转角φS
Figure FDA00030650095100000312
Tby、Tbz分别为地磁强度矢量
Figure FDA0003065009510000041
在载体坐标系OX1Y1Z1的OY1轴、OZ1轴的投影分量;在载体坐标系OX1Y1Z1中,原点O为旋转飞行器的质心,OX1轴沿旋转飞行器中轴线方向向前为正,OY1轴和OZ1轴位于垂直于旋转飞行器中轴线的赤道面内并互相垂直;
滚转角计算模块,用于解算滚转角γ;γ=γ0S
7.根据权利要求6所述的旋转飞行器滚转角解算系统,其特征在于:还包括滤波模块,用于对滚转角γ进行小波滤波。
8.根据权利要求6所述的旋转飞行器滚转角解算系统,其特征在于:所述绕飞行器质心动力学方程组为:
Figure FDA0003065009510000042
其中,ωη、ωζ、ωξ分别为旋转飞行器的角速率在弹轴坐标系的η、ζ、ξ轴的投影分量;
v为飞行器的飞行速度,vx、vy、vz为v在地面坐标系的三个分量;
A为赤道转动惯量,C为极转动惯量;
θa为速度高低角,ψ2为速度方向角;
Figure FDA0003065009510000043
Figure FDA0003065009510000044
kzz=ρSldm′zz/2A,ky=ρSldm″y/2A;
ρ为空气密度,S为飞行器横截面积,l为飞行器长度,d为飞行器直径;m′z为静力矩系数导数,m′zz为赤道阻尼力矩系数导数,m″y为马格努斯力矩系数的二阶导数。
9.根据权利要求6所述的旋转飞行器滚转角解算系统,其特征在于:所述地磁方位角σM与俯仰角
Figure FDA0003065009510000051
偏航角
Figure FDA0003065009510000052
磁偏角D、磁倾角I和航向角αN的关系方程为:
Figure FDA0003065009510000053
10.根据权利要求6所述的旋转飞行器滚转角解算系统,其特征在于:地磁方位角σM的实际测量值通过如下公式求得:
Figure FDA0003065009510000054
Tbx、Tby、Tbz分别由安装在旋转飞行器上的地磁传感器的三个敏感轴Sx、Sy、Sz实际测得;三个敏感轴Sx、Sy、Sz的方向分别对应载体坐标系OX1Y1Z1的OX1轴、OY1轴、OZ1轴的方向。
CN202110523676.9A 2021-05-13 2021-05-13 一种旋转飞行器滚转角解算方法及系统 Active CN113418499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110523676.9A CN113418499B (zh) 2021-05-13 2021-05-13 一种旋转飞行器滚转角解算方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110523676.9A CN113418499B (zh) 2021-05-13 2021-05-13 一种旋转飞行器滚转角解算方法及系统

Publications (2)

Publication Number Publication Date
CN113418499A true CN113418499A (zh) 2021-09-21
CN113418499B CN113418499B (zh) 2022-09-23

Family

ID=77712273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110523676.9A Active CN113418499B (zh) 2021-05-13 2021-05-13 一种旋转飞行器滚转角解算方法及系统

Country Status (1)

