CN113406044A - 一种利用液态金属针尖实现面积可控的自功率光电探测方法 - Google Patents
一种利用液态金属针尖实现面积可控的自功率光电探测方法 Download PDFInfo
- Publication number
- CN113406044A CN113406044A CN202110689407.XA CN202110689407A CN113406044A CN 113406044 A CN113406044 A CN 113406044A CN 202110689407 A CN202110689407 A CN 202110689407A CN 113406044 A CN113406044 A CN 113406044A
- Authority
- CN
- China
- Prior art keywords
- egain
- needle tip
- photoelectric detection
- structural arrangement
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
一种利用液态金属针尖实现面积可控的自功率光电探测方法,通过使用液态金属镓铟合金(EGaIn)针尖,金属膜(Au or Ag),和n型硅基底结构,在405 nm紫光或660 nm红光照射下,通过金属膜传导n型硅产生的光生载流子,可以提高光响应并实现自功率特性,通过压电控制EGaIn针尖和金属膜的微纳米级接触面积来实现I‑V曲线的调控,该技术对未来微型针尖阵列集成可变自功率光电探测器件提供了新的方法手段。
Description
技术领域
本发明属于一种利用液态金属针尖实现面积可控的自功率光电探测方法,涉及半导体、纳米材料、光学等诸多领域。
背景技术
随着半导体技术的快速发展,各种各样新型的光电探测器应运而生。然而,目前的光电探测器一旦结构成型后,就很难调控其性能,从而满足不同的应用条件。而且,它们往往需要外加电源,来保证器件的正常工作。液态金属共晶镓铟合金 (EGaIn) 由于其高导热性和导电性,良好的自愈能力和延展性被认为是制备软微电子器件最有前景的材料之一。由于造成吉布斯自由能最大降低的氧化物将主导合金表面,镓铟合金表面氧化物主要为分布在最外层的具有宽带隙 (~4.9eV) 的Ga2O3 [1],使其具有非牛顿特性,从而可以成形为拥有小曲率半径圆锥形尖端 [2]。利用液态金属的可形变性,同时结合当今应用最广的半导体硅材料,则有望形成接触面积可控的无损伤的自功率光电探测器。
参考文献
[1] Zavabeti, A.;Ou, J. Z.;Carey, B. J.;Syed, N.;Orrell-Trigg, R.;Mayes, E. L. H.;Xu, C.;Kavehei, O.;O’Mullane, A. P.;Kaner, R. B.;Kalantar-zadeh, K.; Daeneke, T., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 2017,358(6361), 332-335.
[2] Chen, X.; Hu, H.; Trasobares, J.; Nijhuis, C. A., RectificationRatio and Tunneling Decay Coefficient Depend on the Contact Geometry Revealedby in Situ Imaging of the Formation of EGaIn Junctions. ACS Appl. Mater. Interfaces 2019,11 (23), 21018-21029。
发明内容
本发明要解决的技术问题是提供一种新型的器件结构,即利用EGaIn 针尖,金属膜 (Au or Ag),和n型硅基底结构,通过压电控制EGaIn针尖和金属膜的微纳米级接触面积实现器件自功率性能的调控。
本发明的目的是这样实现的:
一种利用液态金属针尖实现面积可控的自功率光电探测方法,由n型硅基底,约60nm的Au or Ag 膜,EGaIn针尖组成,其特征在于:液态金属EGaIn电极的自适应变形可确保电极与镀有金属膜的基底接触,而不会损坏基底;同时,制备的针尖尖端的尺寸为微米级别,通过压电可以很好地控制针尖和基底的微纳米级接触面积,从而为之后光照下电流-电压 (I-V) 曲线的调控提供了保证。
本发明的优点在于:
该方法实验装置简单,便于实现。利用液态金属电极EGaIn实现面积可控光电性能的测量,巧妙利用EGaIn针尖表面的Ga2O3层作为中间层,硅基底作为光吸收层,通过回路中的金属层快速传导硅基底的光生载流子,实现器件高性能。同时,它还具有自功率特性,即不需要施加偏压就可以工作,具有节能功能。而且动态调节器件光电性能提供了一种新思路,有望被应用于不同的光电探测场景。
附图说明
为了使本发明的目的和技术方案更加清楚,下面将结合附图对本发明作进一步的详细描述:
图1利用液态金属针尖实现面积可控的自功率光电探测方法示意图。
图1:1是光源,即405 nm紫光或660 nm红光;2是 EGaIn针尖;3是约60 nm金属层(Au or Ag);4是硅基底,5是压电装置。
图2是实施例中EGaIn针尖和镀有Ag膜的硅基底小面积接触时在黑暗和红光光照下的I-V曲线。
图3是实施例中EGaIn针尖和镀有Ag膜的硅基底大面积接触时在黑暗和红光光照下的I-V曲线。
图4是实施例中EGaIn针尖和镀有Ag膜的硅基底不同面积结接触时2V偏压下的动态I-t曲线。
图5是实施例中EGaIn针尖和镀有Ag膜的硅基底不同面积结接触时0V偏压下的动态I-t曲线。
图6是实施例中EGaIn针尖和镀有Ag膜的硅基底小面积接触时在黑暗和红光或紫光光照下的I-V曲线。
具体实施方式
提供了面积可控的光电探测的测量结构,结果和原理示意图,具体请参阅图1~图6。
下面结合附图1,对本发明的具体实施方式作详细说明。
实施列:首先从气密性良好的针管中挤出一滴EGaIn (2),通过与磁控溅射的镀金硅基底接触,并控制压电装置 (5) 分离从而形成锥形针尖,然后固定针尖位置,采用另一片镀金或银的n-Si作为测试样品,通过压电 (5) 控制基底上升,调控EGaIn针尖与基底接触面积,并用660 nm的红光光源 (1) 照射,可以实现I-V曲线的操控。并在同样接触面积下,采用405 nm的紫光光源 (1),可以明显看出I-V响应的差异。
图2为镀有Ag膜的硅基底上小面积结接触时,黑暗和660nm红光光照下的I-V曲线,可以看到该结构存在光响应。
图3为在图2条件下,通过压电继续控制基板上移,形成大面积微米结时,黑暗和红光光照下的I-V曲线,可以看到此时I-V曲线的形状发生了明显的变化,这表明可以通过控制接触面积来调控器件的光响应特性。
图4和图5分别是EGaIn针尖和镀有Ag膜的硅基底不同面积结接触时在2 V偏压下和0 V偏压下的动态电流-时间 (I-t) 曲线。可以看到器件存在自功率行为,呈现稳定良好的红光光响应,并且响应时间均小于50 ms。
图6为在图2条件下,不同波长的光,即紫光405 nm或红光660 nm光照下,器件结构的I-V响应,可以看到,该器件对于不同波长的光,存在不同的光响应行为。
虽然结合目前认为最实际且最佳的实施例描述本发明,不过本发明不限于所公开的实施例,而意在覆盖所附权利要求的精神和范围之内的多种变形和等效装置。
Claims (8)
1.一种由镓铟合金 (EGaIn) 针尖,金属膜 (Au or Ag ),和表面仅有1-3 nm的自然氧化层的n型硅基底组成的结构。
2.根据权利要求1所描述的结构装置,其特征在于:电极材料之一为液态金属针尖EGaIn,通过针管来制备此电极。
3.根据权利要求1所描述的结构装置,其特征在于:另一个电极材料为通过磁控溅射在大小为1.0 cm*1.0 cm的n型硅基底上镀的约60 nm的Au或Ag膜。
4.根据权利要求1所描述的结构装置,其特征在于:电极引线一段接在EGaIn 针尖上,一端接在金属膜基底上,电流通过EGaIn, Au or Ag构成闭合回路。
5.根据权利要求1所描述的结构装置,其特征在于:固定EGaIn针尖位置,通过压电装置来控制基底上升或下降,从而控制不同面积结的形成。
6.根据权利要求1所描述的结构装置,其特征在于:在室温下使用405 nm或者660 nm波长的半导体激光器进行测量,能够实现良好的光电探测,对不同的波长有明显不同的响应特性。
7.根据权利要求1所描述的结构装置,其特征在于:不同面积结在光照下能够实现自功率光电探测,而不需要外加偏压。
8.根据权利要求1所描述的结构装置,其特征在于:660 nm红光照条件下测量的电流-电压(I-V) 曲线,可以通过EGaIn针尖和基底的微纳米级接触面积调控,而且小面积结的I-V曲线还可以通过更换光源波长 (405nm紫光) 来调控。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110689407.XA CN113406044B (zh) | 2021-06-22 | 2021-06-22 | 一种利用液态金属针尖实现面积可控的自功率光电探测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110689407.XA CN113406044B (zh) | 2021-06-22 | 2021-06-22 | 一种利用液态金属针尖实现面积可控的自功率光电探测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113406044A true CN113406044A (zh) | 2021-09-17 |
CN113406044B CN113406044B (zh) | 2023-02-28 |
Family
ID=77682147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110689407.XA Active CN113406044B (zh) | 2021-06-22 | 2021-06-22 | 一种利用液态金属针尖实现面积可控的自功率光电探测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113406044B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117753943A (zh) * | 2023-12-11 | 2024-03-26 | 天津大学 | 一种用于微纳器件电学接触的EGaIn探针的制备方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5929438A (en) * | 1994-08-12 | 1999-07-27 | Nikon Corporation | Cantilever and measuring apparatus using it |
US20030129813A1 (en) * | 2002-01-04 | 2003-07-10 | Rutgers, The State University Of New Jersey | Schottky diode with silver layer contacting the ZnO and MgxZn1-xO films |
JP2004084013A (ja) * | 2002-08-27 | 2004-03-18 | Japan Science & Technology Corp | 無電解めっき方法及び光プローブ |
US20180113032A1 (en) * | 2016-10-11 | 2018-04-26 | North Carolina State University | Flexible stretchable capacitive sensor |
RU2660418C1 (ru) * | 2017-06-23 | 2018-07-06 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) | Зонд для сканирующей зондовой микроскопии и способ его изготовления (варианты) |
US10129975B1 (en) * | 2017-03-31 | 2018-11-13 | The United States Of America As Represented By The Secretary Of The Air Force | Liquid metal interfaces for flexible and reconfigurable electronics |
WO2019017561A1 (ko) * | 2017-07-20 | 2019-01-24 | 고려대학교 산학협력단 | 액체금속 전극 및 이의 제조방법 |
KR20200043131A (ko) * | 2018-10-17 | 2020-04-27 | 고려대학교 산학협력단 | 액체 금속 공융 갈륨인듐 전극을 기반으로 하는 열전 측정 시스템 및 열전 소자 |
US20200136005A1 (en) * | 2018-10-26 | 2020-04-30 | Nano And Advanced Materials Institute Limited | Flexible thermoelectric generator and method for fabricating the same |
CN111812176A (zh) * | 2020-07-09 | 2020-10-23 | 哈尔滨工业大学(深圳) | 一种基于液态金属纳米墨水的柔性生物电极及其制备方法 |
CN112151220A (zh) * | 2020-09-14 | 2020-12-29 | 中国科学院宁波材料技术与工程研究所 | 一种丝状液态金属的制备方法 |
CN112331737A (zh) * | 2020-10-30 | 2021-02-05 | 苏州大学 | 一种紫外-可见-近红外硅基光电探测器及其制备方法 |
US20210280408A1 (en) * | 2018-07-11 | 2021-09-09 | Micromass Uk Limited | Impact ionisation ion source |
-
2021
- 2021-06-22 CN CN202110689407.XA patent/CN113406044B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5929438A (en) * | 1994-08-12 | 1999-07-27 | Nikon Corporation | Cantilever and measuring apparatus using it |
US20030129813A1 (en) * | 2002-01-04 | 2003-07-10 | Rutgers, The State University Of New Jersey | Schottky diode with silver layer contacting the ZnO and MgxZn1-xO films |
JP2004084013A (ja) * | 2002-08-27 | 2004-03-18 | Japan Science & Technology Corp | 無電解めっき方法及び光プローブ |
US20180113032A1 (en) * | 2016-10-11 | 2018-04-26 | North Carolina State University | Flexible stretchable capacitive sensor |
US10129975B1 (en) * | 2017-03-31 | 2018-11-13 | The United States Of America As Represented By The Secretary Of The Air Force | Liquid metal interfaces for flexible and reconfigurable electronics |
RU2660418C1 (ru) * | 2017-06-23 | 2018-07-06 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) | Зонд для сканирующей зондовой микроскопии и способ его изготовления (варианты) |
WO2019017561A1 (ko) * | 2017-07-20 | 2019-01-24 | 고려대학교 산학협력단 | 액체금속 전극 및 이의 제조방법 |
US20210280408A1 (en) * | 2018-07-11 | 2021-09-09 | Micromass Uk Limited | Impact ionisation ion source |
KR20200043131A (ko) * | 2018-10-17 | 2020-04-27 | 고려대학교 산학협력단 | 액체 금속 공융 갈륨인듐 전극을 기반으로 하는 열전 측정 시스템 및 열전 소자 |
US20200136005A1 (en) * | 2018-10-26 | 2020-04-30 | Nano And Advanced Materials Institute Limited | Flexible thermoelectric generator and method for fabricating the same |
CN111812176A (zh) * | 2020-07-09 | 2020-10-23 | 哈尔滨工业大学(深圳) | 一种基于液态金属纳米墨水的柔性生物电极及其制备方法 |
CN112151220A (zh) * | 2020-09-14 | 2020-12-29 | 中国科学院宁波材料技术与工程研究所 | 一种丝状液态金属的制备方法 |
CN112331737A (zh) * | 2020-10-30 | 2021-02-05 | 苏州大学 | 一种紫外-可见-近红外硅基光电探测器及其制备方法 |
Non-Patent Citations (2)
Title |
---|
PHILIPP ROTHEMUND: "Influence of the Contact Area on the Current Density across Molecular Tunneling Junctions Measured with EGaIn Top-Electrodes", 《CHEMISTRY OF MATERIALS》 * |
ZHIBIN ZHAO: "Crystal Size Effect on Carrier Transport of Microscale Perovskite Junctions via Soft Contact", 《NANO LETTERS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117753943A (zh) * | 2023-12-11 | 2024-03-26 | 天津大学 | 一种用于微纳器件电学接触的EGaIn探针的制备方法 |
CN117753943B (zh) * | 2023-12-11 | 2024-07-12 | 天津大学 | 一种用于微纳器件电学接触的EGaIn探针的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113406044B (zh) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107749433B (zh) | 一种二维范德华异质结光电探测器及其制备方法 | |
Aldalbahi et al. | A new approach for fabrications of SiC based photodetectors | |
Silva et al. | High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions | |
CN107564992B (zh) | 一种快速响应的半导体异质结紫外光探测器及其制作方法 | |
Fakhri et al. | Responsivity and response time of nano silver oxide on silicon heterojunction detector | |
CN207529954U (zh) | 一种二维范德华异质结光电探测器 | |
Kumar et al. | Visible-blind Au/ZnO quantum dots-based highly sensitive and spectrum selective Schottky photodiode | |
CN111613691B (zh) | 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法 | |
Zhang et al. | Toward smart flexible self-powered near-UV photodetector of amorphous Ga2O3 nanosheet | |
CN111312829A (zh) | 一种高灵敏的负电容场效应管光电探测器及制备方法 | |
Mandavkar et al. | Significantly improved photo carrier injection by the MoS2/ZnO/HNP hybrid UV photodetector architecture | |
CN113406044B (zh) | 一种利用液态金属针尖实现面积可控的自功率光电探测方法 | |
CN110473928A (zh) | 多通道全硅基红外光热电探测器及其制作方法 | |
TW202017219A (zh) | 半導體結構、光電器件、光探測器及光譜儀 | |
Yu et al. | Recent advances in wide-spectrum photodetectors based on low-dimensional semiconductors | |
Jayalakshmi et al. | High-performance UV surface photodetector based on plasmonic Ni nanoparticles-decorated hexagonal-faceted ZnO nanorod arrays architecture | |
Dawood et al. | Some of Electrical and Detection properties of nano silver oxide | |
CN209434186U (zh) | 一种基于硒化铟晶体管的氧化锌压电传感器 | |
Huang et al. | Self-powered ultraviolet photodetector based on CuGaO/ZnSO heterojunction | |
Huang et al. | Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes | |
El-Nahass et al. | Fabrication and electrical characterization of n-1, 3, 3-trimethylindolino-β-naphthopyrylospiran/p-Si (organic/inorganic) heterojunction for application in photovoltaic device | |
CN106206829A (zh) | 一种基于锰掺杂氮化铜薄膜的可见光探测器 | |
Singh et al. | Interdigitated electrodes connected WO3 nanowire arrays for high performance UV photodetection | |
CN112447858B (zh) | 结型场效应晶体管及其制备方法 | |
Teker et al. | Improving detectivity of self-powered GaN ultraviolet photodetector by nickel nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |