CN113398781B - A kind of microporous membrane material, preparation method and application thereof - Google Patents
A kind of microporous membrane material, preparation method and application thereof Download PDFInfo
- Publication number
- CN113398781B CN113398781B CN202110678200.2A CN202110678200A CN113398781B CN 113398781 B CN113398781 B CN 113398781B CN 202110678200 A CN202110678200 A CN 202110678200A CN 113398781 B CN113398781 B CN 113398781B
- Authority
- CN
- China
- Prior art keywords
- filter membrane
- solution
- preparation
- ethanol
- microporous filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 87
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- 239000012982 microporous membrane Substances 0.000 title claims description 61
- 239000012528 membrane Substances 0.000 claims abstract description 182
- 239000004952 Polyamide Substances 0.000 claims abstract description 111
- 229920002647 polyamide Polymers 0.000 claims abstract description 111
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 claims abstract description 46
- 239000012488 sample solution Substances 0.000 claims abstract description 43
- 238000007112 amidation reaction Methods 0.000 claims abstract description 34
- 235000013305 food Nutrition 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 161
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 69
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 64
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 60
- 238000006460 hydrolysis reaction Methods 0.000 claims description 42
- 230000007062 hydrolysis Effects 0.000 claims description 38
- 239000005711 Benzoic acid Substances 0.000 claims description 34
- 235000010233 benzoic acid Nutrition 0.000 claims description 34
- 238000005406 washing Methods 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000012670 alkaline solution Substances 0.000 claims description 17
- 125000003277 amino group Chemical group 0.000 claims description 14
- CNLSPQQMAJCIFB-UHFFFAOYSA-N benzoic acid;ethanol Chemical compound CCO.OC(=O)C1=CC=CC=C1 CNLSPQQMAJCIFB-UHFFFAOYSA-N 0.000 claims description 14
- 238000009210 therapy by ultrasound Methods 0.000 claims description 12
- 230000035484 reaction time Effects 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 abstract description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 abstract description 19
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 abstract description 16
- 238000001179 sorption measurement Methods 0.000 abstract description 16
- 238000001914 filtration Methods 0.000 abstract description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 12
- 239000012535 impurity Substances 0.000 abstract description 12
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 abstract description 9
- 231100000678 Mycotoxin Toxicity 0.000 description 28
- 239000002636 mycotoxin Substances 0.000 description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 25
- DGMPVYSXXIOGJY-UHFFFAOYSA-N Fusaric acid Chemical compound CCCCC1=CC=C(C(O)=O)N=C1 DGMPVYSXXIOGJY-UHFFFAOYSA-N 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 16
- 238000011084 recovery Methods 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 14
- UVBUBMSSQKOIBE-DSLOAKGESA-N fumonisin B1 Chemical compound OC(=O)C[C@@H](C(O)=O)CC(=O)O[C@H]([C@H](C)CCCC)[C@@H](OC(=O)C[C@@H](CC(O)=O)C(O)=O)C[C@@H](C)C[C@H](O)CCCC[C@@H](O)C[C@H](O)[C@H](C)N UVBUBMSSQKOIBE-DSLOAKGESA-N 0.000 description 13
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 13
- QZIADBYRQILELJ-UHFFFAOYSA-N fumonisin B1 Natural products CCCCC(C)C(OC(=O)CC(CC(=O)O)C(=O)O)C(C)(CC(C)CC(O)CCCCC(O)CC(O)C(C)N)OC(=O)CC(CC(=O)O)C(=O)O QZIADBYRQILELJ-UHFFFAOYSA-N 0.000 description 12
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 12
- 229960000951 mycophenolic acid Drugs 0.000 description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 11
- 240000008042 Zea mays Species 0.000 description 8
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 235000005822 corn Nutrition 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- 238000004807 desolvation Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000012224 working solution Substances 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005374 membrane filtration Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000009781 safety test method Methods 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- HUEJLTLLAWSGRU-UHFFFAOYSA-N benzoic acid;methanol Chemical compound OC.OC(=O)C1=CC=CC=C1 HUEJLTLLAWSGRU-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- 101000610640 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp3 Proteins 0.000 description 2
- 101001110823 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-A Proteins 0.000 description 2
- 101000712176 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-B Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102100040374 U4/U6 small nuclear ribonucleoprotein Prp3 Human genes 0.000 description 2
- 238000010811 Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Methods 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 238000002552 multiple reaction monitoring Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- WNPVZANXRCPJPW-UHFFFAOYSA-N 5-[isocyano-(4-methylphenyl)sulfonylmethyl]-1,2,3-trimethoxybenzene Chemical compound COC1=C(OC)C(OC)=CC(C([N+]#[C-])S(=O)(=O)C=2C=CC(C)=CC=2)=C1 WNPVZANXRCPJPW-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- YCOFRPYSZKIPBQ-UHFFFAOYSA-N penicillic acid Natural products COC1=CC(=O)OC1(O)C(C)=C YCOFRPYSZKIPBQ-UHFFFAOYSA-N 0.000 description 1
- VOUGEZYPVGAPBB-UHFFFAOYSA-N penicillin acid Natural products OC(=O)C=C(OC)C(=O)C(C)=C VOUGEZYPVGAPBB-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000001946 ultra-performance liquid chromatography-mass spectrometry Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/18—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/34—Purifying; Cleaning
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
技术领域technical field
本发明涉及微孔滤膜材料技术领域,具体而言,涉及一种微孔滤膜材料及其制备方法与应用。The invention relates to the technical field of microporous filter membrane materials, in particular, to a microporous filter membrane material and a preparation method and application thereof.
背景技术Background technique
在食品安全样品检测中,食品样本一般会经过提取、净化、浓缩、复溶、过滤等前处理步骤,然后获得供分析仪器测定用的样品溶液。In the detection of food safety samples, food samples generally undergo pretreatment steps such as extraction, purification, concentration, reconstitution, and filtration, and then obtain a sample solution for analysis by analytical instruments.
食品样本中待测目标物的提取一般采用乙腈、甲醇等有机溶剂,样品提取液经净化后,进一步通过浓缩过程挥发掉有机溶剂,再用含一定比例水相的溶液(如水-乙腈、水-甲醇等)溶解固体残渣。但是,溶液中水相的存在往往会导致样品残渣无法完全溶解,从而产生不溶性的固体微粒,使复溶后的样品溶液变成浑浊的悬浮液。The extraction of the target substance in food samples generally uses organic solvents such as acetonitrile and methanol. After the sample extract is purified, the organic solvent is further evaporated through the concentration process, and then a solution containing a certain proportion of aqueous phase (such as water-acetonitrile, water- Methanol, etc.) to dissolve the solid residue. However, the presence of aqueous phase in the solution often leads to the incomplete dissolution of sample residues, resulting in insoluble solid particles, and the reconstituted sample solution becomes a cloudy suspension.
因此,对样品溶液的过滤是一个关键步骤。过滤的目的在于通过筛孔截留作用,去除样品溶液中存在的颗粒杂质,从而避免这些颗粒杂质对分析仪器的损害(如堵塞管路、堵塞色谱柱、堵塞进样针、污染喷雾器等),并减少杂质对后续仪器检测信号的干扰。Therefore, filtration of the sample solution is a critical step. The purpose of filtration is to remove the particulate impurities in the sample solution through the sieve interception, so as to avoid the damage of these particulate impurities to the analytical instrument (such as blocking the pipeline, blocking the chromatographic column, blocking the injection needle, contaminating the sprayer, etc.), and Reduce the interference of impurities on subsequent instrument detection signals.
目前,样品溶液过滤主要采用微孔滤膜的方式,滤膜材质包括聚酰胺、偏二氟乙烯、聚四氟乙烯等。其中,聚酰胺(俗称“尼龙”)滤膜由于合成工艺简单、成本低廉、机械强度高、耐有机溶剂等优点,在实际中应用最为广泛。但是,聚酰胺膜在截留固体颗粒杂质的同时,也可能吸附溶液中待测的含羧基或羟基的目标化合物。从而,导致这类化合物检测结果不稳定,回收率降低。At present, the filtration of sample solution mainly adopts the method of microporous membrane, and the membrane material includes polyamide, vinylidene fluoride, polytetrafluoroethylene, etc. Among them, polyamide (commonly known as "nylon") filter membrane is the most widely used in practice due to its advantages of simple synthesis process, low cost, high mechanical strength, and resistance to organic solvents. However, the polyamide membrane may also adsorb the target compounds containing carboxyl or hydroxyl groups to be detected in the solution while retaining the solid particle impurities. As a result, the detection results of such compounds are unstable and the recovery rate is reduced.
鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容SUMMARY OF THE INVENTION
本发明的目的之一在于提供一种微孔滤膜材料,其能够在有效截留样品溶液中颗粒物杂质的同时,避免传统聚酰胺微孔滤膜在水-甲醇或水-乙腈溶液体系中对含羧基或羟基目标化合物的吸附。One of the objectives of the present invention is to provide a microporous membrane material, which can effectively retain particulate impurities in a sample solution while avoiding the traditional polyamide microporous membrane in the water-methanol or water-acetonitrile solution system. Adsorption of carboxyl or hydroxyl target compounds.
本发明的目的之二在于提供一种上述微孔滤膜材料的制备方法。Another object of the present invention is to provide a preparation method of the above-mentioned microporous membrane material.
本发明的目的之三在于提供一种上述微孔滤膜材料的应用,如用于对样品溶液进行过滤。The third object of the present invention is to provide an application of the above-mentioned microporous membrane material, such as for filtering a sample solution.
本发明的目的之四在于提供一种含有上述微孔滤膜材料的微孔滤膜。The fourth object of the present invention is to provide a microporous filter membrane containing the above-mentioned microporous filter membrane material.
本发明的目的之五在于提供一种上述微孔滤膜的应用,如用于对样品溶液进行过滤。The fifth object of the present invention is to provide an application of the above-mentioned microporous filter membrane, such as for filtering a sample solution.
本发明可这样实现:The present invention can be realized as follows:
第一方面,本发明提供一种微孔滤膜材料,其由聚酰胺滤膜经水解得到的水解聚酰胺滤膜进行酰胺化反应形成苯甲酰基后制得。In a first aspect, the present invention provides a microporous filter membrane material, which is prepared from a hydrolyzed polyamide filter membrane obtained by hydrolysis of a polyamide filter membrane and subjected to an amidation reaction to form a benzoyl group.
在可选的实施方式中,微孔滤膜材料中聚酰胺滤膜的孔径为0.2-0.5μm。In an optional embodiment, the pore size of the polyamide filter in the microporous filter material is 0.2-0.5 μm.
第二方面,本发明提供如前述实施方式的微孔滤膜材料的制备方法,包括以下步骤:将聚酰胺滤膜经水解得到的水解聚酰胺滤膜进行酰胺化反应形成苯甲酰基。In a second aspect, the present invention provides a method for preparing a microporous filter membrane material according to the aforementioned embodiment, comprising the following steps: subjecting a hydrolyzed polyamide filter membrane obtained by hydrolysis of the polyamide filter membrane to an amidation reaction to form a benzoyl group.
在可选的实施方式中,将水解聚酰胺滤膜与苯甲酸混合以使水解聚酰胺滤膜中的氨基与苯甲酸反应形成苯甲酰基,得到苯甲酰基表面修饰的微孔滤膜材料。In an optional embodiment, the hydrolyzed polyamide filter membrane is mixed with benzoic acid so that the amino groups in the hydrolyzed polyamide filter membrane react with benzoic acid to form a benzoyl group to obtain a benzoyl group surface-modified microporous filter membrane material.
在可选的实施方式中,水解包括:将聚酰胺滤膜在碱性溶液中进行水解,形成水解聚酰胺滤膜。In an optional embodiment, the hydrolysis includes: hydrolyzing the polyamide filter membrane in an alkaline solution to form a hydrolyzed polyamide filter membrane.
在可选的实施方式中,碱性溶液中的溶质包括氢氧化钠或氢氧化钾,碱性溶液中的溶剂包括水、乙醇-水溶液、甲醇-水溶液或乙腈-水溶液。In an alternative embodiment, the solute in the alkaline solution includes sodium hydroxide or potassium hydroxide, and the solvent in the alkaline solution includes water, ethanol-water solution, methanol-water solution, or acetonitrile-water solution.
在优选的实施方式中,碱性溶液由氢氧化钠溶于乙醇-水溶液得到。In a preferred embodiment, the alkaline solution is obtained by dissolving sodium hydroxide in an ethanol-water solution.
在可选的实施方式中,氢氧化钠在乙醇-水溶液中的浓度为0.01-0.1mol/L,优选为0.05mol/L。In an optional embodiment, the concentration of sodium hydroxide in the ethanol-water solution is 0.01-0.1 mol/L, preferably 0.05 mol/L.
在可选的实施方式中,乙醇在乙醇-水溶液中的浓度为80-95vt%,优选为95vt%。In an alternative embodiment, the concentration of ethanol in the ethanol-water solution is 80-95 vt%, preferably 95 vt%.
在可选的实施方式中,水解温度为20-80℃,优选为60℃。In an alternative embodiment, the hydrolysis temperature is 20-80°C, preferably 60°C.
在可选的实施方式中,水解时间为10-30min,优选为20min。In an optional embodiment, the hydrolysis time is 10-30 min, preferably 20 min.
在可选的实施方式中,水解是在震荡条件下进行。In an alternative embodiment, the hydrolysis is performed under shaking conditions.
在可选的实施方式中,制备方法还包括:除去水解聚酰胺滤膜表面残留的氢氧化钠。In an optional embodiment, the preparation method further comprises: removing the residual sodium hydroxide on the surface of the hydrolyzed polyamide filter membrane.
在可选的实施方式中,除去氢氧化钠包括:将水解聚酰胺滤膜浸泡于第一洗涤液中,超声处理。In an optional embodiment, removing the sodium hydroxide comprises: immersing the hydrolyzed polyamide filter membrane in the first washing solution and performing ultrasonic treatment.
在可选的实施方式中,第一洗涤液为水或乙醇-水溶液,优选为45-55vt%的乙醇-水溶液,更优为50vt%的乙醇-水溶液。In an optional embodiment, the first washing solution is water or ethanol-water solution, preferably 45-55 vt% ethanol-water solution, more preferably 50 vt% ethanol-water solution.
在可选的实施方式中,洗涤包括:将水解聚酰胺滤膜浸泡于50vt%的乙醇-水溶液中,超声处理后,除去乙醇-水溶液。In an optional embodiment, the washing comprises: soaking the hydrolyzed polyamide filter membrane in a 50 vt% ethanol-water solution, and after ultrasonic treatment, removing the ethanol-water solution.
在可选的实施方式中,酰胺化反应是将洗涤后的水解聚酰胺滤膜与含苯甲酸的溶液进行反应。In an optional embodiment, the amidation reaction is to react the washed hydrolyzed polyamide filter membrane with a solution containing benzoic acid.
在可选的实施方式中,含苯甲酸的溶液为苯甲酸-乙醇溶液或苯甲酸-甲醇溶液。In an optional embodiment, the benzoic acid-containing solution is a benzoic acid-ethanol solution or a benzoic acid-methanol solution.
在优选的实施方式中,含苯甲酸的溶液为苯甲酸-乙醇溶液。In a preferred embodiment, the benzoic acid-containing solution is a benzoic acid-ethanol solution.
在可选的实施方式中,苯甲酸-乙醇溶液中苯甲酸的浓度为1-5vt%,优选为5vt%。In an optional embodiment, the concentration of benzoic acid in the benzoic acid-ethanol solution is 1-5 vt%, preferably 5 vt%.
在可选的实施方式中,酰胺化反应温度为50-90℃,优选为80℃。In an alternative embodiment, the amidation reaction temperature is 50-90°C, preferably 80°C.
在可选的实施方式中,酰胺化反应时间为20-60min,优选为40min。In an optional embodiment, the amidation reaction time is 20-60 min, preferably 40 min.
在可选的实施方式中,制备方法还包括将苯甲酰基表面修饰的微孔滤膜材料洗涤至中性。In an optional embodiment, the preparation method further comprises washing the benzoyl surface-modified microporous filter material to neutrality.
在可选的实施方式中,洗涤包括:将苯甲酰基表面修饰的微孔滤膜材料浸泡于第二洗涤液中,超声处理。In an optional embodiment, the washing includes: soaking the benzoyl-surface-modified microporous filter membrane material in a second washing solution, and performing ultrasonic treatment.
在可选的实施方式中,第二洗涤液包括水或乙醇-水溶液,优选为45-55vt%的乙醇-水溶液,更优为50vt%的乙醇-水溶液。In an optional embodiment, the second washing solution comprises water or ethanol-water solution, preferably 45-55 vt% ethanol-water solution, more preferably 50 vt% ethanol-water solution.
在可选的实施方式中,将苯甲酰基表面修饰的微孔滤膜材料浸泡于50vt%的乙醇-水溶液中,超声处理后,除去乙醇-水溶液。In an optional embodiment, the benzoyl-surface-modified microporous membrane material is immersed in a 50 vt% ethanol-water solution, and after ultrasonic treatment, the ethanol-water solution is removed.
在可选的实施方式中,制备方法还包括:将洗涤至中性的苯甲酰基表面修饰的微孔滤膜材料进行干燥。In an optional embodiment, the preparation method further includes: drying the benzoyl-surface-modified microporous filter membrane material washed to neutrality.
在可选的实施方式中,干燥是于45-55℃的条件下进行50-70min,优选于50℃的条件下进行60min。In an alternative embodiment, drying is performed at 45-55°C for 50-70 minutes, preferably 50°C for 60 minutes.
第三方面,本发明提供如前述实施方式的微孔滤膜材料的应用,如用于对样品溶液进行过滤。In a third aspect, the present invention provides the application of the microporous membrane material according to the foregoing embodiments, such as for filtering a sample solution.
在可选的实施方式中,样品溶液为用于食品安全检测的样品溶液。In an optional embodiment, the sample solution is a sample solution for food safety testing.
第四方面,本发明提供一种微孔滤膜,其包括前述实施方式的微孔滤膜材料。In a fourth aspect, the present invention provides a microporous filter membrane comprising the microporous filter membrane material of the foregoing embodiments.
在可选的实施方式中,微孔滤膜为针筒式微孔滤膜。In an optional embodiment, the microporous filter membrane is a syringe-type microporous filter membrane.
在可选的实施方式中,针筒式微孔滤膜包括相互配合扣合的上壳体和下壳体,微孔滤膜材料夹设于上壳体与下壳体之间。In an optional embodiment, the syringe-type microporous filter membrane includes an upper shell and a lower shell that are engaged with each other, and the microporous membrane material is sandwiched between the upper shell and the lower shell.
在可选的实施方式中,针筒式微孔滤膜还包括与上壳体连接的注射器接口,注射器接口与微孔滤膜材料不平行且不共线。In an optional embodiment, the syringe-type microporous filter membrane further includes a syringe interface connected to the upper housing, and the syringe interface and the microporous filter membrane material are not parallel and not collinear.
在可选的实施方式中,针筒式微孔滤膜还包括与下壳体连接的针栓接口,针栓接口与微孔滤膜材料不平行且不共线。In an optional embodiment, the syringe-type microporous filter membrane further comprises a needle plug interface connected with the lower housing, and the needle plug interface and the microporous filter membrane material are not parallel and not collinear.
第五方面,本发明提供如前述实施方式的微孔滤膜的应用,如用于对样品溶液进行过滤。In a fifth aspect, the present invention provides the application of the microporous filter membrane according to the previous embodiment, such as for filtering a sample solution.
在可选的实施方式中,样品溶液为用于食品安全检测的样品液。In an optional embodiment, the sample solution is a sample solution for food safety detection.
本发明的有益效果包括:The beneficial effects of the present invention include:
通过将由聚酰胺滤膜经水解得到的水解聚酰胺滤膜进行酰胺化反应形成苯甲酰基,制得苯甲酰基表面修饰的微孔滤膜材料,可封闭膜表面残留的氨基,使其在能够有效截留样品溶液中颗粒物杂质的同时,避免传统聚酰胺微孔滤膜在水-甲醇或水-乙腈溶液体系中对含羧基或羟基目标化合物的吸附,扩大了聚酰胺微孔滤膜的适用范围。其可用于制备微孔滤膜,尤其是针筒式微孔滤膜。上述微孔滤膜材料以及对应的微孔滤膜可用于对样品溶液,尤其是食品安全检测中的样品溶液进行过滤,可提高检测结果的准确性。The benzoyl group is formed by amidation reaction of the hydrolyzed polyamide filter membrane obtained by hydrolysis of the polyamide filter membrane to obtain a microporous filter membrane material modified on the surface of the benzoyl group, which can block the residual amino groups on the membrane surface, so that it can While effectively retaining particulate impurities in the sample solution, it avoids the adsorption of carboxyl or hydroxyl group-containing target compounds by traditional polyamide microfiltration membranes in water-methanol or water-acetonitrile solution systems, and expands the application range of polyamide microporous membranes. . It can be used to prepare microporous membranes, especially syringe-type microporous membranes. The above-mentioned microporous filter membrane material and the corresponding microporous filter membrane can be used to filter sample solutions, especially sample solutions in food safety testing, which can improve the accuracy of testing results.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. It should be understood that the following drawings only show some embodiments of the present invention, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1为本申请实施例5提供的针筒式微孔滤膜的结构示意图。FIG. 1 is a schematic structural diagram of the syringe-type microporous filter membrane provided in Example 5 of the present application.
图标:1-上壳体;2-下壳体;3-微孔滤膜材料;4-注射器接口;5-针栓接口。Icons: 1-Upper shell; 2-Lower shell; 3-Microporous membrane material; 4-Syringe interface; 5-Needle plug interface.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。In order to make the objectives, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be described clearly and completely below. If the specific conditions are not indicated in the examples, it is carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used without the manufacturer's indication are conventional products that can be purchased from the market.
下面对本申请提供的微孔滤膜材料及其制备方法与应用进行具体说明。The microporous filter membrane material provided in the present application and its preparation method and application will be specifically described below.
本申请提出一种微孔滤膜材料,其由聚酰胺滤膜经水解得到的水解聚酰胺滤膜进行酰胺化反应形成苯甲酰基后制得。The present application proposes a microporous filter membrane material, which is prepared from a hydrolyzed polyamide filter membrane obtained by hydrolysis of a polyamide filter membrane and subjected to amidation reaction to form a benzoyl group.
值得强调的是,未经处理的聚酰胺膜表面存在一定数量的氨基,在含有水相的溶液体系中能够与溶液中含有羧基或羟基的化合物发生结合反应,导致其在截留固体颗粒杂质的同时,也可能吸附溶液中待测的含羧基或羟基的目标化合物,使得这类化合物检测结果不稳定,回收率降低。本申请通过对聚酰胺微孔滤膜进行苯甲酰基修饰,封闭膜表面残留的氨基,可有效降低聚酰胺微孔滤膜对水-甲醇或水-乙腈溶液体系中含羧基或羟基目标化合物的吸附,从而用于食品安全检测中样品溶液的过滤,提高目标化合物的测定结果的准确性。It is worth emphasizing that there are a certain number of amino groups on the surface of the untreated polyamide membrane, which can react with compounds containing carboxyl or hydroxyl groups in the solution in a solution system containing an aqueous phase, resulting in the retention of solid particles while retaining impurities. , it may also adsorb the target compounds containing carboxyl or hydroxyl groups to be detected in the solution, making the detection results of such compounds unstable and the recovery rate reduced. In this application, by modifying the polyamide microporous membrane with benzoyl groups, the residual amino groups on the surface of the membrane are blocked, which can effectively reduce the effect of the polyamide microporous membrane on the target compounds containing carboxyl or hydroxyl groups in the water-methanol or water-acetonitrile solution system. Adsorption can be used to filter the sample solution in food safety testing, and the accuracy of the determination result of the target compound can be improved.
在可选的实施方式中,微孔滤膜材料中聚酰胺滤膜的孔径为0.2-0.5μm。In an optional embodiment, the pore size of the polyamide filter in the microporous filter material is 0.2-0.5 μm.
微孔滤膜的孔径大小对于样品溶液过滤有较大影响:若微孔滤膜的孔径过大,容易导致微孔滤膜无法有效截留固体颗粒杂质,起不到有效的过滤作用;若微孔滤膜的孔径过小,容易导致固体颗粒杂质堵塞滤膜,使得滤液无法顺利通过滤膜。本申请采用0.2-0.5μm孔径的聚酰胺滤膜,既能够有效截留样品溶液中的颗粒物,又可保证样品溶液顺畅的通过滤膜。The pore size of the microporous membrane has a great influence on the filtration of the sample solution: if the pore size of the microporous membrane is too large, it is easy to cause the microporous membrane to be unable to effectively retain solid particles and impurities, and it will not have an effective filtration effect; If the pore size of the filter membrane is too small, it is easy to cause solid particles to block the filter membrane, so that the filtrate cannot pass through the filter membrane smoothly. The present application adopts a polyamide filter membrane with a pore size of 0.2-0.5 μm, which can not only effectively retain the particulate matter in the sample solution, but also ensure that the sample solution passes through the filter membrane smoothly.
相应地,本发明还提供了上述微孔滤膜材料的制备方法,可包括以下步骤:将聚酰胺滤膜经水解得到的水解聚酰胺滤膜进行酰胺化反应形成苯甲酰基。Correspondingly, the present invention also provides a method for preparing the above-mentioned microporous filter membrane material, which may include the following steps: subjecting the hydrolyzed polyamide filter membrane obtained by hydrolysis of the polyamide filter membrane to an amidation reaction to form a benzoyl group.
具体的,将水解聚酰胺滤膜与苯甲酸混合以使水解聚酰胺滤膜中的氨基与苯甲酸反应形成苯甲酰基,得到苯甲酰基表面修饰的微孔滤膜材料。Specifically, the hydrolyzed polyamide filter membrane is mixed with benzoic acid, so that the amino groups in the hydrolyzed polyamide filter membrane are reacted with benzoic acid to form a benzoyl group to obtain a benzoyl group surface-modified microporous filter membrane material.
通过将聚酰胺滤膜在碱性溶液中进行水解,可使膜表面的氨基暴露与活化(也即将聚酰胺滤膜表面的酰胺键转化为活性氨基),有利于后续与苯甲酸进行反应。随后再将其与苯甲酸溶液进行混合,使膜表面经过活化的氨基与苯甲酸反应形成苯甲酰基,封闭膜表面残留的氨基。By hydrolyzing the polyamide filter membrane in an alkaline solution, the amino groups on the membrane surface can be exposed and activated (that is, the amide bonds on the surface of the polyamide filter membrane are converted into active amino groups), which is beneficial to the subsequent reaction with benzoic acid. Then, it is mixed with benzoic acid solution, so that the activated amino groups on the membrane surface react with benzoic acid to form benzoyl groups, and the residual amino groups on the membrane surface are blocked.
在可选的实施方式中,水解可以是将聚酰胺滤膜在碱性溶液中进行水解,形成水解聚酰胺滤膜。In an optional embodiment, the hydrolysis may be to hydrolyze the polyamide filter membrane in an alkaline solution to form a hydrolyzed polyamide filter membrane.
其中,碱性溶液中的溶质可包括氢氧化钠或氢氧化钾,碱性溶液中的溶剂可包括水、乙醇-水溶液、甲醇-水溶液或乙腈-水溶液。Wherein, the solute in the alkaline solution may include sodium hydroxide or potassium hydroxide, and the solvent in the alkaline solution may include water, ethanol-water solution, methanol-water solution or acetonitrile-water solution.
在一些优选的实施方式中,碱性溶液由氢氧化钠溶于乙醇-水溶液得到。In some preferred embodiments, the alkaline solution is obtained by dissolving sodium hydroxide in an ethanol-water solution.
可参考地,氢氧化钠在乙醇-水溶液中的浓度可以为0.01-0.1mol/L,如0.01mol/L、0.05mol/L、0.08mol/L或0.1mol/L等,优选为0.05mol/L。For reference, the concentration of sodium hydroxide in the ethanol-water solution can be 0.01-0.1 mol/L, such as 0.01 mol/L, 0.05 mol/L, 0.08 mol/L or 0.1 mol/L, etc., preferably 0.05 mol/L. L.
值得说明的是,碱性溶液浓度过低不利于水解反应的进行,浓度过高可能会造成水解过度,并破坏滤膜表面结构。本申请优选将氢氧化钠在乙醇-水溶液中的浓度控制成0.05mol/L,能够有效活化聚酰胺滤膜表面残留氨基,又不至于过度水解形成更多的活性氨基。It is worth noting that too low concentration of alkaline solution is not conducive to the progress of the hydrolysis reaction, and too high concentration may cause excessive hydrolysis and damage the surface structure of the filter membrane. In the present application, the concentration of sodium hydroxide in the ethanol-water solution is preferably controlled to 0.05mol/L, which can effectively activate the residual amino groups on the surface of the polyamide filter membrane, and prevent excessive hydrolysis to form more active amino groups.
可参考地,乙醇在乙醇-水溶液中的浓度可以为80-95vt%,如80vt%、85vt%、90vt%或95vt%等,优选为95vt%。For reference, the concentration of ethanol in the ethanol-water solution may be 80-95vt%, such as 80vt%, 85vt%, 90vt% or 95vt%, etc., preferably 95vt%.
采用浓度为95vt%的乙醇-水溶液既能够充分容纳氢氧根离子和无机盐离子,又具有较低的表面张力,能够与聚酰胺膜表面充分接触,利于水解反应的进行。The ethanol-water solution with a concentration of 95 vt% can not only fully accommodate hydroxide ions and inorganic salt ions, but also has low surface tension and can fully contact the surface of the polyamide membrane, which is beneficial to the hydrolysis reaction.
可参考地,水解温度可以为20-80℃,如20℃、40℃、50℃、60℃或80℃等,优选为60℃。For reference, the hydrolysis temperature can be 20-80°C, such as 20°C, 40°C, 50°C, 60°C or 80°C, etc., preferably 60°C.
温度的提高有助于水解反应的进行,优选60℃既可保证水解反应的顺利进行,又便于操作人员的安全防护。The increase of temperature is helpful for the progress of the hydrolysis reaction, and preferably 60° C. can not only ensure the smooth progress of the hydrolysis reaction, but also facilitate the safety protection of operators.
可参考地,水解时间可以为10-30min,如10min、15min、20min、25min或30min等,优选为20min。For reference, the hydrolysis time can be 10-30min, such as 10min, 15min, 20min, 25min or 30min, etc., preferably 20min.
较佳地,水解在震荡条件下进行。Preferably, the hydrolysis is carried out under shaking conditions.
值得说明的是,通过将聚酰胺滤膜于60℃条件下在含有0.05mol/L的氢氧化钠的95vt%乙醇-水溶液中震荡水解20min,能够使聚酰胺滤膜表面残留羟基得到充分活化,又不至于过度水解,破坏滤膜原有的结构和性质。It is worth noting that the residual hydroxyl groups on the surface of the polyamide filter membrane can be fully activated by shaking and hydrolyzing the polyamide filter membrane in a 95vt% ethanol-water solution containing 0.05mol/L sodium hydroxide at 60°C for 20min. It will not be excessively hydrolyzed and destroy the original structure and properties of the filter membrane.
进一步地,制备方法还包括:除去水解聚酰胺滤膜表面残留的氢氧化钠。Further, the preparation method further comprises: removing the residual sodium hydroxide on the surface of the hydrolyzed polyamide filter membrane.
可参考地,除去氢氧化钠可包括:将水解聚酰胺滤膜浸泡于第一洗涤液中,超声处理。For reference, removing the sodium hydroxide may include: immersing the hydrolyzed polyamide filter membrane in the first washing solution, and performing ultrasonic treatment.
其中,第一洗涤液可以为水或乙醇-水溶液,也即可以是纯水,也可以是含有任意浓度乙醇的乙醇-水溶液。在一些优选的实施方式中,第一洗涤液为45-55vt%的乙醇-水溶液,更优为50vt%的乙醇-水溶液。The first washing solution may be water or an ethanol-water solution, that is, pure water, or an ethanol-water solution containing ethanol of any concentration. In some preferred embodiments, the first washing solution is 45-55 vt% ethanol-water solution, more preferably 50 vt% ethanol-water solution.
在可选的实施方式中,洗涤包括:将水解聚酰胺滤膜浸泡于50vt%的乙醇-水溶液中,超声处理(如5-15min)后,除去乙醇-水溶液。随后可再用纯水冲洗至冲洗下来的水溶液的pH为6.5-7.5。In an optional embodiment, the washing includes: soaking the hydrolyzed polyamide filter membrane in a 50 vt% ethanol-water solution, and after ultrasonic treatment (eg, 5-15 min), removing the ethanol-water solution. It can then be rinsed with pure water until the pH of the rinsed aqueous solution is 6.5-7.5.
本申请中,酰胺化反应是将洗涤后的水解聚酰胺滤膜与含苯甲酸的溶液进行反应。In the present application, amidation reaction is to react the washed hydrolyzed polyamide filter membrane with a solution containing benzoic acid.
可参考地,含苯甲酸的溶液可以为苯甲酸-乙醇溶液或苯甲酸-甲醇溶液,此外也可以是能够溶解苯甲酸的其它溶剂与苯甲酸共同形成的溶液。在优选的实施方式中,含苯甲酸的溶液为苯甲酸-乙醇溶液。For reference, the solution containing benzoic acid may be a benzoic acid-ethanol solution or a benzoic acid-methanol solution, and may also be a solution jointly formed by other solvents capable of dissolving benzoic acid and benzoic acid. In a preferred embodiment, the benzoic acid-containing solution is a benzoic acid-ethanol solution.
在可选的实施方式中,苯甲酸-乙醇溶液中苯甲酸的浓度可以为1-5vt%,如1vt%、2vt%、3vt%、4vt%或5vt%等,优选为5vt%。In an optional embodiment, the concentration of benzoic acid in the benzoic acid-ethanol solution can be 1-5vt%, such as 1vt%, 2vt%, 3vt%, 4vt% or 5vt%, etc., preferably 5vt%.
值得说明的是,提高苯甲酸浓度有助于提高酰胺化反应速度,但乙醇对苯甲酸溶解度有限,乙醇中添加过量的苯甲酸会导致溶液饱和,造成试剂的浪费。It is worth noting that increasing the concentration of benzoic acid helps to improve the amidation reaction speed, but the solubility of ethanol to benzoic acid is limited, and adding excess benzoic acid to ethanol will lead to saturation of the solution and waste of reagents.
可参考地,酰胺化反应温度可以为50-90℃,如50℃、60℃、70℃、80℃或90℃等,优选为80℃。For reference, the amidation reaction temperature can be 50-90°C, such as 50°C, 60°C, 70°C, 80°C or 90°C, etc., preferably 80°C.
以80℃作为酰胺化反应温度可较其它温度条件更有助于酰胺化反应的进行,且有利于酰胺化反应产生的水分尽快挥发。Taking 80°C as the amidation reaction temperature can be more conducive to the amidation reaction than other temperature conditions, and is conducive to the quick volatilization of the water produced in the amidation reaction.
可参考地,酰胺化反应时间可以为20-60min,如20min、30min、40min、50min或60min等,优选为40min。For reference, the amidation reaction time can be 20-60min, such as 20min, 30min, 40min, 50min or 60min, etc., preferably 40min.
通过将酰胺化反应时间控制在上述范围,一方面可避免反应时间过短导致反应不够充分,另一方面可避免反应时间过长导致效率降低。以40min作为酰胺化反应时间可以保证聚酰胺滤膜表面活性氨基充分酰胺化,形成苯甲酰基修饰聚酰胺滤膜。By controlling the amidation reaction time within the above-mentioned range, on the one hand, it can avoid that the reaction time is too short to cause insufficient reaction, and on the other hand, it can avoid that the reaction time is too long and cause the efficiency to decrease. Taking 40 min as the amidation reaction time can ensure that the active amino groups on the surface of the polyamide filter membrane are fully amidated to form the benzoyl modified polyamide filter membrane.
进一步地,将苯甲酰基表面修饰的微孔滤膜材料洗涤至中性。Further, the benzoyl surface-modified microporous membrane material was washed to neutrality.
可参考地,对苯甲酰基表面修饰的微孔滤膜材料的洗涤可以是:将苯甲酰基表面修饰的微孔滤膜材料浸泡于第二洗涤液中,超声处理。For reference, the washing of the benzoyl-surface-modified microporous filter material may be: soaking the benzoyl-surface-modified microporous filter material in a second washing solution and performing ultrasonic treatment.
其中,第二洗涤液也可以包括水或乙醇-水溶液,具体可以是纯水,也可以是含有任意浓度乙醇的乙醇-水溶液。在一些优选的实施方式中,第二洗涤液为45-55vt%的乙醇-水溶液,更优为50vt%的乙醇-水溶液。The second washing solution may also include water or an ethanol-water solution, specifically pure water, or an ethanol-water solution containing any concentration of ethanol. In some preferred embodiments, the second wash solution is 45-55 vt% ethanol-water solution, more preferably 50 vt% ethanol-water solution.
在可选的实施方式中,对苯甲酰基表面修饰的微孔滤膜材料的洗涤可以是将苯甲酰基表面修饰的微孔滤膜材料浸泡于50vt%的乙醇-水溶液中,超声处理(如5-15min)后,除去乙醇-水溶液。随后可按上述条件用50vt%的乙醇-水溶液重复清洗一次,再用纯水冲洗至冲洗下来的水溶液的pH为6.5-7.5,表明膜表面残留的游离苯甲酸被有效清除。In an optional embodiment, the washing of the benzoyl-surface-modified microporous membrane material can be immersing the benzoyl-surface-modified microporous membrane material in a 50 vt% ethanol-water solution, and ultrasonically treating (such as After 5-15 min), the ethanol-aqueous solution was removed. Then, it can be repeatedly washed with 50vt% ethanol-water solution according to the above conditions, and then washed with pure water until the pH of the washed water solution is 6.5-7.5, indicating that the residual free benzoic acid on the membrane surface is effectively removed.
进一步地,将洗涤至中性的苯甲酰基表面修饰的微孔滤膜材料进行干燥。Further, the benzoyl surface-modified microporous filter membrane material washed to neutrality is dried.
可参考地,干燥可以是于45-55℃的条件下进行50-70min,优选于50℃的条件下进行60min。For reference, the drying can be carried out under the condition of 45-55°C for 50-70min, preferably under the condition of 50°C for 60min.
值得强调的是,聚酰胺滤膜水解活化表面氨基的程度取决于碱性溶液的浓度、水解条件和溶剂的性质,苯甲酰基修饰的程度取决于苯甲酸溶液的浓度、反应温度、反应时间和溶剂性质,不同的条件配合下所起到的作用效果是不同的。发明人通过长期研究以及无数次试验验证后才得到本申请的上述各制备条件,通过在上述各条件配合下,使得制备所得的微孔滤膜材料能够在有效截留样品溶液中颗粒物杂质的同时,避免聚酰胺滤膜在水-甲醇或水-乙腈溶液体系中对含羧基或羟基目标化合物进行吸附。It is worth emphasizing that the degree of hydrolysis-activated surface amino groups of polyamide membranes depends on the concentration of alkaline solution, hydrolysis conditions and the nature of the solvent, and the degree of benzoyl modification depends on the concentration of benzoic acid solution, reaction temperature, reaction time and The properties of the solvent and the effect of different conditions are different. The inventor obtained the above-mentioned preparation conditions of the present application only after long-term research and numerous tests and verifications. By cooperating with the above-mentioned conditions, the prepared microporous filter membrane material can effectively retain the particulate impurities in the sample solution, while at the same time, Avoid adsorption of carboxyl- or hydroxyl-containing target compounds on polyamide filters in water-methanol or water-acetonitrile solution systems.
此外,本申请还提供了上述微孔滤膜材料的应用,例如可用于对样品溶液进行过滤。其中,样品溶液优选为用于食品安全检测的样品溶液,可有效提高含羧基或羟基目标化合物的测定数据的准确性。In addition, the present application also provides the application of the above-mentioned microporous membrane material, for example, it can be used to filter a sample solution. Among them, the sample solution is preferably a sample solution used for food safety detection, which can effectively improve the accuracy of the measurement data of the target compound containing carboxyl or hydroxyl groups.
此外,本申请还提供了一种微孔滤膜,其包括上述微孔滤膜材料。In addition, the present application also provides a microporous filter membrane, which includes the above-mentioned microporous filter membrane material.
在一些可选的实施方式中,上述微孔滤膜为针筒式微孔滤膜。In some optional embodiments, the above-mentioned microporous filter membrane is a syringe type microporous filter membrane.
可参考地,针筒式微孔滤膜包括相互配合扣合的上壳体和下壳体,微孔滤膜材料夹设于上壳体与下壳体之间。微孔滤膜材料的大小与上壳体与下壳体的接触面的大小一致。微孔滤膜材料的周缘用于与上壳体同下壳体扣合处的内壁抵接。For reference, the syringe-type microporous filter membrane includes an upper shell and a lower shell that are engaged with each other, and the microporous membrane material is sandwiched between the upper shell and the lower shell. The size of the microporous membrane material is consistent with the size of the contact surface between the upper casing and the lower casing. The peripheral edge of the microporous filter membrane material is used for abutting with the inner wall where the upper casing and the lower casing are buckled.
进一步地,针筒式微孔滤膜还包括与上壳体连接的注射器接口,注射器接口与微孔滤膜材料不平行且不共线。Further, the syringe-type microporous filter membrane further includes a syringe interface connected with the upper casing, and the syringe interface and the microporous filter membrane material are not parallel and not collinear.
具体的,注射器接口的设置方向与夹设于上下壳体之间的微孔滤膜材料呈一定的夹角,优选呈90°,以使从注射器接口注射进的样品溶液能够通过微孔滤膜材料得到充分过滤。Specifically, the setting direction of the syringe interface and the microporous membrane material sandwiched between the upper and lower housings are at a certain angle, preferably 90°, so that the sample solution injected from the syringe interface can pass through the microporous filter membrane. Material is well filtered.
进一步地,针筒式微孔滤膜还包括与下壳体连接的针栓接口,针栓接口与微孔滤膜材料不平行且不共线。Further, the syringe-type microporous filter membrane further includes a needle plug interface connected with the lower casing, and the needle plug interface and the microporous filter membrane material are not parallel and not collinear.
具体的,针栓接口的设置方向与夹设于上下壳体之间的微孔滤膜材料也呈一定的夹角,优选呈90°。Specifically, the setting direction of the needle plug interface and the microporous filter membrane material sandwiched between the upper and lower casings also form a certain angle, preferably 90°.
相应地,本发明还提供了上述微孔滤膜的应用,其也可以用于对样品溶液进行过滤,通过物理作用截留样品溶液中的颗粒物杂质,滤液可用于后续仪器分析。同理的,该样品溶液优选为用于食品安全检测的样品溶液,可有效提高含羧基或羟基目标化合物的测定数据的准确性。Correspondingly, the present invention also provides the application of the above-mentioned microporous filter membrane, which can also be used to filter the sample solution to retain particulate impurities in the sample solution through physical action, and the filtrate can be used for subsequent instrument analysis. Similarly, the sample solution is preferably a sample solution used for food safety detection, which can effectively improve the accuracy of the measurement data of the target compound containing carboxyl or hydroxyl groups.
以下结合实施例对本发明的特征和性能作进一步的详细描述。The features and performances of the present invention will be further described in detail below in conjunction with the embodiments.
实施例1Example 1
本实施例提供一种苯甲酰基表面修饰的聚酰胺微孔滤膜材料的制备方法,具体如下:The present embodiment provides a preparation method of a benzoyl surface-modified polyamide microporous filter membrane material, which is specifically as follows:
步骤(1):称量2.00g氢氧化钠,先用200mL左右95vt%乙醇-水溶液溶解,静置至氢氧化钠溶液冷却至室温,将冷却后的氢氧化钠溶液全部转移到1000mL容量瓶中,用100mL95vt%乙醇-水溶液洗涤烧杯2次,将溶液转移至容量瓶中,再用95vt%乙醇-水溶液定容至1000mL,即为0.05mol/L氢氧化钠-95vt%乙醇-水溶液;Step (1): Weigh 2.00g of sodium hydroxide, dissolve it with about 200mL of 95vt% ethanol-water solution, let it stand until the sodium hydroxide solution is cooled to room temperature, and transfer all the cooled sodium hydroxide solution to a 1000mL volumetric flask , wash the beaker twice with 100mL 95vt% ethanol-water solution, transfer the solution to a volumetric flask, and then dilute to 1000mL with 95vt% ethanol-water solution, which is 0.05mol/L sodium hydroxide-95vt% ethanol-water solution;
步骤(2):取400mL的0.1mol/L氢氧化钠-95vt%乙醇-水溶液于500mL广口瓶中,将0.2-0.5μm孔径的聚酰胺膜完全浸入溶液中,置于恒温振荡器中于60℃、200转/min条件下水解20min,得到水解聚酰胺滤膜;Step (2): Take 400mL of 0.1mol/L sodium hydroxide-95vt% ethanol-water solution in a 500mL wide-mouth bottle, completely immerse a polyamide membrane with a pore size of 0.2-0.5μm in the solution, and place it in a constant temperature oscillator at Hydrolyzed for 20 min at 60°C and 200 rpm to obtain a hydrolyzed polyamide membrane;
步骤(3):水解结束后,取出水解聚酰胺滤膜,加入400mL 50%乙醇-水溶液(第一洗涤液),超声10min,弃去溶液,再用纯水冲洗滤膜,至水溶液pH值为7.0±0.5;Step (3): after the hydrolysis is completed, take out the hydrolyzed polyamide filter membrane, add 400 mL of 50% ethanol-water solution (the first washing solution), ultrasonicate for 10 min, discard the solution, and then rinse the filter membrane with pure water until the pH of the aqueous solution is 7.0±0.5;
步骤(4):称量苯甲酸50g置于试剂瓶中,再向其中加入1000mL无水乙醇,超声30min使其溶解,得到5vt%苯甲酸-乙醇溶液;Step (4): weigh 50 g of benzoic acid and place it in a reagent bottle, then add 1000 mL of absolute ethanol to it, and ultrasonicate it for 30 min to dissolve it to obtain a 5vt% benzoic acid-ethanol solution;
步骤(5):取400mL 5vt%苯甲酸-乙醇溶液于500mL广口瓶中,将上述步骤(4)冲洗后的水解聚酰胺膜完全浸入上述苯甲酸-乙醇溶液中,置于恒温振荡器中于80℃、200转/min条件下反应40min,得到苯甲酰基表面修饰的微孔滤膜材料;Step (5): take 400mL of 5vt% benzoic acid-ethanol solution in a 500mL wide-mouth bottle, completely immerse the hydrolyzed polyamide membrane after washing in the above step (4) in the above-mentioned benzoic acid-ethanol solution, and place it in a constant temperature oscillator The reaction was carried out at 80 °C and 200 rpm for 40 min to obtain a benzoyl surface-modified microporous membrane material;
步骤(6):将上述苯甲酰基表面修饰的微孔滤膜材料浸入50vt%乙醇-水溶液(第二洗涤液)中,超声处理10min后,弃去50vt%乙醇-水溶液,重复操作1次;再用纯水冲洗至水溶液pH为7.0±0.5;Step (6): immerse the above-mentioned benzoyl surface-modified microporous membrane material in 50vt% ethanol-water solution (second washing solution), after ultrasonic treatment for 10min, discard the 50vt% ethanol-water solution, and repeat the operation once; Rinse with pure water until the pH of the aqueous solution is 7.0±0.5;
步骤(7):将上述清洗后的甲酰基表面修饰的微孔滤膜材料置于鼓风风干燥器中,50℃烘干1h即可。Step (7): placing the above-mentioned cleaned formyl surface-modified microporous filter membrane material in a blast air dryer, and drying at 50° C. for 1 hour.
其中,所用材料和试剂的规格如下:Among them, the specifications of the materials and reagents used are as follows:
氢氧化钠:CAS号1310-73-2,分析纯。Sodium hydroxide: CAS No. 1310-73-2, analytical grade.
苯甲酸:CAS号65-85-0,分析纯。Benzoic acid: CAS No. 65-85-0, analytical grade.
甲酸:CAS号64-18-6,色谱纯。Formic acid: CAS No. 64-18-6, chromatographically pure.
乙醇:CAS号64-17-5,色谱纯。Ethanol: CAS No. 64-17-5, chromatographically pure.
乙腈:CAS号75-05-8,色谱纯。Acetonitrile: CAS No. 75-05-8, chromatographically pure.
甲醇:CAS号67-56-1,色谱纯。Methanol: CAS No. 67-56-1, chromatographically pure.
无水乙醇:CAS号64-17-5,分析纯。Anhydrous ethanol: CAS No. 64-17-5, analytical grade.
聚酰胺微孔滤膜:孔径0.2μm~0.5μm。Polyamide microporous membrane: the pore size is 0.2 μm to 0.5 μm.
镰刀菌酸:CAS号303-47-9,纯度≥99%。Fusaric acid: CAS No. 303-47-9, purity ≥99%.
伏马毒素B1:CAS号116355-83-0,纯度≥99%。Fumonisin B1: CAS No. 116355-83-0, purity ≥99%.
青霉酸:CAS号90-65-3,纯度≥99%。Penicillic acid: CAS No. 90-65-3, purity ≥99%.
霉酚酸:CAS号24280-93-1,纯度≥99%。Mycophenolic acid: CAS No. 24280-93-1, purity ≥99%.
实验用水为Milli-Q超纯水。The experimental water was Milli-Q ultrapure water.
实施例2Example 2
本实施例与实施例1的区别在于(其余操作步骤和条件相同):The difference between this embodiment and embodiment 1 is (the remaining operation steps and conditions are the same):
水解所用的碱性溶液为0.01mol/L氢氧化钠-80vt%乙醇水溶液。The alkaline solution used for hydrolysis is 0.01mol/L sodium hydroxide-80vt% ethanol aqueous solution.
水解温度为20℃,水解时间为30min。The hydrolysis temperature was 20°C, and the hydrolysis time was 30 min.
第一洗涤液为45vt%的乙醇-水溶液。The first wash was a 45 vt% ethanol-water solution.
含苯甲酸的溶液为1vt%苯甲酸-乙醇溶液。The benzoic acid-containing solution was a 1 vt% benzoic acid-ethanol solution.
酰胺化反应温度为50℃,酰胺化反应时间为60min。The amidation reaction temperature was 50°C, and the amidation reaction time was 60 min.
第二洗涤液为45vt%的乙醇-水溶液。The second wash was a 45 vt% ethanol-water solution.
干燥是于45℃条件下进行70min。Drying was carried out at 45°C for 70 minutes.
实施例3Example 3
本实施例与实施例1的区别在于(其余操作步骤和条件相同):The difference between this embodiment and embodiment 1 is (the remaining operation steps and conditions are the same):
水解所用的碱性溶液为0.1mol/L氢氧化钠-90vt%乙醇水溶液。The alkaline solution used in the hydrolysis is 0.1 mol/L sodium hydroxide-90 vt% ethanol aqueous solution.
水解温度为80℃,水解时间为10min。The hydrolysis temperature was 80°C, and the hydrolysis time was 10 min.
第一洗涤液为55vt%的乙醇-水溶液。The first wash was a 55 vt% ethanol-water solution.
含苯甲酸的溶液为3vt%苯甲酸-乙醇溶液。The benzoic acid-containing solution was a 3 vt% benzoic acid-ethanol solution.
酰胺化反应温度为90℃,酰胺化反应时间为20min。The amidation reaction temperature was 90°C, and the amidation reaction time was 20 min.
第二洗涤液为55vt%的乙醇-水溶液。The second wash was a 55 vt% ethanol-water solution.
干燥是于55℃条件下进行50min。Drying was carried out at 55°C for 50 min.
实施例4Example 4
本实施例与实施例1的区别在于(其余操作步骤和条件相同):The difference between this embodiment and embodiment 1 is (the remaining operation steps and conditions are the same):
水解所用的碱性溶液为0.05mol/L氢氧化钾-95vt%甲醇水溶液。The alkaline solution used in the hydrolysis is 0.05mol/L potassium hydroxide-95vt% methanol aqueous solution.
第一洗涤液为纯水。The first washing liquid is pure water.
含苯甲酸的溶液为5vt%苯甲酸-甲醇溶液。The benzoic acid-containing solution was a 5 vt% benzoic acid-methanol solution.
第二洗涤液为纯水。The second washing liquid is pure water.
实施例5Example 5
本实施例提供一种针筒式微孔滤膜,请参照图1,该针筒式微孔滤膜包括上壳体1、下壳体2、微孔滤膜材料3、注射器接口4和针栓接口5。This embodiment provides a syringe-type microporous filter membrane, please refer to FIG. 1 , the syringe-type microporous filter membrane includes an upper housing 1, a lower housing 2, a microporous filter membrane material 3, a syringe interface 4 and a
其中,上壳体1与下壳体2相互配合扣合,微孔滤膜材料3夹设于上壳体1与下壳体2之间。微孔滤膜材料3的大小与上壳体1同下壳体2的接触面的大小一致。微孔滤膜材料3的周缘用于与上壳体1同下壳体2扣合处的内壁抵接。The upper casing 1 and the lower casing 2 are engaged with each other, and the microporous membrane material 3 is sandwiched between the upper casing 1 and the lower casing 2 . The size of the microporous membrane material 3 is consistent with the size of the contact surface between the upper casing 1 and the lower casing 2 . The peripheral edge of the microporous filter membrane material 3 is used to abut against the inner wall of the place where the upper casing 1 and the lower casing 2 are buckled.
注射器接口4连接于上壳体1并与夹设于上下壳体之间的微孔滤膜材料3呈90°,针栓接口5连接于下壳体2并与夹设于上下壳体之间的微孔滤膜材料3呈90°。The syringe interface 4 is connected to the upper casing 1 and is at 90° with the microporous filter material 3 sandwiched between the upper and lower casings. The
其可通过以下方式制备得到:取一空针筒式微孔滤膜外壳(其结构包括上述上壳体1、下壳体2、注射器接口4以及针栓接口5),将实施例1制备得到的苯甲酰基表面修饰的聚酰胺微孔滤膜材料裁剪为与空针筒式微孔滤膜外壳内径相同的圆形,置于空针筒式微孔滤膜外壳内即可。It can be prepared in the following manner: take an empty syringe-type microporous filter membrane shell (its structure includes the above-mentioned upper shell 1, lower shell 2, syringe interface 4 and needle plug interface 5), The benzoyl surface-modified polyamide microporous membrane material is cut into a circle with the same inner diameter as the shell of the hollow-syringe-type microporous membrane, and it can be placed in the shell of the hollow-syringe-type microporous membrane.
试验例1Test Example 1
以实施例1制备而得的苯甲酰基表面修饰的聚酰胺微孔滤膜材料为例,进行吸附性考察。Taking the benzoyl surface-modified polyamide microporous membrane material prepared in Example 1 as an example, the adsorption property was investigated.
将实施例1制备所得的苯甲酰基表面修饰的聚酰胺微孔滤膜材料,用于对20vt%乙腈-水溶液中3种含羧基化合物进行过滤,并与普通聚酰胺微孔滤膜(也即实施例1中未进行水解和酰胺化反应的原始聚酰胺滤膜)进行对比。The benzoyl surface-modified polyamide microporous membrane material prepared in Example 1 was used to filter three carboxyl-containing compounds in a 20vt% acetonitrile-water solution, and was used with ordinary polyamide microporous membranes (that is, The original polyamide filter membrane without hydrolysis and amidation reaction in Example 1) was compared.
具体处理过程如下:The specific processing process is as follows:
(1)霉菌毒素溶液的配制(1) Preparation of mycotoxin solution
取浓度为100μg/mL的镰刀菌酸、伏马毒素B1和霉酚酸标准溶液(溶剂为乙腈)各0.1mL于50mL容量瓶中,用5vt%乙腈-水溶液定容至50mL,得到浓度为0.2μg/mL的镰刀菌酸、伏马毒素B1和霉酚酸等3种霉菌毒素混合标准工作液。Take 0.1 mL each of the standard solutions of fusaric acid, fumonisin B1 and mycophenolic acid (solvent is acetonitrile) with a concentration of 100 μg/mL in a 50 mL volumetric flask, and dilute to 50 mL with 5vt% acetonitrile-water solution to obtain a concentration of 0.2 A mixed standard working solution of 3 mycotoxins including fusaric acid, fumonisin B1 and mycophenolic acid in μg/mL.
(2)微孔滤膜过滤(2) Microporous membrane filtration
取一实施例5提供的针筒式微孔滤膜,上端注射器接口处连接一2mL塑料注射器,下端针栓接口处用玻璃进样小瓶盛接滤液;吸取1mL 3种霉菌毒素混合标准工作液于注射器中,用注射器活塞施加压力,使溶液通过滤膜,流入玻璃进样小瓶中;共5个平行。Take a syringe-type microporous membrane provided in Example 5, connect a 2mL plastic syringe at the upper end of the syringe interface, and use a glass injection vial to receive the filtrate at the lower end of the needle plug interface; draw 1mL of 3 kinds of mycotoxins mixed standard working solution in In the syringe, apply pressure with the syringe plunger to force the solution through the filter and into the glass injection vial; 5 in parallel.
取一普通针筒式聚酰胺微孔滤膜(也即将实施例5中的聚酰胺微孔滤膜材料替换成未进行水解和酰胺化反应的原始聚酰胺滤膜),同上述操作步骤对3种霉菌毒素混合标准工作液进行过滤,共5个平行。Get a common syringe type polyamide microporous filter membrane (that is, replace the polyamide microporous membrane material in Example 5 with the original polyamide filter membrane without hydrolysis and amidation reaction), with the above operation steps to 3. A mixed standard working solution of mycotoxins was filtered, a total of 5 parallels.
(3)UPLC-MS/MS测定(3) UPLC-MS/MS determination
A、色谱条件A. Chromatographic conditions
Acquity UPLC BEH RP18色谱柱(100mm×2.1mm,1.7μm,美国Waters公司);流动相A:0.1mM乙酸铵溶液(含0.1vt%甲酸);流动相B:甲醇溶液(含0.1vt%甲酸);柱温40℃;流速0.3mL/min;进样体积0.5μL。梯度洗脱程序:0~2min,95%A;2~4min,95%~80%A;4min~12min,80%~5%A;12~12.1min,5%~1%A;12.1~13min,1%A;13~13.5min,1%~95%A;13.5~15min,95%A。Acquity UPLC BEH RP18 chromatographic column (100mm×2.1mm, 1.7μm, Waters, USA); mobile phase A: 0.1mM ammonium acetate solution (containing 0.1vt% formic acid); mobile phase B: methanol solution (containing 0.1vt% formic acid) ; column temperature 40°C; flow rate 0.3mL/min; injection volume 0.5μL. Gradient elution program: 0~2min, 95%A; 2~4min, 95%~80%A; 4min~12min, 80%~5%A; 12~12.1min, 5%~1%A; 12.1~13min , 1%A; 13~13.5min, 1%~95%A; 13.5~15min, 95%A.
B、质谱条件B, mass spectrometry conditions
电喷雾离子源正离子扫描(ESI+),多反应监测模式(MRM),毛细管电压0.6kV,离子源温度150℃,脱溶剂温度450℃,脱溶剂气和锥孔气均为N2,脱溶剂气流速为800L/h,锥孔气流速为150L/h。目标化合物的母离子、子离子、碰撞能量及锥孔电压等参数见表1。Electrospray ion source positive ion scanning (ESI+), multiple reaction monitoring mode (MRM), capillary voltage 0.6kV, ion source temperature 150℃, desolvation temperature 450℃, desolvation gas and cone gas are N 2 , desolvation The air flow rate is 800L/h, and the cone air flow rate is 150L/h. The parameters such as parent ion, product ion, collision energy and cone voltage of the target compound are shown in Table 1.
表1目标化合物的保留时间、母离子、子离子、锥孔电压和碰撞能量Table 1 Retention time, precursor ion, product ion, cone voltage and collision energy of target compounds
a为定量离子。 a is the quantitative ion.
(4)结果分析(4) Result analysis
分别对未经滤膜过滤的3种霉菌毒素混合标准工作液(A)、经苯甲酰基表面修饰聚酰胺微孔滤膜过滤的3种霉菌毒素混合标准工作液(B)和经普通聚酰胺微孔滤膜过滤的3种霉菌毒素混合标准工作液(C),用LC-MS/MS测定镰刀菌酸、伏马毒素B1和霉酚酸等3种霉菌毒素的色谱峰面积。3 kinds of mycotoxin mixed standard working solution (A) without membrane filtration, 3 kinds of mycotoxin mixed standard working solution (B) filtered by benzoyl surface modified polyamide microporous membrane, and ordinary polyamide The mixed standard working solution (C) of the three mycotoxins filtered by the microporous membrane was used to determine the chromatographic peak areas of the three mycotoxins including fusaric acid, fumonisin B1 and mycophenolic acid by LC-MS/MS.
以过滤膜后溶液中3种霉菌毒素的峰面积分别除以未经滤膜过滤的3种霉菌毒素的峰面积,再乘以100%,即为霉菌毒素滤膜过滤的回收率。回收率越高,说明滤膜对霉菌毒素目标物吸附性越弱;反之,回收率越低,说明滤膜对霉菌毒素目标物吸附性越强,其结果如表2所示。The recovery rate of mycotoxins was obtained by dividing the peak areas of the three mycotoxins in the solution after filtration by the peak areas of the three mycotoxins without filtration, and multiplying by 100%. The higher the recovery rate, the weaker the adsorption of the mycotoxin target by the filter; on the contrary, the lower the recovery rate, the stronger the adsorption of the filter to the mycotoxin target. The results are shown in Table 2.
表2 5vt%乙腈-水溶液中3种霉菌毒素目标物经不同微孔滤膜过滤回收率Table 2 The recovery rates of three mycotoxins in 5vt% acetonitrile-water solution by different microporous membrane filtration
注:回收率用平均值±标准偏差表示。Note: The recovery rate is expressed as mean ± standard deviation.
如表2所示,采用本申请实施例1制备的苯甲酰基表面修饰的聚酰胺微孔滤膜材料过滤5vt%乙腈-水溶液中镰刀菌酸、伏马毒素B1和霉酚酸等3种霉菌毒素,其平均回收率为94.7%,表明溶液中3种含有羧基的酸性霉菌毒素平均94.7%通过了滤膜,仅有平均5.3%被吸附在滤膜上。As shown in Table 2, the benzoyl surface-modified polyamide microporous membrane material prepared in Example 1 of the present application was used to filter 3 molds such as fusaric acid, fumonisin B1 and mycophenolic acid in a 5vt% acetonitrile-water solution The toxin, with an average recovery rate of 94.7%, indicated that an average of 94.7% of the three acid mycotoxins containing carboxyl groups in solution passed through the filter, and only an average of 5.3% was adsorbed on the filter.
与之对应的是,采用普通聚酰胺微孔滤膜过滤5vt%乙腈-水溶液中镰刀菌酸、伏马毒素B1和霉酚酸等3种霉菌毒素,其平均回收率为59.8%,表明溶液中3种含有羧基的酸性霉菌毒素仅平均59.8%通过了滤膜,大约40.2%被吸附在滤膜上。Correspondingly, three kinds of mycotoxins such as fusaric acid, fumonisin B1 and mycophenolic acid in 5vt% acetonitrile-water solution were filtered by ordinary polyamide microporous membrane, and the average recovery rate was 59.8%. Only an average of 59.8% of the three acid mycotoxins containing carboxyl groups passed through the filter, and about 40.2% was adsorbed on the filter.
二者对比可见,本申请实施例1提供的苯甲酰基表面修饰的聚酰胺微孔滤膜材料对溶液中含有羧基的酸性化合物吸附率小于10%,而普通聚酰胺滤膜吸附率达40%左右,本申请提供的苯甲酰基表面修饰聚酰胺微孔滤膜对5vt%乙腈-水溶液中含羧基的酸性化合物吸附率远低于普通聚酰胺微孔滤膜。It can be seen from the comparison between the two that the benzoyl surface-modified polyamide microporous membrane material provided in Example 1 of the present application has an adsorption rate of less than 10% for acidic compounds containing carboxyl groups in the solution, while the adsorption rate of ordinary polyamide filter membranes reaches 40%. About, the benzoyl surface-modified polyamide microporous membrane provided in the present application has a far lower adsorption rate of acid compounds containing carboxyl groups in 5vt% acetonitrile-water solution than ordinary polyamide microporous membranes.
由此可见,本申请制备的苯甲酰基表面修饰聚酰胺微孔滤膜能够克服普通聚酰胺微孔滤膜对溶液中酸性化合物的强吸附性,从而提高酸性化合物过滤的回收率,扩展了普通聚酰胺滤膜的应用范围。It can be seen that the benzoyl surface-modified polyamide microporous filter membrane prepared in the present application can overcome the strong adsorption of common polyamide microporous membranes to acidic compounds in solution, thereby improving the recovery rate of acidic compound filtration and expanding the common Applications of polyamide membranes.
试验例2Test Example 2
本试验例提供一种针筒式苯甲酰基表面修饰聚酰胺微孔滤膜的应用。This test example provides the application of a syringe-type benzoyl surface-modified polyamide microporous membrane.
使用本申请提供的针筒式苯甲酰基表面修饰聚酰胺微孔滤膜(结构同实施例5,滤膜材料为实施例1制备所得的苯甲酰基表面修饰的聚酰胺微孔滤膜材料),对玉米样品中3种霉菌毒素同步测定时的样品溶液进行过滤,并与普通聚酰胺微孔滤膜(也即实施例1中未进行水解和酰胺化反应的原始聚酰胺滤膜)的过滤效果进行对比。Use the syringe type benzoyl surface-modified polyamide microporous membrane provided in this application (the structure is the same as that in Example 5, and the membrane material is the benzoyl surface-modified polyamide microporous membrane material prepared in Example 1) , filter the sample solution during simultaneous determination of the three mycotoxins in the corn sample, and filter it with a common polyamide microporous membrane (that is, the original polyamide membrane without hydrolysis and amidation in Example 1). Compare the effects.
具体处理过程如下:The specific processing process is as follows:
1.玉米样品的预处理1. Pretreatment of Corn Samples
(1)样品:取5g不含霉菌毒素的空白玉米样品置于50mL塑料离心管中,加入100μg/mL的镰刀菌酸、伏马毒素B1和霉酚酸标准溶液(溶剂为乙腈)各0.01mL,涡旋混匀,配制成镰刀菌酸、伏马毒素B1和霉酚酸浓度分别为0.2μg/g的加标样品;(1) Sample: Take 5g of mycotoxin-free blank corn sample and put it in a 50mL plastic centrifuge tube, add 0.01mL each of 100μg/mL fusaric acid, fumonisin B1 and mycophenolic acid standard solution (solvent is acetonitrile) , vortexed and mixed to prepare a spiked sample with a concentration of 0.2 μg/g of fusaric acid, fumonisin B1 and mycophenolic acid, respectively;
(2)提取:向上述加标样品中加入纯水10mL、乙腈20mL,涡旋提取1min,加入3g氯化钠,涡旋1min,5000转/min离心5min,取出上层乙腈溶液待用(此时,样品中的霉菌毒素被提取至乙腈溶液中);(2) Extraction: Add 10 mL of pure water and 20 mL of acetonitrile to the above-mentioned spiked sample, vortex for 1 min, add 3 g of sodium chloride, vortex for 1 min, centrifuge at 5000 rpm for 5 min, and take out the upper acetonitrile solution for later use (at this time) , the mycotoxins in the samples were extracted into acetonitrile solution);
(3)净化:取上述上层乙腈溶液5mL于一10mL塑料离心管中,加入500mg无水硫酸镁和500mg C18净化材料,涡旋1min,于离心机中5000rpm离心5min,取出2mL上清液于另一10mL塑料离心管中;60℃温度下氮气吹干;(3) Purification: Take 5mL of the above-mentioned upper layer acetonitrile solution in a 10mL plastic centrifuge tube, add 500mg anhydrous magnesium sulfate and 500mg C18 purification material, vortex for 1min, centrifuge at 5000rpm for 5min in a centrifuge, take out 2mL supernatant and put it in another In a 10mL plastic centrifuge tube; dry with nitrogen at 60°C;
(4)浓缩:将盛有上述2mL上清液的塑料离心管置于氮吹仪上,60℃温度下氮气吹干,然后,向离心管中加入1mL 5vt%乙腈-水溶液,涡旋1min,使溶液充分溶解残渣;(4) Concentration: place the plastic centrifuge tube containing the above 2mL supernatant on a nitrogen blower, blow dry with nitrogen at a temperature of 60°C, then add 1mL 5vt% acetonitrile-water solution to the centrifuge tube, vortex for 1min, Make the solution fully dissolve the residue;
(5)过滤:将上述样品浓缩液分别用本发明制备的苯甲酰基表面修饰聚酰胺微孔滤膜和普通聚酰胺微孔滤膜过滤,滤液置于进样小瓶中,供UPLC-MS/M测定。(5) Filtration: the above-mentioned sample concentrate is filtered with the benzoyl surface-modified polyamide microporous membrane and the common polyamide microporous membrane prepared by the present invention respectively, and the filtrate is placed in a sample injection vial for UPLC-MS/ M determination.
2.UPLC-MS/MS测定2. UPLC-MS/MS determination
(1)色谱条件(1) Chromatographic conditions
Acquity UPLC BEH RP18色谱柱(100mm×2.1mm,1.7μm,美国Waters公司);流动相A:0.1mM乙酸铵溶液(含0.1vt%甲酸);流动相B:甲醇溶液(含0.1vt%甲酸);柱温40℃;流速0.3mL/min;进样体积0.5μL。梯度洗脱程序:0~2min,95%A;2~4min,95%~80%A;4min~12min,80%~5%A;12~12.1min,5%~1%A;12.1~13min,1%A;13~13.5min,1%~95%A;13.5~15min,95%A。Acquity UPLC BEH RP18 chromatographic column (100mm×2.1mm, 1.7μm, Waters, USA); mobile phase A: 0.1mM ammonium acetate solution (containing 0.1vt% formic acid); mobile phase B: methanol solution (containing 0.1vt% formic acid) ; column temperature 40°C; flow rate 0.3mL/min; injection volume 0.5μL. Gradient elution program: 0~2min, 95%A; 2~4min, 95%~80%A; 4min~12min, 80%~5%A; 12~12.1min, 5%~1%A; 12.1~13min , 1%A; 13~13.5min, 1%~95%A; 13.5~15min, 95%A.
(2)质谱条件(2) Mass spectrometry conditions
电喷雾离子源正离子扫描(ESI+),多反应监测模式(MRM),毛细管电压0.6kV,离子源温度150℃,脱溶剂温度450℃,脱溶剂气和锥孔气均为N2,脱溶剂气流速为800L/h,锥孔气流速为150L/h。目标化合物的母离子、子离子、碰撞能量、锥孔电压等参数同表1。Electrospray ion source positive ion scanning (ESI+), multiple reaction monitoring mode (MRM), capillary voltage 0.6kV, ion source temperature 150℃, desolvation temperature 450℃, desolvation gas and cone gas are N 2 , desolvation The air flow rate is 800L/h, and the cone air flow rate is 150L/h. The parent ion, product ion, collision energy, cone voltage and other parameters of the target compound are the same as Table 1.
3.结果分析3. Analysis of results
根据3种霉菌毒素目标物色谱峰面积计算加标样品中3种霉菌毒素的浓度实测值,浓度实测值除以样品加标浓度理论值(0.2μg/g)为霉菌毒素目标物测定回收率,其结果如表3所示。According to the chromatographic peak areas of the three mycotoxins, the measured concentrations of the three mycotoxins in the spiked samples were calculated, and the measured concentrations were divided by the theoretical value of the sample spiked concentration (0.2 μg/g) to determine the recovery rate of the mycotoxins. The results are shown in Table 3.
表3玉米样品浓缩液中3种霉菌毒素目标物经不同微孔滤膜过滤回收率Table 3 The recovery rate of 3 kinds of mycotoxins in corn sample concentrate by different microporous membrane filtration
注:回收率用平均值±标准偏差表示。Note: The recovery rate is expressed as mean ± standard deviation.
如表3所示,采用本申请提供的针筒式苯甲酰基表面修饰聚酰胺微孔滤膜过滤玉米样品浓缩液中镰刀菌酸、伏马毒素B1和霉酚酸等3种霉菌毒素,其平均回收率为92.5%,表明溶液中3种含有羧基的酸性霉菌毒素平均92.5%通过了滤膜,仅有平均7.5%被吸附在滤膜上。As shown in Table 3, three kinds of mycotoxins such as fusaric acid, fumonisin B1 and mycophenolic acid in the corn sample concentrate were filtered by the syringe type benzoyl surface-modified polyamide microporous membrane provided in this application. The average recovery rate was 92.5%, indicating that 92.5% of the three acid mycotoxins containing carboxyl groups in the solution passed through the filter, and only an average of 7.5% was adsorbed on the filter.
与之对应的是,采用普通聚酰胺微孔滤膜过滤玉米样品浓缩液中镰刀菌酸、伏马毒素B1和霉酚酸等3种霉菌毒素,其平均回收率为54.0%,表明溶液中3种含有羧基的酸性霉菌毒素仅平均54.0%通过了滤膜,大约46.0%被吸附在滤膜上。Correspondingly, three kinds of mycotoxins such as fusaric acid, fumonisin B1 and mycophenolic acid in the corn sample concentrate were filtered by ordinary polyamide microporous membrane, and the average recovery rate was 54.0%, indicating that there were 3 mycotoxins in the solution. Only an average of 54.0% of the carboxyl-containing acid mycotoxins passed through the filter, and about 46.0% was adsorbed on the filter.
二者对比可见,本申请提供的针筒式苯甲酰基表面修饰聚酰胺微孔滤膜对玉米样品浓缩液中含有羧基的酸性化合物吸附率小于10%,而普通聚酰胺滤膜吸附率达46%左右,本申请提供的针筒式苯甲酰基表面修饰聚酰胺微孔滤膜对玉米样品浓缩液中含羧基的酸性化合物吸附率远低于普通聚酰胺微孔滤膜。It can be seen from the comparison of the two that the syringe-type benzoyl surface-modified polyamide microporous filter membrane provided in this application has an adsorption rate of less than 10% for acidic compounds containing carboxyl groups in the corn sample concentrate, while the adsorption rate of ordinary polyamide filter membranes reaches 46%. %, and the adsorption rate of the carboxyl group-containing acid compound in the corn sample concentrate by the syringe-type benzoyl surface-modified polyamide microporous membrane provided by the application is much lower than that of the ordinary polyamide microporous membrane.
对比例Comparative ratio
综上所述,本申请通过将由聚酰胺滤膜经水解得到的水解聚酰胺滤膜进行酰胺化反应形成苯甲酰基,制得苯甲酰基表面修饰的微孔滤膜材料,可封闭膜表面残留的氨基,使其在能够有效截留样品溶液中颗粒物杂质的同时,避免传统聚酰胺微孔滤膜在水-甲醇或水-乙腈溶液体系中对含羧基或羟基目标化合物的吸附,扩大了聚酰胺微孔滤膜的适用范围。其可用于制备微孔滤膜,尤其是针筒式微孔滤膜。上述微孔滤膜材料以及对应的微孔滤膜可用于对样品溶液,尤其是食品安全检测中的样品溶液进行过滤,可提高检测结果的准确性。To sum up, in the present application, the hydrolyzed polyamide filter membrane obtained by the hydrolysis of the polyamide filter membrane is subjected to amidation reaction to form benzoyl groups, and the benzoyl group surface-modified microporous filter membrane material is prepared, which can seal the residual residues on the surface of the membrane. It can effectively retain the particulate impurities in the sample solution while avoiding the adsorption of the carboxyl or hydroxyl group-containing target compounds by the traditional polyamide microfiltration membrane in the water-methanol or water-acetonitrile solution system. Scope of application of microporous membranes. It can be used to prepare microporous membranes, especially syringe-type microporous membranes. The above-mentioned microporous filter membrane material and the corresponding microporous filter membrane can be used to filter sample solutions, especially sample solutions in food safety testing, which can improve the accuracy of testing results.
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (36)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110678200.2A CN113398781B (en) | 2021-06-18 | 2021-06-18 | A kind of microporous membrane material, preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110678200.2A CN113398781B (en) | 2021-06-18 | 2021-06-18 | A kind of microporous membrane material, preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113398781A CN113398781A (en) | 2021-09-17 |
CN113398781B true CN113398781B (en) | 2022-07-19 |
Family
ID=77681317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110678200.2A Active CN113398781B (en) | 2021-06-18 | 2021-06-18 | A kind of microporous membrane material, preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113398781B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114534522B (en) * | 2022-01-26 | 2022-10-28 | 中国科学院兰州化学物理研究所 | Preparation and application of boron nitride polymer coating microporous filter membrane |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4983291A (en) * | 1989-12-14 | 1991-01-08 | Allied-Signal Inc. | Dry high flux semipermeable membranes |
CN101234295B (en) * | 2007-02-02 | 2010-10-27 | 天津威德泰科石化科技发展有限公司 | Processing method for reducing NaCl removal rate of nano filter membrane |
KR20100078812A (en) * | 2008-12-30 | 2010-07-08 | 주식회사 효성 | Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby |
US9895666B2 (en) * | 2013-01-14 | 2018-02-20 | Dow Global Technologies Llc | Composite polyamide membrane made using substituted benzamide monomer |
CN105435653B (en) * | 2015-12-18 | 2018-02-06 | 贵阳时代沃顿科技有限公司 | A kind of composite nanometer filtering film to divalent ion removing with high selectivity and preparation method thereof |
CN106178973B (en) * | 2016-08-24 | 2018-10-09 | 杭州易膜环保科技有限公司 | A kind of energy-saving NF membrane and preparation method thereof for water cleaning systems |
CN206262366U (en) * | 2016-11-17 | 2017-06-20 | 江苏绿盟科学仪器有限公司 | A kind of syringe filter |
-
2021
- 2021-06-18 CN CN202110678200.2A patent/CN113398781B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113398781A (en) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113398781B (en) | A kind of microporous membrane material, preparation method and application thereof | |
CN103920307B (en) | A kind of method of iodine in efficient separation and concentration sample | |
CN108276584B (en) | Method for detecting aromatic amine compound in human urine | |
CN100346872C (en) | Novel silica gel loaded cross-linked chitosan adsorbent for heavy metal | |
CN104142393A (en) | Biosensor sensitive membrane and application in detection of clenbuterol hydrochloride | |
Moghimi | Separation and extraction of Co (II) using magnetic chitosan nanoparticles grafted with β-cyclodextrin and determination by FAAS | |
CN109212010A (en) | A kind of sample detection methods of simplicity fast high-flux | |
Li et al. | A novel analytical strategy for the determination of perfluoroalkyl acids in various food matrices using a home-made functionalized fluorine interaction SPME in combination with LC-MS/MS | |
CN100439918C (en) | Method for simultaneous enrichment, desalting and direct analysis of trace proteins or peptides | |
CN111495332A (en) | Magnetic adsorption material and application thereof in benzoyl urea pesticide detection | |
US4694092A (en) | Partially hydrophilicized silica gel and process for producing the same | |
CN105628826B (en) | A high-performance liquid chromatography-tandem mass spectrometry method for the detection of amantadine residues in seawater and marine sediments | |
Wang et al. | Preparation of bovine hemoglobin surface molecularly imprinted cotton for selective protein recognition | |
JP2013033029A (en) | Method of quantifying gold nanoparticles | |
Yang et al. | Determination of fluoroquinolones residues in bean sprouts using covalent organic framework based solid-phase extraction coupled with UHPLC-MS/MS | |
Saxena et al. | Flow injection preconcentration system using a new functionalized resin for determination of cadmium (II) by flame atomic absorption spectroscopy | |
CN101775083B (en) | Preparation method, using method for modified chitosan and application thereof | |
Moghimi | Extraction of Ni (II) on micro crystalline naphthalene modified with organic-solution-processable functionalized nano graphene | |
CN103105446B (en) | Method for enriching beta-lactam penicillins antibiotics in liquid milk | |
CN110743505A (en) | A kind of modified chitosan and its preparation method and application | |
Jabbari et al. | New solid phase microextraction fiber based on an eggshell membrane coating for determination of polycyclic aromatic hydrocarbons | |
CN113941317B (en) | SiO (silicon dioxide) 2 Preparation and application of @ Uio-66 solid-phase extraction column | |
CN110007042A (en) | Methods for the detection of grain fumonisins and their derivatives | |
JP2011047016A (en) | Method for recovering indium from oxalic acid-containing solution | |
CN113000033A (en) | Amino surface modification purification membrane material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240514 Address after: 201400 1st floor, No. 281-289 (single), Lixin Road, Fengxian District, Shanghai Patentee after: Zhikong (Shanghai) Biotechnology Co.,Ltd. Country or region after: China Address before: 100000 No. 12 South Main Street, Haidian District, Beijing, Zhongguancun Patentee before: INSTITUTE OF QUALITY STANDARD AND TESTING TECHNOLOGY FOR AGRO-PRODUCTS, CHINESE ACADAMY OF AGRICULTURAL SCIENCES Country or region before: China |