Country Link
CN (1) CN113418499B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115900770A (zh) * 2023-02-14 2023-04-04 北京理工大学前沿技术研究院 一种机载环境下磁传感器的在线校正方法和系统
CN116070066A (zh) * 2023-02-20 2023-05-05 北京自动化控制设备研究所 一种制导炮弹滚动角计算方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625571A (zh) * 2009-07-25 2010-01-13 大连理工大学 一种模拟自旋式飞行器六自由度运动的方法
CN103913991A (zh) * 2014-04-22 2014-07-09 西北工业大学 高速轴对称飞行器复合控制方法
CN104567917A (zh) * 2014-12-18 2015-04-29 北京控制工程研究所 基于动力学特性的变步长再入飞行器位置速度预测方法
CN105987695A (zh) * 2015-01-29 2016-10-05 中北大学 一种高速旋转弹姿态解算用四区间拉格朗日方法
CN107036576A (zh) * 2016-11-28 2017-08-11 南京理工大学 基于差商法磁测旋转飞行器滚转角的实时解算方法
CN107063237A (zh) * 2016-12-14 2017-08-18 歌尔股份有限公司 一种测量物体姿态角的方法和装置
CN107314718A (zh) * 2017-05-31 2017-11-03 中北大学 基于磁测滚转角速率信息的高速旋转弹姿态估计方法
CN108050999A (zh) * 2017-11-28 2018-05-18 南京理工大学 一种新息正交性的红外与地磁复合旋转弹体测姿方法
US10118696B1 (en) * 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
CN110017830A (zh) * 2019-03-25 2019-07-16 北京理工大学 利用地磁信息和重力传感器解算飞行器姿态的方法
CN110044321A (zh) * 2019-03-22 2019-07-23 北京理工大学 利用地磁信息和角速率陀螺解算飞行器姿态的方法
CN110398242A (zh) * 2019-05-27 2019-11-01 西安微电子技术研究所 一种高旋高过载条件飞行器的姿态角确定方法
CN110471456A (zh) * 2019-08-22 2019-11-19 中国人民解放军国防科技大学 高超声速飞行器俯冲段制导、姿控、变形一体化控制方法
CN110986926A (zh) * 2019-12-05 2020-04-10 南京理工大学 一种基于地磁要素的飞行弹体旋转姿态测量方法
CN111399531A (zh) * 2020-04-23 2020-07-10 中国人民解放军国防科技大学 一种高超声速飞行器滑翔段制导与姿态控制一体化设计方法
CN111623768A (zh) * 2020-04-24 2020-09-04 北京航天控制仪器研究所 一种基于克雷洛夫角奇异条件下的姿态角解算方法
CN111780749A (zh) * 2020-05-26 2020-10-16 北京航天控制仪器研究所 一种变轨机动飞机全姿态惯性导航的姿态控制方法
CN112710298A (zh) * 2020-12-02 2021-04-27 惠州学院 基于动力学模型辅助的旋转弹用地磁卫星组合导航方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625571A (zh) * 2009-07-25 2010-01-13 大连理工大学 一种模拟自旋式飞行器六自由度运动的方法
CN103913991A (zh) * 2014-04-22 2014-07-09 西北工业大学 高速轴对称飞行器复合控制方法
CN104567917A (zh) * 2014-12-18 2015-04-29 北京控制工程研究所 基于动力学特性的变步长再入飞行器位置速度预测方法
CN105987695A (zh) * 2015-01-29 2016-10-05 中北大学 一种高速旋转弹姿态解算用四区间拉格朗日方法
US10118696B1 (en) * 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
CN107036576A (zh) * 2016-11-28 2017-08-11 南京理工大学 基于差商法磁测旋转飞行器滚转角的实时解算方法
CN107063237A (zh) * 2016-12-14 2017-08-18 歌尔股份有限公司 一种测量物体姿态角的方法和装置
CN107314718A (zh) * 2017-05-31 2017-11-03 中北大学 基于磁测滚转角速率信息的高速旋转弹姿态估计方法
CN108050999A (zh) * 2017-11-28 2018-05-18 南京理工大学 一种新息正交性的红外与地磁复合旋转弹体测姿方法
CN110044321A (zh) * 2019-03-22 2019-07-23 北京理工大学 利用地磁信息和角速率陀螺解算飞行器姿态的方法
CN110017830A (zh) * 2019-03-25 2019-07-16 北京理工大学 利用地磁信息和重力传感器解算飞行器姿态的方法
CN110398242A (zh) * 2019-05-27 2019-11-01 西安微电子技术研究所 一种高旋高过载条件飞行器的姿态角确定方法
CN110471456A (zh) * 2019-08-22 2019-11-19 中国人民解放军国防科技大学 高超声速飞行器俯冲段制导、姿控、变形一体化控制方法
CN110986926A (zh) * 2019-12-05 2020-04-10 南京理工大学 一种基于地磁要素的飞行弹体旋转姿态测量方法
CN111399531A (zh) * 2020-04-23 2020-07-10 中国人民解放军国防科技大学 一种高超声速飞行器滑翔段制导与姿态控制一体化设计方法
CN111623768A (zh) * 2020-04-24 2020-09-04 北京航天控制仪器研究所 一种基于克雷洛夫角奇异条件下的姿态角解算方法
CN111780749A (zh) * 2020-05-26 2020-10-16 北京航天控制仪器研究所 一种变轨机动飞机全姿态惯性导航的姿态控制方法
CN112710298A (zh) * 2020-12-02 2021-04-27 惠州学院 基于动力学模型辅助的旋转弹用地磁卫星组合导航方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115900770A (zh) * 2023-02-14 2023-04-04 北京理工大学前沿技术研究院 一种机载环境下磁传感器的在线校正方法和系统
CN115900770B (zh) * 2023-02-14 2023-05-23 北京理工大学前沿技术研究院 一种机载环境下磁传感器的在线校正方法和系统
CN116070066A (zh) * 2023-02-20 2023-05-05 北京自动化控制设备研究所 一种制导炮弹滚动角计算方法
CN116070066B (zh) * 2023-02-20 2024-03-15 北京自动化控制设备研究所 一种制导炮弹滚动角计算方法

Also Published As

Publication number Publication date
CN113418499B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN107314718B (zh) 基于磁测滚转角速率信息的高速旋转弹姿态估计方法
CN109813311B (zh) 一种无人机编队协同导航方法
CN113418499B (zh) 一种旋转飞行器滚转角解算方法及系统
Guo et al. The soft iron and hard iron calibration method using extended Kalman filter for attitude and heading reference system
CN105180728B (zh) 基于前数据的旋转制导炮弹快速空中对准方法
CN105180968A (zh) 一种imu/磁强计安装失准角在线滤波标定方法
CN103743413B (zh) 倾斜状态下调制寻北仪安装误差在线估计与寻北误差补偿方法
CN110044321B (zh) 利用地磁信息和角速率陀螺解算飞行器姿态的方法
US20090182503A1 (en) Method for determining the attitude, position, and velocity of a mobile device
CN110672078B (zh) 一种基于地磁信息的高旋弹丸姿态估计方法
CN110398242B (zh) 一种高旋高过载条件飞行器的姿态角确定方法
CN111024074B (zh) 一种基于递推最小二乘参数辨识的惯导速度误差确定方法
CN112577519B (zh) 空天飞行器星敏感器安装误差在线标定方法
CN109752000A (zh) 一种mems双轴旋转调制型捷联罗经初始对准方法
CN110672128B (zh) 一种星光/惯性组合导航及误差在线标定方法
CN105115508A (zh) 基于后数据的旋转制导炮弹快速空中对准方法
CN109708663B (zh) 基于空天飞机sins辅助的星敏感器在线标定方法
CN103017765A (zh) 应用于微机械组合导航系统的偏航角修正方法和修正装置
CN113050143B (zh) 一种发射惯性坐标系下的紧耦合导航方法
CN110017808B (zh) 利用地磁信息和加速计解算飞行器姿态的方法
CN110017830B (zh) 利用地磁信息和重力传感器解算飞行器姿态的方法
CN110007318B (zh) 风场干扰下基于卡尔曼滤波的单无人机判断gps欺骗的方法
CN110736484A (zh) 基于陀螺仪及磁传感器融合的背景磁场标定方法
CN109211232B (zh) 一种基于最小二乘滤波的炮弹姿态估计方法
CN109445283B (zh) 一种用于欠驱动浮空器在平面上定点跟踪的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant