CN113410320A - 一种宽光谱响应光电探测器及其制备方法 - Google Patents

一种宽光谱响应光电探测器及其制备方法 Download PDF

Info

Publication number
CN113410320A
CN113410320A CN202110568736.9A CN202110568736A CN113410320A CN 113410320 A CN113410320 A CN 113410320A CN 202110568736 A CN202110568736 A CN 202110568736A CN 113410320 A CN113410320 A CN 113410320A
Authority
CN
China
Prior art keywords
mos
sio
spectral response
pbse quantum
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110568736.9A
Other languages
English (en)
Inventor
彭明发
刘玉申
马玉龙
张磊
洪学鹍
丛姗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202110568736.9A priority Critical patent/CN113410320A/zh
Publication of CN113410320A publication Critical patent/CN113410320A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测器技术领域,公开了一种宽光谱响应光电探测器的制备方法,首先在硅基衬底制备二维层状MoS2纳米片,利用光刻/剥离技术沉积上一层金属电极,然后旋涂PbSe量子点,退火处理后得到PbSe量子点/二维层状MoS2纳米片异质结光电探测器。本发明通过利用室温下一步法直接合成的PbSe量子点与机械剥离法获得的二维层状MoS2材料之间的相互协同作用,拓宽二维MoS2纳米片的光谱响应范围并提升异质结界面处的载流子传输能力,从而提升光电探测器的性能。

Description

一种宽光谱响应光电探测器及其制备方法
技术领域
本发明涉及一种宽光谱响应光电探测器及其制备方法,尤其是涉及一种室温条件下一步法直接合成的PbSe量子点/二维层状MoS2异质结光电探测器的制备方法。
背景技术
近年来,化学式为MX2(M=Mo,W;X=S,Se)的二维层状过度金属硫族化合物(TMDs)作为功能材料被广泛应用在电子和光电子器件领域,这是因为其具有独特的物理和优异的电学性质,这些特性包括:高的载流子迁移率、维度从属特性、能较好的与柔性基底相兼容等。在过度金属硫族化合物家族中,MoS2是一种典型的带隙与层数相关的半导体材料,例如:单层MoS2通常是禁带宽度为1.8eV的直接带隙半导体材料,而多层MoS2则是一种禁带宽度为1.3eV的间接带隙半导体材料。由于这些独特的特性,二维MoS2作为一种有前景的候选材料被广泛应用在场效应晶体管、发光二极管、太阳能电池和光电探测器中。在这些器件中,光电探测器作为新型光电子器件中的一个重要组成部分吸引了研究人员的广泛关注。然而,由于二维MoS2具有低的光吸收能力和窄的光谱吸收范围,这以特点将极大的限制了其在高性能光电探测器中的潜在应用。然而,在增强光吸收的同时保持低的暗电流状态,对二维MoS2光电探测器而言将是一个比较大的挑战。到目前为止,许多研究工作致力于增加MoS2的光吸收,并改善光电探测器的光响应,例如:通过化学掺杂、集成纳米颗粒的表面等离子共振、能带工程等方法,可以增强其光吸收能力并提升光电探测器的响应度。然而,这些方法由于复杂的工艺过程和有限的性能提升而存着各种弊端。
为了解决上述问题,许多研究工作包括申请人此前的研究,尝试通过利用一种通用的旋涂法将二维材料与量子点或纳米晶体集成制备一种高性能的光电探测器。但是量子点或纳米晶体在合成的过程中,其表面通常会包覆一层油酸长链的配体,这些表面配体会阻碍量子点或纳米晶体之间的电荷传输,从而导致旋涂制备的量子点薄膜导电能力较差。(Adv.Sci.2018,5,1801219.;Adv.Mater.2015,27,176-180.;Adv.Funct.Mater.2017,27,1603605;ACS Appl.Mater.Interfaces 2018,10,43887-43895.)因此在器件的制备过程中,通常还需要利用有机极性溶剂去除量子点的表面配体,从而提升量子点的导电能力。然而,在利用有机极性溶剂处理量子点表面配体的过程中,将会不可避免的影响到器件的光电性能,从而极大的限制了器件的实际应用。为了解决这一难题,研究人员尝试从材料设计的角度出发,利用室温下一步法直接合成PbX量子点(X=S;Se)并应用在太阳能电池领域,从而避免了在器件制备过程中需要利用有机极性溶剂处理量子点表面配体的步骤,实现器件光电性能的提升。(ACS Energy Lett.2020,5,3797-3803.;Nat Commun.2019,10,5136.)
在这些量子点材料中,PbSe是一种吸收波长在600nm到4000nm范围内可调的具有量子限域效应的半导体材料,被广泛应用在光电探测器的研究中。申请人借鉴上述合成方法,将室温条件下一步法合成的高质量的PbSe量子点用于宽光谱响应光电探测器的制备,避免了在器件制备过程中需要用到有机极性溶剂对量子点表面配体交换的步骤。据我们所知,关于室温条件下一步法合成的PbSe量子光电探测器的研究工作,到目前为止还未见报道。因此,将室温条件下一步法直接合成的PbSe量子点与二维MoS2集成,制备一种高性能的宽光谱响应的异质结光电探测器将值得期待。
发明内容
本发明的目的是解决现有二维层状过渡金属硫族化合物(TMDs)存在弱的光吸收能力和窄的光谱吸收范围等方面的问题,用于提升基于二维层状过渡金属硫族化合物(TMDs)材料光电探测器的光电性能。
本发明提供了一种室温下一步法直接合成PbSe量子点并与机械剥离法获得的二维层状MoS2材料的相互协同作用,实现二维层状MoS2光谱吸收范围的拓展和异质结界面处载流子传输能力的提升,从而增强器件的光电性能。本发明技术原理如下,利用机械剥离法在硅基衬底上制备二维层状MoS2纳米片,利用光刻及电子束蒸发镀膜手段在MoS2纳米片两端沉积上金属电极,随后将室温下一步法直接合成的PbSe量子点旋涂到MoS2纳米片光电探测器上,退火处理后得到PbSe量子点/二维层状MoS2异质结光电探测器。
根据本发明的第一个方面,本发明提供了一种宽光谱响应光电探测器器件,包括基底和传感材料;所述基底包括绝缘层衬底SiO2/Si和金属电极,所述传感材料包括PbSe量子点和二维层状MoS2纳米片;所述光电探测器由下至上依次包括绝缘层衬底SiO2/Si、二维层状MoS2纳米片、金属电极、PbSe量子点,所述绝缘层衬底SiO2/Si中SiO2绝缘层位于Si基底上。
优选的,所述SiO2薄膜层层叠于Si基底表面的厚度为50~500nm。
优选的,所述绝缘层衬底SiO2/Si,还可以是聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)等柔性基底替代,其中SiO2/Si衬底的厚度为50~500μm,柔性基底的厚度为10-200μm。
优选的,所述金属电极的材料为Cr、Ti、Au、Ag、Al、Cu、Pt之一或者为Cr/Au、Ti/Au等双层金属,厚度为10~500nm。
根据本发明的第二个方面,本发明提供了一种光电探测器器件的制备方法,依次包括步骤:
一、在绝缘层衬底SiO2/Si上制备二维层状MoS2纳米片;
二、在MoS2纳米片上利用光刻技术沉积Ti/Au金属层,得到MoS2纳米片光电探测器;
三、在MoS2纳米片光电探测器表面旋涂一层PbSe量子点;
四、器件在真空环境下退火得到PbSe量子点/二维层状MoS2异质结宽光谱响应光电探测器器件;
优选的,步骤四中器件在70℃的真空环境下退火10min。
优选的,所述PbSe量子点由下述方法制备而成:首先在氮气环境中,将Se源前驱体和PbI2溶解于溶剂中,所得混合溶液在室温条件下搅拌至所有固体物质全部溶解得前驱体溶液;接下来,将丁胺快速注入到上述前驱体溶液中,随后反应溶液变黑,保持上述溶液在室温条件下继续反应,之后将所得反应产物转移至氮气充满的手套箱中进行纯化;此后,将作为抗溶剂的丙酮加入反应物溶液中,离心,所得的离心固体产物再次分散于DMF溶液中形成PbSe量子点分散液作为传感材料,用于异质结光电探测器的制备。
本发明所提供的技术方案的优点在于:
1、将室温条件下一步法直接合成的PbSe量子点与二维MoS2集成制备一种异质结光电探测器,促进二维层状MoS2纳米片的光吸收增强和光谱响应范围的拓展。
2、通过设计PbSe/MoS2异质结,促进PbSe量子点与二维层状MoS2两者之间的载流子的传输与分离,提升器件的光电性能。
附图说明
图1为光电探测器器件制备流程示意图。
图2为PbSe量子点的TEM图。
图3为PbSe量子点/MoS2纳米片异质结光电探测器器件的SEM图。
图4为实施例1制备的器件测试的性能图。
图5为实施例2制备的器件测试的性能图。
图6为实施例3制备的器件测试的性能图。
图7为单组分MoS2与PbSe/MoS2异质结器件在不同波长光照下的性能对比图。
图8为单组分MoS2与PbSe/MoS2异质结器件在不同光功率密度下的性能对比图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不作为对本发明的限定。
实施例1:
二维层状MoS2纳米片的制备。采用机械剥离的方法,利用3M公司生产的思高牌胶带对单晶MoS2块体实施机械剥离,制备二维层状MoS2纳米片,随后将获得的MoS2纳米片转移至清洗干净的SiO2/Si绝缘衬底上。
室温条件下一步法合成PbSe量子点。首先在氮气环境的手套箱中,将1mmol的Se源前驱体(N,N-双环己烷硒脲)和9mmol的PbI2溶解于10mL的N,N二甲基甲酰胺(DMF)溶液中,所得混合溶液在室温条件下搅拌至所有固体物质全部溶解得前驱体溶液。接下来,将1mL的丁胺快速注入到上述前驱体溶液中,随后反应溶液立即变黑,保持上述溶液在室温条件下继续反应5min,之后将所得反应产物转移至氮气充满的手套箱中进行纯化。此后,将作为抗溶剂的丙酮加入反应物溶液中,并以8000rpm的速度对反应产物进行离心5min,所得的离心固体产物再次分散于DMF溶液中形成PbSe量子点分散液作为传感材料,用于异质结光电探测器的制备。
合成的PbSe量子点的TEM图如图2所示,由图2结果可以看出,PbSe量子点的颗粒大小较均匀,从颗粒分布统计结果可以看出PbSe量子点的平均颗粒尺寸约为4.56±0.52nm。
PbSe量子点/MoS2纳米片异质结光电探测器器件的制备方法,将机械剥离法制备的二维层状MoS2纳米片转移至二氧化硅/硅衬底上,其中二氧化硅层的厚度为200nm,硅层厚度为500μm,利用光刻技术在MoS2纳米片的两端沉积Ti/Au(10nm/100nm)金属层,金属电极的间距为10μm,得到单一组分的MoS2纳米片光电探测器;然后取20μL 50mg/mL的PbSe量子点溶液,利用旋转涂布方式以1500rpm的速度均匀旋涂在两端沉积有金属层的MoS2纳米表面。然后将PbSe量子点/MoS2纳米片异质结光电探测器在真空环境下退火处理10min,得到异质结光电探测器器件,器件的SEM图如图3所示,由图可以看出金属电极整齐的沉积在纳米片的两端,在纳米片的表面均匀的覆盖了一层PbSe量子点薄膜,构成了PbSe量子点/MoS2纳米片异质结光电探测器。
对所得的异质结光电探测器器件进行性能测试,测试条件为:室温的大气环境中,固定入射光波长为405nm,调节入射光的光功率密度,测试器件的光电性能,器件的响应度和探测率在3V偏压下的研究结果如图4所示。
由图4结果可以看出在405nm波长入射光照下,器件的响应度和探测率随均着入射光功率密度的增加而减小,这是因为在低的光能量照射下,光生载流子易于占据纳米结构表界面处的俘获态。而且随着能量的增强,俘获态被不断填满,多余的载流子迅速发生复合将不再参与电荷转移过程,从而导致响应度和探测率随着入射光功率密度的增加而降低。当入射光功率密度为10.92μW/cm2时,器件的响应度和探测率达最大值,分别为15.03A/W和9.23×1011Jones。
实施例2:请参考实施例1中PbSe量子点/MoS2纳米片异质结光电探测器器件的制备方法。光电探测器器件的测试条件改为:固定入射光波长为635nm,调节入射光的光功率密度,在3V偏压下器件性能测试结果如图5所示。
由图5结果可以看出在635nm波长入射光作用下,器件的响应度和探测器随入射光功率密度增加也是不断降低,器件的响应度和探测率在入射光功率密度为20.82μW/cm2时达最大值,分别为23.53A/W和1.45×1012Jones。实施例1条件下器件的光电性能相比较,本实施例中器件的响应度和探测率分别提升了156%和157%。上述研究结果表明在635nm波长可见光照,PbSe量子点/二维层状MoS2纳米片异质结光电探测器器件具有优异的光电性能。
实施例3:请参考实施例1中PbSe量子点/MoS2纳米片异质结光电探测器器件的制备方法。光电探测器器件的测试条件改为:固定入射光波长为808nm,调节入射光的光功率密度,在3V偏压下器件性能测试结果如图6所示。
由图6结果可以看出在808nm波长近红外光作用下,器件依然展现出优异的光电性能,当入射光功率密度为23.64μW/cm2时,响应度和探测器分别为19.70A/W和1.15×1012Jones。这一研究结果明显优于实施例1条件下器件的光电性能,与实施例2条件下的器件光电性能相近。
上述研究结果表明PbSe量子点/二维层状MoS2纳米片异质结光电探测器器件是一种高性能的宽光谱响应光电探测器。
对比例1:请参考实施例1中单一组分MoS2纳米片光电探测器和PbSe量子点/MoS2纳米片异质结光电探测器器件的制备方法。研究两种不同类型器件在不同波长(波长分别为:405nm、635nm和808nm)入射光照下的光电性能,研究结果如图7所示。由图7结果可以看出,在可见光(405nm和635nm)范围,单一组分MoS2纳米片光电探测器的光电性能较好;但是当入射光波长为808nm时,单一组分MoS2器件的光电性能出现急剧下降,表明单一组分MoS2纳米片光电探测器的光谱响应主要集中在可见光范围。而PbSe量子点/MoS2纳米片异质结光电探测器器件在三种不同波长入射光照下,器件性能明显优于单一组分MoS2器件的性能,且在808nm的近红外光照下,其响应度仍高达19.72A/W。
上述研究结果表明,与单一组分MoS2器件相比较,PbSe/MoS2异质结光电探测器的光电性能得到明显增强,且光谱响应范围从可见光区拓展到近红外光范围(808nm)。这是因为异质结光电探测器在单一组分MoS2器件的基础上,复合了一种由一步法直接合成的具近红外光吸收特性的PbSe量子点,在MoS2纳米片与PbSe量子点的相互协同作用下,拓展器件的光谱响应范围并提升异质结光电探测器器件的光电性能。
对比例2:请参考实施例1中单一组分MoS2纳米片光电探测器和PbSe量子点/MoS2纳米片异质结光电探测器器件的制备方法。固定入射光为635nm波长的可见光,改变入射光功率密度,对比两种不同类型光电探测器的光电性能,对比研究结果如图8所示。
由图8结果可以看出,在入射光波长为635nm的可见光作用下,两种不同类型的光电探测器的响应度均随着入射光功率密度的增加而减小。当光功率密度为20.82μW/cm2时,PbSe量子点/MoS2纳米片异质结光电探测器和单一组分MoS2纳米片光电探测器器件的响应度分别为23.53A/W和14.50A/W;当光功率密为2.44mW/cm2时,PbSe/MoS2异质结光电探测器的响应度增加了5倍。
上述结果表明:与单一组分MoS2纳米片光电探测器相比较,异质结光电探测器的光电性能得到明显的提升。这一结果归因于:在PbSe量子点和MoS2纳米片的相互协同作用下,PbSe/MoS2异质结界面处形成的内建电场,增加界面处的载流子分离与传输效率,从而提升器件的光电性能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种宽光谱响应光电探测器器件,包括基底和传感材料;所述基底包括绝缘层衬底SiO2/Si和金属电极,所述传感材料包括PbSe量子点和二维层状MoS2纳米片;所述光电探测器由下至上依次包括绝缘层衬底SiO2/Si、二维层状MoS2纳米片、金属电极和PbSe量子点,所述绝缘层衬底SiO2/Si中SiO2绝缘层位于Si基底上。
2.根据权利要求1所述的宽光谱响应光电探测器器件,其特征在于:所述绝缘层衬底SiO2/Si中SiO2薄膜层层叠于Si基底表面,SiO2薄膜层厚度为50~500nm。
3.根据权利要求1所述的宽光谱响应光电探测器器件,其特征在于:所述绝缘层衬底SiO2/Si厚度为50~500μm。
4.根据权利要求1所述的宽光谱响应光电探测器器件,其特征在于:用聚对苯二甲酸乙二醇酯或聚酰亚胺替代绝缘层衬底SiO2/Si,其中苯二甲酸乙二醇酯或聚酰亚胺作为柔性基底的厚度为10-200μm。
5.根据权利要求1所述的宽光谱响应光电探测器器件,其特征在于:所述金属电极的材料为Cr、Ti、Au、Ag、Al、Cu、Pt之一;或者为Cr/Au、Ti/Au双层金属;所述金属电极的材料的厚度为10~500nm。
6.一种权利要求1所述的宽光谱响应光电探测器器件,依次包括步骤:
一、在绝缘层衬底SiO2/Si上制备二维层状MoS2纳米片;
二、在MoS2纳米片上利用光刻技术沉积Ti/Au金属层,得到MoS2纳米片光电探测器;
三、在MoS2纳米片光电探测器表面旋涂一层PbSe量子点;
四、器件在真空环境下退火得到PbSe量子点/二维层状MoS2异质结宽光谱响应光电探测器器件。
7.根据权利要求6所述的方法,其特征在于:步骤四中器件在70℃的真空环境下退火10min。
8.根据权利要求7所述的方法,其特征在于:所述PbSe量子点由下述方法制备而成:首先在氮气环境中,将Se源前驱体和PbI2溶解于溶剂中,所得混合溶液在室温条件下搅拌至所有固体物质全部溶解得前驱体溶液;将丁胺快速注入到上述前驱体溶液中,随后反应溶液变黑,保持上述溶液在室温条件下继续反应,之后将所得反应产物转移至氮气充满的手套箱中进行纯化;此后,将作为抗溶剂的丙酮加入反应物溶液中,离心,所得的离心固体产物再次分散于溶液中形成PbSe量子点分散液作为传感材料,用于异质结光电探测器的制备。
CN202110568736.9A 2021-05-25 2021-05-25 一种宽光谱响应光电探测器及其制备方法 Pending CN113410320A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110568736.9A CN113410320A (zh) 2021-05-25 2021-05-25 一种宽光谱响应光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110568736.9A CN113410320A (zh) 2021-05-25 2021-05-25 一种宽光谱响应光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN113410320A true CN113410320A (zh) 2021-09-17

Family

ID=77674729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110568736.9A Pending CN113410320A (zh) 2021-05-25 2021-05-25 一种宽光谱响应光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113410320A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300575A (zh) * 2021-12-24 2022-04-08 江南大学 一种宽光谱硅基-硫化钼异质结光电探测器的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731936A (zh) * 2017-10-20 2018-02-23 电子科技大学 一种基于三维狄拉克材料的隧穿型光电探测器及其制备方法
CN108565301A (zh) * 2018-04-08 2018-09-21 哈尔滨工业大学 基于金属表面等离子诱导双波段响应的光电探测器及制备方法
CN110085700A (zh) * 2019-05-08 2019-08-02 湘潭大学 一种极化与量子点共调控的高光电响应探测器单元
CN110993703A (zh) * 2019-11-27 2020-04-10 中国科学院金属研究所 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
CN112341860A (zh) * 2020-10-28 2021-02-09 华中科技大学 一种快速制备硒化铅PbSe量子点墨水的方法
CN112531049A (zh) * 2020-09-22 2021-03-19 华中科技大学 量子点吸光层及其制备方法、应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731936A (zh) * 2017-10-20 2018-02-23 电子科技大学 一种基于三维狄拉克材料的隧穿型光电探测器及其制备方法
CN108565301A (zh) * 2018-04-08 2018-09-21 哈尔滨工业大学 基于金属表面等离子诱导双波段响应的光电探测器及制备方法
CN110085700A (zh) * 2019-05-08 2019-08-02 湘潭大学 一种极化与量子点共调控的高光电响应探测器单元
CN110993703A (zh) * 2019-11-27 2020-04-10 中国科学院金属研究所 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
CN112531049A (zh) * 2020-09-22 2021-03-19 华中科技大学 量子点吸光层及其制备方法、应用
CN112341860A (zh) * 2020-10-28 2021-02-09 华中科技大学 一种快速制备硒化铅PbSe量子点墨水的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOMINIK KUFER等: "Hybrid 2D-0D MoS2-PbS Quantum Dot Photodetectors", 《ADVANCED MATERIALS》 *
LIU YANG等: "PbSe Quantum Dot Solar Cells Based on Directly Synthesized Semiconductive In", 《ACS ENERGY LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300575A (zh) * 2021-12-24 2022-04-08 江南大学 一种宽光谱硅基-硫化钼异质结光电探测器的制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Xie et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications
Sun et al. Recent advances in group III–V nanowire infrared detectors
US20040183070A1 (en) Solution processed pentacene-acceptor heterojunctions in diodes, photodiodes, and photovoltaic cells and method of making same
US20080041447A1 (en) Photovoltaic Devices with Nanostructure/Conjugated Polymer Hybrid Layer and its Matched Electron Transporting Layer
US20080230120A1 (en) Photovoltaic device with nanostructured layers
JP2009532851A (ja) ナノ粒子増感ナノ構造太陽電池
Sulaman et al. High performance solution-processed infrared photodiode based on ternary PbS x Se 1− x colloidal quantum dots
CN1643702A (zh) 半导体-纳米晶体/共轭聚合物薄膜
Chu et al. Improved UV-sensing of Au-decorated ZnO nanostructure MSM photodetectors
Qiao et al. Strategies for enhancing conductivity of colloidal nanocrystals and their photoelectronic applications
Adhikari et al. Structural, optical, electrochemical and photovoltaic studies of spider web like silver indium diselenide quantum dots synthesized by ligand mediated colloidal sol-gel approach
CN113257932B (zh) 一种高性能的光电探测器及其制备方法
CN113410320A (zh) 一种宽光谱响应光电探测器及其制备方法
JP6008736B2 (ja) 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタおよび電子デバイス
KR20120121113A (ko) 태양전지 셀의 제조방법
US20150364708A1 (en) Plasmonic organic photovoltaic cell using induced dipole polymer-metal nanoparticle hybrid and fabrication process thereof
Jahromi et al. A pin-hole free architecture for vertical infrared photodetectors based on thin-film organic/inorganic hybrid nanocomposite
Song et al. Self-powered photodetectors based on a ZnTe–TeO 2 composite/Si heterojunction with ultra-broadband and high responsivity
Zhao et al. Broadband photodetectors with enhanced performance in UV–Vis–NIR band based on PbS quantum dots/ZnO film heterostructure
Qian et al. Self-assembly low dimensional inorganic/organic heterojunction nanomaterials
Goodnick et al. Solar cells
CN114702948A (zh) 红外量子点层及其制备方法、红外感光元件及其制备方法
Зейниденов et al. Influence of structural features of ZnO films on optical and photoelectric characteristics of inverted polymer solar elements
Jabeen et al. Photovoltaic performance of P3HT-porphyrin functionalized 1D CdS nanostructured organic inorganic bulk heterojunction hybrid solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210917