CN113387442A - 基于污泥双回流aoa工艺的全流程自动控制系统和方法 - Google Patents

基于污泥双回流aoa工艺的全流程自动控制系统和方法 Download PDF

Info

Publication number
CN113387442A
CN113387442A CN202110859346.7A CN202110859346A CN113387442A CN 113387442 A CN113387442 A CN 113387442A CN 202110859346 A CN202110859346 A CN 202110859346A CN 113387442 A CN113387442 A CN 113387442A
Authority
CN
China
Prior art keywords
sludge
water inlet
control system
regulating valve
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110859346.7A
Other languages
English (en)
Other versions
CN113387442B (zh
Inventor
姚晓琰
李凌云
薛晓飞
刘伟航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Enterprises Water China Investment Co Ltd
Original Assignee
Beijing Enterprises Water China Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Enterprises Water China Investment Co Ltd filed Critical Beijing Enterprises Water China Investment Co Ltd
Priority to CN202110859346.7A priority Critical patent/CN113387442B/zh
Publication of CN113387442A publication Critical patent/CN113387442A/zh
Priority to PCT/CN2021/135052 priority patent/WO2023005088A1/zh
Application granted granted Critical
Publication of CN113387442B publication Critical patent/CN113387442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本申请提供一种基于污泥双回流AOA工艺的全流程自动控制系统和方法,包括厌氧池、好氧池、缺氧池、沉淀池、监测系统、曝气系统、排泥系统和控制系统,所述厌氧池、所述好氧池、所述缺氧池以及所述沉淀池依次连通,所述沉淀池的回流污泥口通过第一回流污泥管和第二回流污泥管分别与所述厌氧池和所述缺氧池连通。监测系统包括均与所述控制系统通信连接的进水流量计、COD分析仪、NH3‑N分析仪、DO监测仪、MLSS分析仪、气体流量计、第一回流污泥流量计、第二回流污泥流量计和泥位计。本申请提供的全流程自动控制系统,更智能的控制污泥双回流AOA工艺运行参数,使工艺保持在最佳运行参数的同时,节省能耗,控制灵活,操作便捷,减少人工操作,提高运行效率。

Description

基于污泥双回流AOA工艺的全流程自动控制系统和方法
技术领域
本申请涉及环保技术领域,具体而言,涉及一种基于污泥双回流AOA工艺的全流程自动控制系统和方法。
背景技术
污泥双回流AOA工艺是一种新型高效脱氮工艺,该工艺包括依次连接的厌氧池-好氧池-缺氧池,污泥双路回流,一路回流到厌氧池前端,一路回流到缺氧池前端。该工艺回流到缺氧池的第二回流污泥,既为缺氧池反硝化提供内碳源,也提高了缺氧池反硝化菌的数量。该工艺无需外加碳源,脱氮效率高,尤其适用于低碳氮比的污水脱氮。目前,我国污水处理厂运行还是根据经验以人工操作为主,或是简单的能实现设备启停、故障报警的自动控制方式。因此,开发基于污泥双回流AOA工艺的全流程自动控制系统和方法对于该工艺精细化运行、提高运行效率、扩大推广应用十分重要。
发明内容
本申请提供一种基于污泥双回流AOA工艺的全流程自动控制系统和方法,以改善上述问题。
本申请具体是这样的:
基于上述目的,本实施例提供了一种基于污泥双回流AOA工艺的全流程自动控制系统,包括:
厌氧池、好氧池、缺氧池、沉淀池、监测系统、曝气系统、排泥系统和控制系统,所述厌氧池、所述好氧池、所述缺氧池以及所述沉淀池依次连通,所述沉淀池的回流污泥口通过第一回流污泥管和第二回流污泥管分别与所述厌氧池和所述缺氧池连通;
所述监测系统包括均与所述控制系统通信连接的进水流量计、COD分析仪、两个NH3-N分析仪、DO监测仪、两个MLSS分析仪、气体流量计、第一回流污泥流量计、第二回流污泥流量计和泥位计;
所述进水流量计设于所述厌氧池的进水口处,用于监测原水的进水流量;所述COD分析仪设于所述厌氧池的进水口处,用于监测原水的COD浓度;所述两个NH3-N分析仪分别设于所述厌氧池的进水口处和所述好氧池的出水口处,分别用于监测原水的NH3-N浓度和所述好氧池的出水口处的污水的NH3-N浓度;所述DO监测仪设于所述好氧池的出水口处;所述两个MLSS分析仪分别设于所述厌氧池和所述缺氧池内;所述气体流量计设于所述好氧池内,用于监测所述曝气系统的曝气量;所述第一回流污泥流量计设于所述第一回流污泥管路上,用于监测回流到所述厌氧池的污泥流量;所述第二回流污泥流量计设于所述第二回流污泥管路上,用于监测回流到所述缺氧池的污泥流量;所述泥位计设于所述沉淀池内,用于监测污泥层的高度;
所述曝气系统设于所述好氧池内;所述排泥系统与所述沉淀池连通。
在本申请的一种实施例中,所述曝气系统包括风机、曝气管路以及曝气调节阀,所述风机与所述曝气管路连通,所述曝气调节阀设于所述曝气管路上,用于调节所述曝气管路的气体流量;所述曝气管路的曝气口设于所述好氧池内;
所述风机以及所述曝气调节阀与所述控制系统通信连接。
在本申请的一种实施例中,所述风机设置为变频风机或所述曝气调节阀设置为电动调节阀。
在本申请的一种实施例中,所述气体流量计设于所述曝气管路上。
在本申请的一种实施例中,所述排泥系统包括排泥泵、排泥管路和排泥调节阀,所述排泥泵与所述排泥管路的一端连通,所述排泥管路的另一端与所述沉淀池连通;所述排泥调节阀设于所述排泥管路上,用于调节所述排泥管路的排泥量,所述排泥调节阀与所述控制系统通信连接。
在本申请的一种实施例中,所述第一回流污泥管上还设有第一回流污泥泵和第一回流污泥调节阀,所述第一回流污泥调节阀用于调节所述第一回流污泥管的排泥量;所述第二回流污泥管上还设有第二回流污泥泵和第二回流污泥调节阀,所述第二回流污泥调节阀用于调节所述第二回流污泥管的排泥量;
其中,所述第一回流污泥调节阀和所述第二回流污泥调节阀均与所述控制系统通信连接。
在本申请的一种实施例中,所述全流程自动控制系统还包括进水系统,所述进水系统与所述厌氧池连通,用于将原水输入所述厌氧池。
在本申请的一种实施例中,所述进水系统包括进水泵、进水管路和进水调节阀,所述进水调节阀的一端与所述进水泵连通,另一端与所述厌氧池连通,所述进水调节阀设于所述进水管路上,用于调节所述进水管路的流量;所述进水泵以及所述进水调节阀均与所述控制系统通信连接;
所述COD分析仪、所述NH3-N分析仪以及所述进水流量计均设于所述进水管路上。
在本申请的一种实施例中,所述厌氧池以及所述缺氧池中均设置有搅拌机构。
本实施例还提供了一种基于污泥双回流AOA工艺的全流程自动控制方法,适用于上述的基于污泥双回流AOA工艺的全流程自动控制系统,所述方法包括:
进水控制、曝气控制、污泥回流控制和排泥控制;
所述进水控制包括:控制系统获取设计进水流量值,对比进水流量计采集的进水管路中实时进水流量,通过调节进水泵频率或进水调节阀的开度来调节所述进水管路的进水实时流量,使所述进水实时流量稳定在设计进水量;
所述曝气控制包括全程硝化和短程硝化两种模式,其中:
所述全程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH3-N分析仪采集的NH3-N浓度,并计算理论供氧量作为风机供气量的前馈参数;根据设于所述好氧池的出水口处的NH3-N分析仪采集的NH3-N浓度和DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;并根据修正后的供氧量调节所述风机的频率或曝气调节阀的开度;
所述短程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH3-N分析仪采集的NH3-N浓度,并计算理论供氧量作为风机供氧量的前馈参数;再根据设于好氧池的出水口处的NH3-N分析仪采集的好氧池的NH3-N浓度以及DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;根据修正后的供氧量调节风机的频率或曝气调节阀的开度;
所述污泥回流控制包括:控制系统获取厌氧池的设定污泥浓度A1,设于厌氧池的MLSS分析仪采集厌氧池的实时污泥浓度B1,使A1-500≤B1≤A1+500;若B1<A1-500,调大第一回流污泥泵频率或第一回流污泥调节阀开度,若B1>A1+500,调小第一回流污泥泵频率或第一回流污泥调节阀开度;A1的取值范围为3500~5500mg/L;
控制系统获取缺氧池的设定污泥浓度A2,设于缺氧池的MLSS分析仪采集缺氧池的实时污泥浓度B2,调小第一回流污泥泵频率或第一回流污泥调节阀开度,使A2-500≤B2≤A2+500;若B2<A2-500,则调大第二回流污泥泵频率或第二回流污泥调节阀开度;若B2>A2+500,调小第二回流污泥泵频率或第二回流污泥调节阀开度;A2的取值范围为5500~8500mg/L;
所述排泥控制包括:利用设于所述沉淀池的泥位计实时监测污泥层高度,控制系统获取排泥高泥位和排泥低泥位的设定值,当所述污泥层的高度达到所述排泥高泥位时,开启排泥泵;当所述污泥层的高度降至所述排泥低泥位时,关闭所述排泥泵。
本申请的有益效果包括,例如:
1、本申请提供的污泥双回流AOA工艺全流程自动控制系统,更智能的控制污泥双回流AOA工艺运行参数,使工艺保持在最佳运行参数的同时,节省能耗,控制灵活,操作便捷,减少人工操作,提高运行效率。
2、污泥双回流AOA工艺在条件适宜时,易实现短程硝化,本申请提供的曝气控制方式包括全程硝化和短程硝化两种模式,灵活设置,便于工艺培养驯化短程硝化。
3、基于污泥双回流AOA工艺的特点,设置以污泥浓度为依据来调控污泥回流量,既能保证高效的微生物反应,又能节省污泥回流能耗。微生物的反应速率与污泥浓度相关,传统的污泥回流量调控多采用回流比调控,但是回流污泥的浓度会因排泥等情况而发生变化,从而导致反应器内的污泥浓度不稳定。反应器中污泥浓度过低,不能保证高效的生物反应,影响出水水质;反应器中污泥浓度过高,会因回流量过大造成能量浪费。
4、泥位计控制污泥层高度,及时排泥,避免污泥层过高造成浮泥现象。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请提供的基于污泥双回流AOA工艺的全流程自动控制系统的结构示意图。
图标:
101-搅拌机构;100-厌氧池;200-好氧池;300-缺氧池;400-沉淀池;410-第一回流污泥管;420-第二回流污泥管;500-进水系统;510-进水泵;520-进水管路;530-进水调节阀;600-监测系统;601-进水流量计;602-COD分析仪;603-第一NH3-N分析仪;604-第二NH3-N分析仪;605-DO监测仪;606-第一MLSS分析仪;607-第二MLSS分析仪;608-气体流量计;609-第一回流污泥流量计;610-第二回流污泥流量计;611-泥位计;612-第一回流污泥泵;613-第一回流污泥调节阀;614-第二回流污泥泵;615-第二回流污泥调节阀;700-曝气系统;710-风机;720-曝气管路;730-曝气调节阀;800-排泥系统;810-排泥泵;820-排泥管路;830-排泥调节阀。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的一种基于污泥双回流AOA工艺的全流程自动控制系统或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于池分描述,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接连接,也可以通过中间媒介间接连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本实施例提供了一种基于污泥双回流AOA工艺的全流程自动控制系统,应当理解,污泥双回流AOA工艺是一种新型高效脱氮工艺,也即,本实施例提供的全流程自动控制系统基于高效脱氮污水处理系统,用于高效脱氮工艺。其中,高效脱氮污水处理系统包括依次连通的厌氧池100、好氧池200、缺氧池300和沉淀池400,沉淀池400的回流污泥口通过第一回流污泥管410和第二回流污泥管420分别与厌氧池100和缺氧池300连通。原水进入厌氧池100,然后依次流经好氧池200、缺氧池300和沉淀池400,沉淀池400内的污泥一部分通过第一回流污泥管410进入厌氧池100,一部分污泥通过第二回流污泥管420进入缺氧池300。
本实施例提供的全流程自动控制系统还包括进水系统500、监测系统600、曝气系统700、排泥系统800和控制系统。进水系统500用于将原水输入厌氧池100,监测系统600用于监测各个处理池中的污水和污泥的各种参数;曝气系统700设于好氧池200,为好氧池200提供适量氧气。排泥系统800用于将沉淀池400的污泥排出。控制系统起到全局监控和控制的作用。
本实施例中,进水系统500包括进水泵510、进水管路520和进水调节阀530,进水调节阀530的一端与进水泵510连通,另一端与厌氧池100连通,进水泵510用于将原水通过进水管路520输入厌氧池100内。进水调节阀530设于进水管路520上,用于调节进水管路520的流量,显然,也可以直接关闭进水管路520;进水泵510以及进水调节阀530均与控制系统通信连接。例如,进水泵510和进水调节阀530与控制系统通过电源线或局域网通信连接,以通过控制系统控制进水泵510和进水调节阀530。
本实施例中,可选的,监测系统600包括均与控制系统通信连接的进水流量计601、COD分析仪602、第一NH3-N分析仪603、第二NH3-N分析仪604、DO监测仪605、第一MLSS分析仪606、第二MLSS分析仪607、气体流量计608、第一回流污泥流量计609、第二回流污泥流量计610和泥位计611。
具体的,进水流量计601、COD分析仪602、第一NH3-N分析仪603和进水调节阀530均设于连通厌氧池100的进水管路520上,进水流量计601用于监测原水的进水流量,COD分析仪602用于监测原水的COD浓度,第一NH3-N分析仪603用于监测原水的NH3-N浓度。进水调节阀530用于调节进水管路520的流量。并且,COD分析仪602、第一NH3-N分析仪603、进水泵510、进水调节阀530和进水流量计601在进水管路520上依次设置,进水流量计601最靠近进水管路520连通厌氧池100的一端。第二NH3-N分析仪604和DO监测仪605均设于好氧池200的出水口处,第二NH3-N分析仪604用于监测好氧池200的出水口处的污水的NH3-N浓度。第一MLSS分析仪606设于厌氧池100内,第二MLSS分析仪607设于缺氧池300内。气体流量计608设于好氧池200内,用于监测设于好氧池200内的曝气系统700的曝气量。第一回流污泥流量计609设于第一回流污泥管410路上,用于监测回流到厌氧池100的污泥流量;第二回流污泥流量计610设于第二回流污泥管420路上,用于监测回流到缺氧池300的污泥流量;泥位计611设于沉淀池400内,用于监测污泥层的高度。
可选的,第一回流污泥管410路上还设有第一回流污泥泵612和第一回流污泥调节阀613,第一回流污泥调节阀613用于调节第一回流污泥管410的排泥量;第二回流污泥管420上还设有第二回流污泥泵614和第二回流污泥调节阀615,第二回流污泥调节阀615用于调节第二回流污泥管420的排泥量;其中,第一回流污泥调节阀613和第二回流污泥调节阀615均与控制系统通信连接。
本实施例中,可选的,曝气系统700包括风机710、曝气管路720以及曝气调节阀730,风机710与曝气管路720连通,曝气调节阀730设于曝气管路720上,用于调节曝气管路720的气体流量;曝气管路720的曝气口设于好氧池200内。所述风机710以及所述曝气调节阀730与所述控制系统通信连接。应当说明的是,风机710可以设置为变频风机710,或者,曝气调节阀730设置为电动调节阀。并且,气体流量计608可以直接设于曝气管路720上。
本实施例中,可选的,排泥系统800包括排泥泵810、排泥管路820和排泥调节阀830,排泥泵810与排泥管路820的一端连通,排泥管路820的另一端与沉淀池400连通;排泥调节阀830设于排泥管路820上,用于调节排泥管路820的排泥量,排泥调节阀830与控制系统通信连接。
本实施例中,可选的,控制系统可以为PLC控制系统。
在其他实施例中,厌氧池100和缺氧池300中均可以设置搅拌机构101,利于污水的处理。
本实施例还提供一种基于污泥双回流AOA工艺的全流程自动控制系统的控制方法,该方法包括:
进水控制、曝气控制、污泥回流控制和排泥控制;
进水控制包括:控制系统获取设计进水流量值,例如,可以通过人工输入进水流量值,对比进水流量计601采集的进水管路520中实时进水流量,通过调节进水泵510频率或进水调节阀530的开度来调节进水管路520的进水实时流量,使进水实时流量稳定在设计进水量;
曝气控制包括全程硝化和短程硝化两种模式,其中:
全程硝化模式包括:控制系统获取拟达到的好氧池200的出水口处的NH3-N浓度,例如,可以通过人工输入拟达到的NH3-N浓度,根据COD分析仪602采集的COD浓度和设于厌氧池100的进水口处的NH3-N分析仪采集的NH3-N浓度,并基于全程硝化的理论需氧量公式计算理论供氧量作为风机710供气量的前馈参数;基于DO预测模型,根据设于好氧池200的出水口处的NH3-N分析仪采集的NH3-N浓度和DO监测仪605采集的DO浓度作为后馈参数对理论供氧量进行修正;并根据修正后的供氧量调节风机710的频率或曝气调节阀730的开度;
短程硝化模式包括:控制系统获取拟达到的好氧池200的出水口处的NH3-N浓度,例如,可以通过人工输入拟达到的NH3-N浓度,根据COD分析仪602采集的COD浓度和设于厌氧池100的进水口处的NH3-N分析仪采集的NH3-N浓度,并基于短程硝化的理论需氧量公式计算理论供氧量作为风机710供氧量的前馈参数;再基于DO预测模型,根据设于好氧池200的出水口处的NH3-N分析仪采集的好氧池200的NH3-N浓度以及DO监测仪605采集的DO浓度作为后馈参数对理论供氧量进行修正;根据修正后的供氧量调节风机710的频率或曝气调节阀730的开度;
污泥回流控制包括:控制系统获取厌氧池100的设定污泥浓度A1,例如,可以通过人工输入拟达到的污泥浓度A1,设于厌氧池100的MLSS分析仪采集厌氧池100的实时污泥浓度B1,使A1-500≤B1≤A1+500;若B1<A1-500,调大第一回流污泥泵612频率或第一回流污泥调节阀613开度,若B1>A1+500,调小第一回流污泥泵612频率或第一回流污泥调节阀613开度;A1的取值范围为3500~5500mg/L;
控制系统获取缺氧池300的设定污泥浓度A2,例如,可以通过人工输入拟达到的污泥浓度A2,设于缺氧池300的MLSS分析仪采集缺氧池300的实时污泥浓度B2,调小第一回流污泥泵612频率或第一回流污泥调节阀613开度,使A2-500≤B2≤A2+500;若B2<A2-500,则调大第二回流污泥泵614频率或第二回流污泥调节阀615开度;若B2>A2+500,调小第二回流污泥泵614频率或第二回流污泥调节阀615开度;A2的取值范围为5500~8500mg/L;
应当理解,全程硝化的理论需氧量公式、短程硝化的理论需氧量公式和DO预测模型均可以采用现有技术,本实施例中不进行具体说明。
排泥控制包括:利用设于沉淀池400的泥位计611实时监测污泥层高度,控制系统获取排泥高泥位和排泥低泥位的设定值,当污泥层的高度达到排泥高泥位时,开启排泥泵810;当污泥层的高度降至排泥低泥位时,关闭排泥泵810。
本实施例提供的基于污泥双回流AOA工艺的全流程自动控制系统和方法,具有至少如下有益效果:
1、本申请提供的污泥双回流AOA工艺全流程自动控制系统,更智能的控制污泥双回流AOA工艺运行参数,使工艺保持在最佳运行参数的同时,节省能耗,控制灵活,操作便捷,减少人工操作,提高运行效率。
2、污泥双回流AOA工艺在条件适宜时,易实现短程硝化,本申请提供的曝气控制方式包括全程硝化和短程硝化两种模式,灵活设置,便于工艺培养驯化短程硝化。
3、基于污泥双回流AOA工艺的特点,设置以污泥浓度为依据来调控污泥回流量,既能保证高效的微生物反应,又能节省污泥回流能耗。微生物的反应速率与污泥浓度相关,传统的污泥回流量调控多采用回流比调控,但是回流污泥的浓度会因排泥等情况而发生变化,从而导致反应器内的污泥浓度不稳定。反应器中污泥浓度过低,不能保证高效的生物反应,影响出水水质;反应器中污泥浓度过高,会因回流量过大造成能量浪费。
4、泥位计611控制污泥层高度,及时排泥,避免污泥层过高造成浮泥现象。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于,包括:
厌氧池、好氧池、缺氧池、沉淀池、监测系统、曝气系统、排泥系统和控制系统,所述厌氧池、所述好氧池、所述缺氧池以及所述沉淀池依次连通,所述沉淀池的回流污泥口通过第一回流污泥管和第二回流污泥管分别与所述厌氧池和所述缺氧池连通;
所述监测系统包括均与所述控制系统通信连接的进水流量计、COD分析仪、两个NH3-N分析仪、DO监测仪、两个MLSS分析仪、气体流量计、第一回流污泥流量计、第二回流污泥流量计和泥位计;
所述进水流量计设于所述厌氧池的进水口处,用于监测原水的进水流量;所述COD分析仪设于所述厌氧池的进水口处,用于监测原水的COD浓度;所述两个NH3-N分析仪分别设于所述厌氧池的进水口处和所述好氧池的出水口处,分别用于监测原水的NH3-N浓度和所述好氧池的出水口处的污水的NH3-N浓度;所述DO监测仪设于所述好氧池的出水口处;所述两个MLSS分析仪分别设于所述厌氧池和所述缺氧池内;所述气体流量计设于所述好氧池内,用于监测所述曝气系统的曝气量;所述第一回流污泥流量计设于所述第一回流污泥管路上,用于监测回流到所述厌氧池的污泥流量;所述第二回流污泥流量计设于所述第二回流污泥管路上,用于监测回流到所述缺氧池的污泥流量;所述泥位计设于所述沉淀池内,用于监测污泥层的高度;
所述曝气系统设于所述好氧池内;所述排泥系统与所述沉淀池连通。
2.根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述曝气系统包括风机、曝气管路以及曝气调节阀,所述风机与所述曝气管路连通,所述曝气调节阀设于所述曝气管路上,用于调节所述曝气管路的气体流量;所述曝气管路的曝气口设于所述好氧池内;
所述风机以及所述曝气调节阀与所述控制系统通信连接。
3.根据权利要求2所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述风机设置为变频风机或所述曝气调节阀设置为电动调节阀。
4.根据权利要求2所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述气体流量计设于所述曝气管路上。
5.根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述排泥系统包括排泥泵、排泥管路和排泥调节阀,所述排泥泵与所述排泥管路的一端连通,所述排泥管路的另一端与所述沉淀池连通;所述排泥调节阀设于所述排泥管路上,用于调节所述排泥管路的排泥量,所述排泥调节阀与所述控制系统通信连接。
6.根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述第一回流污泥管上还设有第一回流污泥泵和第一回流污泥调节阀,所述第一回流污泥调节阀用于调节所述第一回流污泥管的排泥量;所述第二回流污泥管上还设有第一回流污泥泵和第二回流污泥调节阀,所述第二回流污泥调节阀用于调节所述第二回流污泥管的排泥量;
其中,所述第一回流污泥调节阀和所述第二回流污泥调节阀均与所述控制系统通信连接。
7.根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述全流程自动控制系统还包括进水系统,所述进水系统与所述厌氧池连通,用于将原水输入所述厌氧池。
8.根据权利要求7所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述进水系统包括进水泵、进水管路和进水调节阀,所述进水调节阀的一端与所述进水泵连通,另一端与所述厌氧池连通,所述进水调节阀设于所述进水管路上,用于调节所述进水管路的流量;所述进水泵以及所述进水调节阀均与所述控制系统通信连接;
所述COD分析仪、所述NH3-N分析仪以及所述进水流量计均设于所述进水管路上。
9.根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
所述厌氧池以及所述缺氧池中均设置有搅拌机构。
10.一种基于污泥双回流AOA工艺的全流程自动控制方法,适用于权利要求1-9中任一项所述的基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于,所述方法包括:
进水控制、曝气控制、污泥回流控制和排泥控制;
所述进水控制包括:控制系统获取设计进水流量值,对比进水流量计采集的进水管路中实时进水流量,通过调节进水泵频率或进水调节阀的开度来调节所述进水管路的进水实时流量,使所述进水实时流量稳定在设计进水量;
所述曝气控制包括全程硝化和短程硝化两种模式,其中:
所述全程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH3-N分析仪采集的NH3-N浓度,并计算理论供氧量作为风机供气量的前馈参数;根据设于所述好氧池的出水口处的NH3-N分析仪采集的NH3-N浓度和DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;并根据修正后的供氧量调节所述风机的频率或曝气调节阀的开度;
所述短程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH3-N分析仪采集的NH3-N浓度,并计算理论供氧量作为风机供氧量的前馈参数;再根据设于好氧池的出水口处的NH3-N分析仪采集的好氧池的NH3-N浓度以及DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;根据修正后的供氧量调节风机的频率或曝气调节阀的开度;
所述污泥回流控制包括:控制系统获取厌氧池的设定污泥浓度A1,设于厌氧池的MLSS分析仪采集厌氧池的实时污泥浓度B1,使A1-500≤B1≤A1+500;若B1<A1-500,调大第一回流污泥泵频率或第一回流污泥调节阀开度,若B1>A1+500,调小第一回流污泥泵频率或第一回流污泥调节阀开度;A1的取值范围为3500~5500mg/L;
控制系统获取缺氧池的设定污泥浓度A2,设于缺氧池的MLSS分析仪采集缺氧池的实时污泥浓度B2,调小第一回流污泥泵频率或第一回流污泥调节阀开度,使A2-500≤B2≤A2+500;若B2<A2-500,则调大第二回流污泥泵频率或第二回流污泥调节阀开度;若B2>A2+500,调小第二回流污泥泵频率或第二回流污泥调节阀开度;A2的取值范围为5500~8500mg/L;
所述排泥控制包括:利用设于所述沉淀池的泥位计实时监测污泥层高度,控制系统获取排泥高泥位和排泥低泥位的设定值,当所述污泥层的高度达到所述排泥高泥位时,开启排泥泵;当所述污泥层的高度降至所述排泥低泥位时,关闭所述排泥泵。
CN202110859346.7A 2021-07-28 2021-07-28 基于污泥双回流aoa工艺的全流程自动控制系统和方法 Active CN113387442B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110859346.7A CN113387442B (zh) 2021-07-28 2021-07-28 基于污泥双回流aoa工艺的全流程自动控制系统和方法
PCT/CN2021/135052 WO2023005088A1 (zh) 2021-07-28 2021-12-02 基于污泥双回流aoa工艺的全流程自动控制系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110859346.7A CN113387442B (zh) 2021-07-28 2021-07-28 基于污泥双回流aoa工艺的全流程自动控制系统和方法

Publications (2)

Publication Number Publication Date
CN113387442A true CN113387442A (zh) 2021-09-14
CN113387442B CN113387442B (zh) 2024-01-16

Family

ID=77622166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110859346.7A Active CN113387442B (zh) 2021-07-28 2021-07-28 基于污泥双回流aoa工艺的全流程自动控制系统和方法

Country Status (1)

Country Link
CN (1) CN113387442B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455706A (zh) * 2021-12-21 2022-05-10 江苏裕隆环保有限公司 一种污水双污泥回流aoa深度脱氮系统
CN115093028A (zh) * 2022-07-12 2022-09-23 北控水务(中国)投资有限公司 Aoa系统低总氮出水自动控制方法及系统
WO2023005088A1 (zh) * 2021-07-28 2023-02-02 北控水务(中国)投资有限公司 基于污泥双回流aoa工艺的全流程自动控制系统和方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238084A (ja) * 2004-02-25 2005-09-08 Univ Waseda 排水処理システム及び排水処理方法
CN202758178U (zh) * 2011-12-02 2013-02-27 深圳达实智能股份有限公司 一种智能动态曝气控制系统
CN107032488A (zh) * 2017-04-24 2017-08-11 北京工业大学 一种通过污泥双回流aoa工艺实现城市污水短程硝化的方法
CN210030172U (zh) * 2018-09-10 2020-02-07 葛洲坝水务(滨州)有限公司 基于aoa-mbr工艺的智能化污水处理装置
CN210795916U (zh) * 2019-07-04 2020-06-19 昆明滇池水务股份有限公司 一种多维精细化控制污水处理系统
CN112047467A (zh) * 2020-08-07 2020-12-08 山东思源水业工程有限公司 一种智能高效曝气生化系统及自动控制方法
CN112723542A (zh) * 2020-11-20 2021-04-30 成都市排水有限责任公司 一种适用于高污泥浓度的强化脱氮系统及方法
CN112875859A (zh) * 2021-01-12 2021-06-01 珠海九通水务股份有限公司 基于aoa工艺的污水脱氮除磷控制系统
CN113023889A (zh) * 2021-03-16 2021-06-25 北控水务(中国)投资有限公司 一种aoa+mabr耦合工艺的碳源投加优化控制系统及方法
CN215327224U (zh) * 2021-07-28 2021-12-28 北控水务(中国)投资有限公司 基于污泥双回流aoa工艺的全流程自动控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238084A (ja) * 2004-02-25 2005-09-08 Univ Waseda 排水処理システム及び排水処理方法
CN202758178U (zh) * 2011-12-02 2013-02-27 深圳达实智能股份有限公司 一种智能动态曝气控制系统
CN107032488A (zh) * 2017-04-24 2017-08-11 北京工业大学 一种通过污泥双回流aoa工艺实现城市污水短程硝化的方法
CN210030172U (zh) * 2018-09-10 2020-02-07 葛洲坝水务(滨州)有限公司 基于aoa-mbr工艺的智能化污水处理装置
CN210795916U (zh) * 2019-07-04 2020-06-19 昆明滇池水务股份有限公司 一种多维精细化控制污水处理系统
CN112047467A (zh) * 2020-08-07 2020-12-08 山东思源水业工程有限公司 一种智能高效曝气生化系统及自动控制方法
CN112723542A (zh) * 2020-11-20 2021-04-30 成都市排水有限责任公司 一种适用于高污泥浓度的强化脱氮系统及方法
CN112875859A (zh) * 2021-01-12 2021-06-01 珠海九通水务股份有限公司 基于aoa工艺的污水脱氮除磷控制系统
CN113023889A (zh) * 2021-03-16 2021-06-25 北控水务(中国)投资有限公司 一种aoa+mabr耦合工艺的碳源投加优化控制系统及方法
CN215327224U (zh) * 2021-07-28 2021-12-28 北控水务(中国)投资有限公司 基于污泥双回流aoa工艺的全流程自动控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023005088A1 (zh) * 2021-07-28 2023-02-02 北控水务(中国)投资有限公司 基于污泥双回流aoa工艺的全流程自动控制系统和方法
CN114455706A (zh) * 2021-12-21 2022-05-10 江苏裕隆环保有限公司 一种污水双污泥回流aoa深度脱氮系统
CN115093028A (zh) * 2022-07-12 2022-09-23 北控水务(中国)投资有限公司 Aoa系统低总氮出水自动控制方法及系统
CN115093028B (zh) * 2022-07-12 2023-11-24 北控水务(中国)投资有限公司 Aoa系统低总氮出水自动控制方法及系统

Also Published As

Publication number Publication date
CN113387442B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN113387442B (zh) 基于污泥双回流aoa工艺的全流程自动控制系统和方法
CN110577275B (zh) 一种污水处理智能化曝气控制系统及方法
WO2023005088A1 (zh) 基于污泥双回流aoa工艺的全流程自动控制系统和方法
CN107986428B (zh) 一种污水处理精确曝气方法
CN101759290B (zh) 连续流工艺中快速实现并稳定维持短程硝化的方法
CN111847634A (zh) 一种用于泥膜复合污水处理工艺的曝气和碳源投加优化控制系统及方法
CN114380386B (zh) 一种用于污水处理外碳源投加的自动控制方法及装置
CN215327224U (zh) 基于污泥双回流aoa工艺的全流程自动控制系统
CN111547948B (zh) 一种一体化污水处理设备优化运行方法
CN110104778A (zh) 一种风量控制系统
CN210795894U (zh) 一种全自动曝气节能控制系统
CN111018110A (zh) 污水生化处理系统及控制方法
CN113023889B (zh) 一种aoa+mabr耦合工艺的碳源投加优化控制系统及方法
CN216141333U (zh) 一种aoa+mabr耦合工艺的碳源投加优化控制系统
CN203269649U (zh) 一种用于污水处理厂的新型生物反应池自动化控制系统
CN114920358B (zh) 污水厂rbs智能控制方法
CN216997850U (zh) 用于aao工艺污水处理的碳源投加装置
CN110655176A (zh) 一种基于聚类的污水处理曝气量前馈控制方法
CN212770334U (zh) 一种一体化污水处理装置
CN113354069A (zh) 一种mbr工艺精确曝气控制系统及方法
CN114684909A (zh) 一种渗滤液好氧处理控制方法
CN112320946A (zh) 一种aao系统混合液回流及溶解氧控制方法
CN111777164A (zh) 一种tn精准控制系统
CN220132006U (zh) 一种基于垃圾渗滤液短程硝化的氧管理系统
CN220078831U (zh) 一种自适应废水处理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant