WO2023005088A1 - 基于污泥双回流aoa工艺的全流程自动控制系统和方法 - Google Patents

基于污泥双回流aoa工艺的全流程自动控制系统和方法 Download PDF

Info

Publication number
WO2023005088A1
WO2023005088A1 PCT/CN2021/135052 CN2021135052W WO2023005088A1 WO 2023005088 A1 WO2023005088 A1 WO 2023005088A1 CN 2021135052 W CN2021135052 W CN 2021135052W WO 2023005088 A1 WO2023005088 A1 WO 2023005088A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
water inlet
return
tank
control system
Prior art date
Application number
PCT/CN2021/135052
Other languages
English (en)
French (fr)
Inventor
姚晓琰
李凌云
薛晓飞
刘伟航
Original Assignee
北控水务(中国)投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121732574.XU external-priority patent/CN215327224U/zh
Priority claimed from CN202110859346.7A external-priority patent/CN113387442B/zh
Application filed by 北控水务(中国)投资有限公司 filed Critical 北控水务(中国)投资有限公司
Publication of WO2023005088A1 publication Critical patent/WO2023005088A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Definitions

  • This application relates to the field of environmental protection technology, in particular, to a full-process automatic control system and method based on sludge double-reflux AOA process.
  • the sludge double-return AOA process is a new type of high-efficiency denitrification process.
  • the process includes anaerobic tanks, aerobic tanks and anoxic tanks connected in sequence.
  • the sludge returns in two ways, one way back to the front of the anaerobic tank, and the other way back to the Anoxic pool front.
  • This process returns the second return sludge to the anoxic tank, which not only provides an internal carbon source for the denitrification of the anoxic tank, but also increases the number of denitrifying bacteria in the anoxic tank.
  • the process does not require an external carbon source, and has high denitrification efficiency, and is especially suitable for denitrification of sewage with a low carbon-to-nitrogen ratio.
  • the present application provides a full-process automatic control system and method based on the sludge double-reflux AOA process to improve the above problems.
  • this embodiment provides a full-process automatic control system based on the sludge double-reflux AOA process, including:
  • the pools are connected in sequence, and the return sludge port of the settling tank is respectively communicated with the anaerobic pool and the anoxic pool through the first return sludge pipe and the second return sludge pipe;
  • the monitoring system includes an influent flowmeter, a COD analyzer, two NH3-N analyzers, a DO monitor, two MLSS analyzers, a gas flowmeter, a first return sludge Flow meter, second return sludge flow meter and mud level meter;
  • the influent flow meter is arranged at the water inlet of the anaerobic tank for monitoring the influent flow of the raw water;
  • the COD analyzer is arranged at the water inlet of the anaerobic tank for monitoring the COD of the raw water concentration;
  • the two NH3-N analyzers are respectively located at the water inlet of the anaerobic tank and the water outlet of the aerobic tank, and are used to monitor the NH3-N concentration of the raw water and the aerobic tank respectively.
  • the DO monitor is located at the water outlet of the aerobic pool;
  • the two MLSS analyzers are respectively located in the anaerobic pool and the anoxic pool
  • the gas flow meter is set in the aerobic tank for monitoring the aeration rate of the aeration system;
  • the first return sludge flow meter is set on the first return sludge pipeline for Monitoring the sludge flow back to the anaerobic tank;
  • the second return sludge flowmeter is arranged on the second return sludge pipeline for monitoring the sludge flow back to the anoxic tank;
  • the The mud level meter is arranged in the sedimentation tank for monitoring the height of the sludge layer;
  • the aeration system is set in the aerobic tank; the mud discharge system is connected with the sedimentation tank.
  • the aeration system includes a fan, an aeration pipeline and an aeration regulating valve, the fan is connected to the aeration pipeline, and the aeration regulating valve is set on the On the aeration pipeline, it is used to adjust the gas flow of the aeration pipeline; the aeration port of the aeration pipeline is set in the aerobic tank;
  • the fan and the aeration regulating valve are connected in communication with the control system.
  • the fan is configured as a frequency-variable fan or the aeration regulating valve is configured as an electric regulating valve.
  • the gas flow meter is arranged on the aeration pipeline.
  • the sludge discharge system includes a sludge discharge pump, a sludge discharge pipeline and a sludge discharge regulating valve, the sludge discharge pump communicates with one end of the sludge discharge pipeline, and the sludge discharge pipeline The other end of the pipeline communicates with the sedimentation tank; the mud discharge regulating valve is arranged on the mud discharge pipeline for adjusting the mud discharge volume of the mud discharge pipeline, and the mud discharge regulating valve is connected to the sludge discharge pipeline. Control system communication connection.
  • the first return sludge pipe is also provided with a first return sludge pump and a first return sludge regulating valve, and the first return sludge regulating valve is used to adjust the Describe the sludge discharge volume of the first return sludge pipe;
  • the second return sludge pipe is also provided with a second return sludge pump and a second return sludge regulating valve, and the second return sludge regulating valve is used for Regulating the sludge discharge volume of the second return sludge pipe;
  • both the first return sludge regulating valve and the second return sludge regulating valve are connected in communication with the control system.
  • the whole-process automatic control system further includes a water inlet system, and the water inlet system is communicated with the anaerobic tank for inputting raw water into the anaerobic tank.
  • the water inlet system includes a water inlet pump, a water inlet pipeline, and a water inlet regulating valve, one end of the water inlet regulating valve communicates with the water inlet pump, and the other end communicates with the anaerobic
  • the pool is connected, and the water inlet regulating valve is arranged on the water inlet pipeline for adjusting the flow of the water inlet pipeline; the water inlet pump and the water inlet regulating valve are both connected to the control system by communication;
  • the COD analyzer, the NH3-N analyzer and the water inlet flowmeter are all arranged on the water inlet pipeline.
  • a stirring mechanism is provided in both the anaerobic tank and the anoxic tank.
  • This embodiment also provides a full-process automatic control method based on the sludge double-return AOA process, which is applicable to the above-mentioned full-process automatic control system based on the sludge double-return AOA process, and the method includes:
  • the water inlet control includes: the control system acquires the designed water inlet flow value, compares the real-time water inlet flow in the water inlet pipeline collected by the water inlet flowmeter, and adjusts the inlet water flow rate by adjusting the frequency of the water inlet pump or the opening of the water inlet regulating valve.
  • the aeration control includes two modes of full-range nitrification and short-range nitrification, wherein:
  • the full-range nitrification mode includes: the control system obtains the NH3-N concentration at the water outlet of the aerobic tank to be reached, and the COD concentration collected by the COD analyzer and the NH3 at the water inlet of the anaerobic tank
  • concentration of NH3-N collected by the -N analyzer, and based on the theoretical oxygen demand formula of the whole process of nitrification, the theoretical oxygen supply is calculated as the feed-forward parameter of the air supply of the fan; based on the DO prediction model, according to the
  • the NH3-N concentration collected by the NH3-N analyzer at the water outlet and the DO concentration collected by the DO monitor are used as a feed-back parameter to correct the theoretical oxygen supply; and adjust the fan according to the corrected oxygen supply. Frequency or opening of the aeration regulating valve;
  • the short-range nitrification mode includes: the control system obtains the NH3-N concentration at the outlet of the aerobic tank to be reached, and the COD concentration collected by the COD analyzer and the NH3-N concentration at the water inlet of the anaerobic tank
  • concentration of NH3-N collected by the 3 -N analyzer, and based on the theoretical oxygen demand formula of short-range nitrification, the theoretical oxygen supply is calculated as the feed-forward parameter of the oxygen supply of the fan; then based on the DO prediction model, according to the The NH 3 -N concentration of the aerobic pool collected by the NH3-N analyzer at the water outlet and the DO concentration collected by the DO monitor are used as feed-back parameters to correct the theoretical oxygen supply; adjust according to the corrected oxygen supply
  • the frequency of the fan or the opening of the aeration regulating valve The frequency of the fan or the opening of the aeration regulating valve
  • the sludge return control includes: the control system obtains the set sludge concentration A1 of the anaerobic tank, and the MLSS analyzer installed in the anaerobic tank collects the real-time sludge concentration B1 of the anaerobic tank, so that A1-500 ⁇ B1 ⁇ A1 +500; if B1 ⁇ A1-500, increase the frequency of the first return sludge pump or the opening of the first return sludge control valve, if B1>A1+500, decrease the frequency of the first return sludge pump or the first return flow Sludge regulating valve opening; the value range of A1 is 3500 ⁇ 5500mg/L;
  • the control system obtains the set sludge concentration A2 of the anoxic tank, and the MLSS analyzer installed in the anoxic tank collects the real-time sludge concentration B2 of the anoxic tank, and reduces the frequency of the first return sludge pump or the adjustment of the first return sludge Valve opening, so that A2-500 ⁇ B2 ⁇ A2+500; if B2 ⁇ A2-500, increase the frequency of the second return sludge pump or the opening of the second return sludge regulating valve; if B2>A2+500, Decrease the frequency of the second return sludge pump or the opening of the second return sludge control valve; the value range of A2 is 5500-8500mg/L;
  • the sludge discharge control includes: using the sludge level gauge installed in the sedimentation tank to monitor the height of the sludge layer in real time, the control system obtains the set values of the high sludge level and the low sludge level, and when the sludge layer When the height of the sludge layer reaches the high sludge discharge level, the sludge discharge pump is turned on; when the height of the sludge layer drops to the low sludge discharge level, the sludge discharge pump is turned off.
  • the automatic control system for the whole process of the sludge double-reflux AOA process provided by this application can control the operating parameters of the sludge double-reflux AOA process more intelligently, so that the process can be kept at the best operating parameters, saving energy, flexible control, and easy to operate. Convenient, reduce manual operation, improve operating efficiency.
  • the sludge double-reflux AOA process is easy to realize short-range nitrification when the conditions are suitable.
  • the aeration control mode provided by this application includes two modes of full-scale nitrification and short-range nitrification. Flexible settings are convenient for process cultivation and domestication of short-range nitrification.
  • the sludge return flow is adjusted based on the sludge concentration, which can not only ensure efficient microbial reactions, but also save energy consumption for sludge return.
  • the reaction rate of microorganisms is related to the sludge concentration.
  • the traditional sludge return flow control mostly adopts the reflux ratio control, but the concentration of the return sludge will change due to the sludge discharge, which will lead to the instability of the sludge concentration in the reactor. . If the sludge concentration in the reactor is too low, high-efficiency biological reactions cannot be guaranteed, which will affect the quality of the effluent; if the sludge concentration in the reactor is too high, energy will be wasted due to excessive return flow.
  • the mud level gauge controls the height of the sludge layer, discharges the sludge in time, and avoids the floating mud phenomenon caused by the excessive sludge layer.
  • Fig. 1 is a schematic structural diagram of the whole-process automatic control system based on the sludge double-reflux AOA process provided by the present application.
  • 101-stirring mechanism 100-anaerobic tank; 200-aerobic tank; 300-anoxic tank; 400-settling tank; 410-first return sludge pipe; 420-second return sludge pipe; 500-influent System; 510-water inlet pump; 520-water inlet pipeline; 530-water inlet regulating valve; 600-monitoring system; 601-water inlet flowmeter; 602-COD analyzer; 603-the first NH3-N analyzer; 604- The second NH3-N analyzer; 605-DO monitor; 606-the first MLSS analyzer; 607-the second MLSS analyzer; 608-gas flow meter; 609-the first return sludge flow meter; 610-the second Return sludge flowmeter; 611-mud level meter; 612-first return sludge pump; 613-first return sludge regulating valve; 614-second return sludge pump; 615-second return sludge
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship that is usually placed when the product of the application is used, or the orientation or positional relationship of this application.
  • the orientation or positional relationship commonly understood by those skilled in the art, or the orientation or positional relationship in which the product of this application is usually placed when it is used is only for the convenience of describing the application and simplifying the description, rather than indicating or implying a pollution-based
  • the whole-process automatic control system or components of the mud double return AOA process must have a specific orientation, be constructed and operated in a specific orientation, and thus cannot be construed as a limitation on the present application.
  • the terms “first”, “second”, “third”, etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • This embodiment provides a full-process automatic control system based on the sludge double-reflux AOA process.
  • the sludge double-reflux AOA process is a new type of high-efficiency denitrification process, that is, the full-process automatic control system provided by this embodiment
  • the control system is based on the high-efficiency denitrification sewage treatment system for high-efficiency denitrification process.
  • the high-efficiency denitrification sewage treatment system includes anaerobic tank 100, aerobic tank 200, anoxic tank 300 and sedimentation tank 400 connected in sequence.
  • the return sludge port of sedimentation tank 400 passes through the first return sludge pipe 410 and the second The return sludge pipe 420 communicates with the anaerobic tank 100 and the anoxic tank 300 respectively.
  • the raw water enters the anaerobic tank 100, and then flows through the aerobic tank 200, the anoxic tank 300 and the sedimentation tank 400 in sequence.
  • a part of the sludge in the sedimentation tank 400 enters the anaerobic tank 100 through the first return sludge pipe 410, and a part of the sludge Enter the anoxic tank 300 through the second return sludge pipe 420 .
  • the full-process automatic control system provided in this embodiment also includes a water intake system 500, a monitoring system 600, an aeration system 700, a sludge discharge system 800 and a control system.
  • the water inlet system 500 is used to input raw water into the anaerobic tank 100
  • the monitoring system 600 is used to monitor various parameters of sewage and sludge in each treatment tank;
  • the aeration system 700 provides an appropriate amount of oxygen for the aerobic tank 200 .
  • the sludge discharge system 800 is used to discharge the sludge from the sedimentation tank 400 .
  • the control system plays the role of overall monitoring and control.
  • the water inlet system 500 includes a water inlet pump 510, a water inlet pipeline 520, and a water inlet regulating valve 530.
  • One end of the water inlet regulating valve 530 is connected to the water inlet pump 510, and the other end is connected to the anaerobic tank 100.
  • the water inlet pump 510 It is used to input raw water into the anaerobic tank 100 through the water inlet pipeline 520 .
  • the water inlet regulating valve 530 is arranged on the water inlet pipeline 520 to adjust the flow of the water inlet pipeline 520.
  • the water inlet pipeline 520 can also be directly closed; both the water inlet pump 510 and the water inlet regulating valve 530 are in communication with the control system.
  • the water inlet pump 510 and the water inlet regulating valve 530 are communicatively connected with the control system through a power line or a local area network, so as to control the water inlet pump 510 and the water inlet regulating valve 530 through the control system.
  • the monitoring system 600 includes an influent flowmeter 601, a COD analyzer 602, a first NH3-N analyzer 603, a second NH3-N analyzer 604, and a DO Monitor 605 , first MLSS analyzer 606 , second MLSS analyzer 607 , gas flow meter 608 , first return sludge flow meter 609 , second return sludge flow meter 610 and mud level meter 611 .
  • the water inlet flowmeter 601, the COD analyzer 602, the first NH3-N analyzer 603 and the water inlet regulating valve 530 are all arranged on the water inlet pipeline 520 connected to the anaerobic tank 100, and the water inlet flowmeter 601 is used for To monitor the influent flow of raw water, the COD analyzer 602 is used to monitor the COD concentration of the raw water, and the first NH3-N analyzer 603 is used to monitor the NH3-N concentration of the raw water.
  • the water inlet regulating valve 530 is used to regulate the flow of the water inlet pipeline 520 .
  • the COD analyzer 602, the first NH3-N analyzer 603, the water inlet pump 510, the water inlet regulating valve 530, and the water inlet flowmeter 601 are arranged in sequence on the water inlet pipeline 520, and the water inlet flowmeter 601 is closest to the water inlet pipeline 520 communicates with one end of the anaerobic tank 100 .
  • the second NH3-N analyzer 604 and the DO monitor 605 are located at the water outlet of the aerobic pool 200, and the second NH3-N analyzer 604 is used to monitor the NH3-N of the sewage at the water outlet of the aerobic pool 200 concentration.
  • the first MLSS analyzer 606 is set in the anaerobic tank 100
  • the second MLSS analyzer 607 is set in the anoxic tank 300
  • the gas flow meter 608 is set in the aerobic tank 200 for monitoring the aeration rate of the aeration system 700 in the aerobic tank 200 .
  • the first return sludge flowmeter 609 is arranged on the first return sludge pipe 410 road, and is used to monitor the sludge flow back to the anaerobic tank 100; the second return sludge flowmeter 610 is arranged on the second return sludge pipe 420 On the road, it is used to monitor the sludge flow back to the anoxic tank 300; the mud level gauge 611 is set in the sedimentation tank 400, and is used to monitor the height of the sludge layer.
  • the first return sludge pipe 410 is also provided with a first return sludge pump 612 and a first return sludge regulating valve 613, and the first return sludge regulating valve 613 is used to adjust the flow rate of the first return sludge pipe 410.
  • the amount of return sludge; the second return sludge pipe 420 is also provided with a second return sludge pump 614 and a second return sludge regulating valve 615, and the second return sludge regulating valve 615 is used to adjust the second return sludge
  • the aeration system 700 includes a fan 710, an aeration pipeline 720, and an aeration regulating valve 730, the fan 710 communicates with the aeration pipeline 720, and the aeration regulating valve 730 is located in the aeration pipeline 720 is used to adjust the gas flow of the aeration pipeline 720; the aerator of the aeration pipeline 720 is set in the aerobic tank 200.
  • the fan 710 and the aeration regulating valve 730 are in communication connection with the control system. It should be noted that the fan 710 can be set as a variable frequency fan 710, or the aeration regulating valve 730 can be set as an electric regulating valve.
  • the gas flow meter 608 can be directly arranged on the aeration pipeline 720 .
  • the sludge discharge system 800 includes a sludge discharge pump 810, a sludge discharge pipeline 820, and a sludge discharge regulating valve 830.
  • the sludge discharge pump 810 communicates with one end of the sludge discharge pipeline 820, and the sludge discharge pipeline 820 The other end communicates with the sedimentation tank 400;
  • the mud discharge regulating valve 830 is arranged on the mud discharge pipeline 820, and is used to adjust the sludge discharge volume of the mud discharge pipeline 820, and the mud discharge regulating valve 830 is connected with the control system by communication.
  • control system may be a PLC control system.
  • both the anaerobic tank 100 and the anoxic tank 300 can be provided with a stirring mechanism 101 to facilitate the mixing of sewage.
  • This embodiment also provides a control method for a full-process automatic control system based on the sludge double-reflux AOA process, the method comprising:
  • Inlet control includes: the control system obtains the design inflow flow value, for example, the inflow flow value can be manually input, compared with the real-time inflow flow in the inflow pipeline 520 collected by the inflow flow meter 601, by adjusting the frequency of the inflow pump 510 or The opening of the water inlet regulating valve 530 is used to adjust the real-time water flow of the water inlet pipeline 520, so that the real-time water flow of the water inlet is stabilized at the design water inlet;
  • Aeration control includes two modes of full nitrification and short nitrification, among which:
  • the whole process of nitrification mode includes: the control system obtains the NH3-N concentration at the outlet of the aerobic tank 200 to be reached, for example, the NH3-N concentration can be manually input, according to the COD concentration collected by the COD analyzer 602 and the set The NH3-N concentration collected by the NH3-N analyzer at the water inlet of the anaerobic tank 100, and based on the theoretical oxygen demand formula of the whole nitrification, the theoretical oxygen supply is calculated as the feed-forward parameter of the air supply of the fan 710; based on DO Prediction model, according to the NH3-N concentration collected by the NH3-N analyzer at the water outlet of the aerobic pool 200 and the DO concentration collected by the DO monitor 605 as the feed-back parameter, the theoretical oxygen supply is corrected; and according to the correction Adjust the frequency of the fan 710 or the opening of the aeration regulating valve 730 for the final oxygen supply;
  • the short-range nitrification mode includes: the control system obtains the NH3-N concentration at the water outlet of the aerobic tank 200 to be reached, for example, the NH3-N concentration that is to be reached can be manually input, and the COD concentration collected by the COD analyzer 602 and the set
  • Sludge return control includes: the control system obtains the set sludge concentration A1 of the anaerobic tank 100, for example, the sludge concentration A1 to be achieved can be manually input, and the MLSS analyzer installed in the anaerobic tank 100 collects the sludge concentration A1 of the anaerobic tank 100.
  • Real-time sludge concentration B1 so that A1-500 ⁇ B1 ⁇ A1+500; if B1 ⁇ A1-500, increase the frequency of the first return sludge pump 612 or the opening of the first return sludge control valve 613, if B1> A1+500, reduce the frequency of the first return sludge pump 612 or the opening of the first return sludge regulating valve 613; the value range of A1 is 3500 ⁇ 5500mg/L;
  • the control system obtains the set sludge concentration A2 of the anoxic tank 300, for example, the sludge concentration A2 to be achieved can be manually input, and the MLSS analyzer installed in the anoxic tank 300 collects the real-time sludge concentration B2 of the anoxic tank 300 , reduce the frequency of the first return sludge pump 612 or the opening of the first return sludge regulating valve 613, so that A2-500 ⁇ B2 ⁇ A2+500; if B2 ⁇ A2-500, increase the second return sludge pump 614 frequency or the opening degree of the second return sludge regulating valve 615; if B2>A2+500, reduce the frequency of the second return sludge pump 614 or the opening degree of the second return sludge regulating valve 615; the value range of A2 is 5500 ⁇ 8500mg/L;
  • the mud discharge control includes: using the mud level gauge 611 installed in the sedimentation tank 400 to monitor the height of the sludge layer in real time, and the control system obtains the set values of the high mud level and the low mud level.
  • the control system obtains the set values of the high mud level and the low mud level.
  • the automatic control system for the whole process of the sludge double-reflux AOA process provided by this application can control the operating parameters of the sludge double-reflux AOA process more intelligently, so that the process can be kept at the best operating parameters, saving energy, flexible control, and easy to operate. Convenient, reduce manual operation, improve operating efficiency.
  • the sludge double-reflux AOA process is easy to realize short-range nitrification when the conditions are suitable.
  • the aeration control mode provided by this application includes two modes of full-scale nitrification and short-range nitrification. Flexible settings are convenient for process cultivation and domestication of short-range nitrification.
  • the sludge return flow is adjusted based on the sludge concentration, which can not only ensure efficient microbial reactions, but also save energy consumption for sludge return.
  • the reaction rate of microorganisms is related to the sludge concentration.
  • the traditional sludge return flow control mostly adopts the reflux ratio control, but the concentration of the return sludge will change due to the sludge discharge, which will lead to the instability of the sludge concentration in the reactor. . If the sludge concentration in the reactor is too low, high-efficiency biological reactions cannot be guaranteed, which will affect the quality of effluent water; if the sludge concentration in the reactor is too high, energy will be wasted due to excessive return flow.
  • the mud level gauge 611 controls the height of the sludge layer, discharges the sludge in time, and avoids the floating mud phenomenon caused by the excessively high sludge layer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本申请提供一种基于污泥双回流AOA工艺的全流程自动控制系统和方法,包括厌氧池、好氧池、缺氧池、沉淀池、监测系统、曝气系统、排泥系统和控制系统,所述厌氧池、所述好氧池、所述缺氧池以及所述沉淀池依次连通,所述沉淀池的回流污泥口通过第一回流污泥管和第二回流污泥管分别与所述厌氧池和所述缺氧池连通。监测系统包括均与所述控制系统通信连接的进水流量计、COD分析仪、NH3-N分析仪、DO监测仪、MLSS分析仪、气体流量计、第一回流污泥流量计、第二回流污泥流量计和泥位计。本申请提供的全流程自动控制系统,更智能的控制污泥双回流AOA工艺运行参数,使工艺保持在最佳运行参数的同时,节省能耗,控制灵活,操作便捷,减少人工操作,提高运行效率。

Description

基于污泥双回流AOA工艺的全流程自动控制系统和方法 技术领域
本申请涉及环保技术领域,具体而言,涉及一种基于污泥双回流AOA工艺的全流程自动控制系统和方法。
背景技术
污泥双回流AOA工艺是一种新型高效脱氮工艺,该工艺包括依次连接的厌氧池-好氧池-缺氧池,污泥双路回流,一路回流到厌氧池前端,一路回流到缺氧池前端。该工艺回流到缺氧池的第二回流污泥,既为缺氧池反硝化提供内碳源,也提高了缺氧池反硝化菌的数量。该工艺无需外加碳源,脱氮效率高,尤其适用于低碳氮比的污水脱氮。目前,我国污水处理厂运行还是根据经验以人工操作为主,或是简单的能实现设备启停、故障报警的自动控制方式。因此,开发基于污泥双回流AOA工艺的全流程自动控制系统和方法对于该工艺精细化运行、提高运行效率、扩大推广应用十分重要。
发明内容
本申请提供一种基于污泥双回流AOA工艺的全流程自动控制系统和方法,以改善上述问题。
本申请具体是这样的:
基于上述目的,本实施例提供了一种基于污泥双回流AOA工艺的全流程自动控制系统,包括:
厌氧池、好氧池、缺氧池、沉淀池、监测系统、曝气系统、排泥系统和控制系统,所述厌氧池、所述好氧池、所述缺氧池以及所述沉 淀池依次连通,所述沉淀池的回流污泥口通过第一回流污泥管和第二回流污泥管分别与所述厌氧池和所述缺氧池连通;
所述监测系统包括均与所述控制系统通信连接的进水流量计、COD分析仪、两个NH3-N分析仪、DO监测仪、两个MLSS分析仪、气体流量计、第一回流污泥流量计、第二回流污泥流量计和泥位计;
所述进水流量计设于所述厌氧池的进水口处,用于监测原水的进水流量;所述COD分析仪设于所述厌氧池的进水口处,用于监测原水的COD浓度;所述两个NH3-N分析仪分别设于所述厌氧池的进水口处和所述好氧池的出水口处,分别用于监测原水的NH3-N浓度和所述好氧池的出水口处的污水的NH3-N浓度;所述DO监测仪设于所述好氧池的出水口处;所述两个MLSS分析仪分别设于所述厌氧池和所述缺氧池内;所述气体流量计设于所述好氧池内,用于监测所述曝气系统的曝气量;所述第一回流污泥流量计设于所述第一回流污泥管路上,用于监测回流到所述厌氧池的污泥流量;所述第二回流污泥流量计设于所述第二回流污泥管路上,用于监测回流到所述缺氧池的污泥流量;所述泥位计设于所述沉淀池内,用于监测污泥层的高度;
所述曝气系统设于所述好氧池内;所述排泥系统与所述沉淀池连通。
在本申请的一种实施例中,所述曝气系统包括风机、曝气管路以及曝气调节阀,所述风机与所述曝气管路连通,所述曝气调节阀设于所述曝气管路上,用于调节所述曝气管路的气体流量;所述曝气管路的曝气口设于所述好氧池内;
所述风机以及所述曝气调节阀与所述控制系统通信连接。
在本申请的一种实施例中,所述风机设置为变频风机或所述曝气调节阀设置为电动调节阀。
在本申请的一种实施例中,所述气体流量计设于所述曝气管路上。
在本申请的一种实施例中,所述排泥系统包括排泥泵、排泥管路和排泥调节阀,所述排泥泵与所述排泥管路的一端连通,所述排泥管路的另一端与所述沉淀池连通;所述排泥调节阀设于所述排泥管路上,用于调节所述排泥管路的排泥量,所述排泥调节阀与所述控制系统通信连接。
在本申请的一种实施例中,所述第一回流污泥管上还设有第一回流污泥泵和第一回流污泥调节阀,所述第一回流污泥调节阀用于调节所述第一回流污泥管的排泥量;所述第二回流污泥管上还设有第二回流污泥泵和第二回流污泥调节阀,所述第二回流污泥调节阀用于调节所述第二回流污泥管的排泥量;
其中,所述第一回流污泥调节阀和所述第二回流污泥调节阀均与所述控制系统通信连接。
在本申请的一种实施例中,所述全流程自动控制系统还包括进水系统,所述进水系统与所述厌氧池连通,用于将原水输入所述厌氧池。
在本申请的一种实施例中,所述进水系统包括进水泵、进水管路和进水调节阀,所述进水调节阀的一端与所述进水泵连通,另一端与所述厌氧池连通,所述进水调节阀设于所述进水管路上,用于调节所述进水管路的流量;所述进水泵以及所述进水调节阀均与所述控制系统通信连接;
所述COD分析仪、所述NH3-N分析仪以及所述进水流量计均设于所述进水管路上。
在本申请的一种实施例中,所述厌氧池以及所述缺氧池中均设置有搅拌机构。
本实施例还提供了一种基于污泥双回流AOA工艺的全流程自动控制方法,适用于上述的基于污泥双回流AOA工艺的全流程自动控制系统,所述方法包括:
进水控制、曝气控制、污泥回流控制和排泥控制;
所述进水控制包括:控制系统获取设计进水流量值,对比进水流量计采集的进水管路中实时进水流量,通过调节进水泵频率或进水调节阀的开度来调节所述进水管路的进水实时流量,使所述进水实时流量稳定在设计进水量;
所述曝气控制包括全程硝化和短程硝化两种模式,其中:
所述全程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH3-N分析仪采集的NH3-N浓度,并基于全程硝化的理论需氧量公式计算理论供氧量作为风机供气量的前馈参数;基于DO预测模型,根据设于所述好氧池的出水口处的NH3-N分析仪采集的NH3-N浓度和DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;并根据修正后的供氧量调节所述风机的频率或曝气调节阀的开度;
所述短程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH 3-N分析仪采集的NH3-N浓度,并基于短程硝化的理论需氧量公式计算理论供氧量作为风机供氧量的前馈参数;再基于DO预测模型,根据设于好氧池的出水口处的NH3-N分析仪采集的好氧池的NH 3-N浓度以及DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;根据修正后的供氧量调节风机的频率或曝气调节阀的开度;
所述污泥回流控制包括:控制系统获取厌氧池的设定污泥浓度A1,设于厌氧池的MLSS分析仪采集厌氧池的实时污泥浓度B1,使A1-500≤B1≤A1+500;若B1<A1-500,调大第一回流污泥泵频率或第一回流污泥调节阀开度,若B1>A1+500,调小第一回流污泥泵频率或第一回流污泥调节阀开度;A1的取值范围为3500~5500mg/L;
控制系统获取缺氧池的设定污泥浓度A2,设于缺氧池的MLSS分析仪采集缺氧池的实时污泥浓度B2,调小第一回流污泥泵频率或第一回流污泥调节阀开度,使A2-500≤B2≤A2+500;若B2<A2-500,则调大第二回流污泥泵频率或第二回流污泥调节阀开度;若B2>A2+500,调小第二回流污泥泵频率或第二回流污泥调节阀开度;A2的取值范围为5500~8500mg/L;
所述排泥控制包括:利用设于所述沉淀池的泥位计实时监测污泥层高度,控制系统获取排泥高泥位和排泥低泥位的设定值,当所述污泥层的高度达到所述排泥高泥位时,开启排泥泵;当所述污泥层的高度降至所述排泥低泥位时,关闭所述排泥泵。
本申请的有益效果包括,例如:
1、本申请提供的污泥双回流AOA工艺全流程自动控制系统,更智能的控制污泥双回流AOA工艺运行参数,使工艺保持在最佳运行参数的同时,节省能耗,控制灵活,操作便捷,减少人工操作,提高运行效率。
2、污泥双回流AOA工艺在条件适宜时,易实现短程硝化,本申请提供的曝气控制方式包括全程硝化和短程硝化两种模式,灵活设置,便于工艺培养驯化短程硝化。
3、基于污泥双回流AOA工艺的特点,设置以污泥浓度为依据来调控污泥回流量,既能保证高效的微生物反应,又能节省污泥回流能耗。微生物的反应速率与污泥浓度相关,传统的污泥回流量调控多 采用回流比调控,但是回流污泥的浓度会因排泥等情况而发生变化,从而导致反应器内的污泥浓度不稳定。反应器中污泥浓度过低,不能保证高效的生物反应,影响出水水质;反应器中污泥浓度过高,会因回流量过大造成能量浪费。
4、泥位计控制污泥层高度,及时排泥,避免污泥层过高造成浮泥现象。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请提供的基于污泥双回流AOA工艺的全流程自动控制系统的结构示意图。
图标:
101-搅拌机构;100-厌氧池;200-好氧池;300-缺氧池;400-沉淀池;410-第一回流污泥管;420-第二回流污泥管;500-进水系统;510-进水泵;520-进水管路;530-进水调节阀;600-监测系统;601-进水流量计;602-COD分析仪;603-第一NH3-N分析仪;604-第二NH3-N分析仪;605-DO监测仪;606-第一MLSS分析仪;607-第二MLSS分析仪;608-气体流量计;609-第一回流污泥流量计;610-第二回流污泥流量计;611-泥位计;612-第一回流污泥泵;613-第一回流污泥调节阀;614-第二回流污泥泵;615-第二回流污泥调节阀;700-曝气系统;710-风机;720-曝气管路;730-曝气调节阀;800-排泥系统;810-排泥泵;820-排泥管路;830-排泥调节阀。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的一种基于污泥双回流AOA工艺的全流程自动控制系统或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“连接”应做广义理解,例如,可以 是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接连接,也可以通过中间媒介间接连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本实施例提供了一种基于污泥双回流AOA工艺的全流程自动控制系统,应当理解,污泥双回流AOA工艺是一种新型高效脱氮工艺,也即,本实施例提供的全流程自动控制系统基于高效脱氮污水处理系统,用于高效脱氮工艺。其中,高效脱氮污水处理系统包括依次连通的厌氧池100、好氧池200、缺氧池300和沉淀池400,沉淀池400的回流污泥口通过第一回流污泥管410和第二回流污泥管420分别与厌氧池100和缺氧池300连通。原水进入厌氧池100,然后依次流经好氧池200、缺氧池300和沉淀池400,沉淀池400内的污泥一部分通过第一回流污泥管410进入厌氧池100,一部分污泥通过第二回流污泥管420进入缺氧池300。
本实施例提供的全流程自动控制系统还包括进水系统500、监测系统600、曝气系统700、排泥系统800和控制系统。进水系统500用于将原水输入厌氧池100,监测系统600用于监测各个处理池中的污水和污泥的各种参数;曝气系统700为好氧池200提供适量氧气。排泥系统800用于将沉淀池400的污泥排出。控制系统起到全局监控和控制的作用。
本实施例中,进水系统500包括进水泵510、进水管路520和进水调节阀530,进水调节阀530的一端与进水泵510连通,另一端与厌氧池100连通,进水泵510用于将原水通过进水管路520输入厌氧池100内。进水调节阀530设于进水管路520上,用于调节进水管路520的流量,显然,也可以直接关闭进水管路520;进水泵510以及进水调节阀530均与控制系统通信连接。例如,进水泵510和进水调 节阀530与控制系统通过电源线或局域网通信连接,以通过控制系统控制进水泵510和进水调节阀530。
本实施例中,可选的,监测系统600包括均与控制系统通信连接的进水流量计601、COD分析仪602、第一NH3-N分析仪603、第二NH3-N分析仪604、DO监测仪605、第一MLSS分析仪606、第二MLSS分析仪607、气体流量计608、第一回流污泥流量计609、第二回流污泥流量计610和泥位计611。
具体的,进水流量计601、COD分析仪602、第一NH3-N分析仪603和进水调节阀530均设于连通厌氧池100的进水管路520上,进水流量计601用于监测原水的进水流量,COD分析仪602用于监测原水的COD浓度,第一NH3-N分析仪603用于监测原水的NH3-N浓度。进水调节阀530用于调节进水管路520的流量。并且,COD分析仪602、第一NH3-N分析仪603、进水泵510、进水调节阀530和进水流量计601在进水管路520上依次设置,进水流量计601最靠近进水管路520连通厌氧池100的一端。第二NH3-N分析仪604和DO监测仪605均设于好氧池200的出水口处,第二NH3-N分析仪604用于监测好氧池200的出水口处的污水的NH3-N浓度。第一MLSS分析仪606设于厌氧池100内,第二MLSS分析仪607设于缺氧池300内。气体流量计608设于好氧池200内,用于监测设于好氧池200内的曝气系统700的曝气量。第一回流污泥流量计609设于第一回流污泥管410路上,用于监测回流到厌氧池100的污泥流量;第二回流污泥流量计610设于第二回流污泥管420路上,用于监测回流到缺氧池300的污泥流量;泥位计611设于沉淀池400内,用于监测污泥层的高度。
可选的,第一回流污泥管410路上还设有第一回流污泥泵612和第一回流污泥调节阀613,第一回流污泥调节阀613用于调节第一 回流污泥管410的回流污泥量;第二回流污泥管420上还设有第二回流污泥泵614和第二回流污泥调节阀615,第二回流污泥调节阀615用于调节第二回流污泥管420的回流污泥量;其中,第一回流污泥调节阀613和第二回流污泥调节阀615均与控制系统通信连接。
本实施例中,可选的,曝气系统700包括风机710、曝气管路720以及曝气调节阀730,风机710与曝气管路720连通,曝气调节阀730设于曝气管路720上,用于调节曝气管路720的气体流量;曝气管路720的曝气器设于好氧池200内。所述风机710以及所述曝气调节阀730与所述控制系统通信连接。应当说明的是,风机710可以设置为变频风机710,或者,曝气调节阀730设置为电动调节阀。并且,气体流量计608可以直接设于曝气管路720上。
本实施例中,可选的,排泥系统800包括排泥泵810、排泥管路820和排泥调节阀830,排泥泵810与排泥管路820的一端连通,排泥管路820的另一端与沉淀池400连通;排泥调节阀830设于排泥管路820上,用于调节排泥管路820的排泥量,排泥调节阀830与控制系统通信连接。
本实施例中,可选的,控制系统可以为PLC控制系统。
在其他实施例中,厌氧池100和缺氧池300中均可以设置搅拌机构101,利于污水的混合。
本实施例还提供一种基于污泥双回流AOA工艺的全流程自动控制系统的控制方法,该方法包括:
进水控制、曝气控制、污泥回流控制和排泥控制;
进水控制包括:控制系统获取设计进水流量值,例如,可以通过人工输入进水流量值,对比进水流量计601采集的进水管路520中实时进水流量,通过调节进水泵510频率或进水调节阀530的开度来调节进水管路520的进水实时流量,使进水实时流量稳定在设计进水量;
曝气控制包括全程硝化和短程硝化两种模式,其中:
全程硝化模式包括:控制系统获取拟达到的好氧池200的出水口处的NH3-N浓度,例如,可以通过人工输入拟达到的NH3-N浓度,根据COD分析仪602采集的COD浓度和设于厌氧池100的进水口处的NH3-N分析仪采集的NH3-N浓度,并基于全程硝化的理论需氧量公式计算理论供氧量作为风机710供气量的前馈参数;基于DO预测模型,根据设于好氧池200的出水口处的NH3-N分析仪采集的NH3-N浓度和DO监测仪605采集的DO浓度作为后馈参数对理论供氧量进行修正;并根据修正后的供氧量调节风机710的频率或曝气调节阀730的开度;
短程硝化模式包括:控制系统获取拟达到的好氧池200的出水口处的NH3-N浓度,例如,可以通过人工输入拟达到的NH3-N浓度,根据COD分析仪602采集的COD浓度和设于厌氧池100的进水口处的NH3-N分析仪采集的NH3-N浓度,并基于短程硝化的理论需氧量公式计算理论供氧量作为风机710供氧量的前馈参数;再基于DO预测模型,根据设于好氧池200的出水口处的NH3-N分析仪采集的好氧池200的NH3-N浓度以及DO监测仪605采集的DO浓度作为后馈参数对理论供氧量进行修正;根据修正后的供氧量调节风机710的频率或曝气调节阀730的开度;
污泥回流控制包括:控制系统获取厌氧池100的设定污泥浓度A1,例如,可以通过人工输入拟达到的污泥浓度A1,设于厌氧池100的MLSS分析仪采集厌氧池100的实时污泥浓度B1,使A1-500≤B1≤A1+500;若B1<A1-500,调大第一回流污泥泵612频率或第一回流污泥调节阀613开度,若B1>A1+500,调小第一回流污泥泵612频率或第一回流污泥调节阀613开度;A1的取值范围为3500~5500mg/L;
控制系统获取缺氧池300的设定污泥浓度A2,例如,可以通过人工输入拟达到的污泥浓度A2,设于缺氧池300的MLSS分析仪采集缺氧池300的实时污泥浓度B2,调小第一回流污泥泵612频率或第一回流污泥调节阀613开度,使A2-500≤B2≤A2+500;若B2<A2-500,则调大第二回流污泥泵614频率或第二回流污泥调节阀615开度;若B2>A2+500,调小第二回流污泥泵614频率或第二回流污泥调节阀615开度;A2的取值范围为5500~8500mg/L;
排泥控制包括:利用设于沉淀池400的泥位计611实时监测污泥层高度,控制系统获取排泥高泥位和排泥低泥位的设定值,当污泥层的高度达到排泥高泥位时,开启排泥泵810;当污泥层的高度降至排泥低泥位时,关闭排泥泵810。
本实施例提供的基于污泥双回流AOA工艺的全流程自动控制系统和方法,具有至少如下有益效果:
1、本申请提供的污泥双回流AOA工艺全流程自动控制系统,更智能的控制污泥双回流AOA工艺运行参数,使工艺保持在最佳运行参数的同时,节省能耗,控制灵活,操作便捷,减少人工操作,提高运行效率。
2、污泥双回流AOA工艺在条件适宜时,易实现短程硝化,本申请提供的曝气控制方式包括全程硝化和短程硝化两种模式,灵活设置,便于工艺培养驯化短程硝化。
3、基于污泥双回流AOA工艺的特点,设置以污泥浓度为依据来调控污泥回流量,既能保证高效的微生物反应,又能节省污泥回流能耗。微生物的反应速率与污泥浓度相关,传统的污泥回流量调控多采用回流比调控,但是回流污泥的浓度会因排泥等情况而发生变化,从而导致反应器内的污泥浓度不稳定。反应器中污泥浓度过低,不能 保证高效的生物反应,影响出水水质;反应器中污泥浓度过高,会因回流量过大造成能量浪费。
4、泥位计611控制污泥层高度,及时排泥,避免污泥层过高造成浮泥现象。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于,包括:
    厌氧池、好氧池、缺氧池、沉淀池、监测系统、曝气系统、排泥系统和控制系统,所述厌氧池、所述好氧池、所述缺氧池以及所述沉淀池依次连通,所述沉淀池的回流污泥口通过第一回流污泥管和第二回流污泥管分别与所述厌氧池和所述缺氧池连通;
    所述监测系统包括均与所述控制系统通信连接的进水流量计、COD分析仪、两个NH3-N分析仪、DO监测仪、两个MLSS分析仪、气体流量计、第一回流污泥流量计、第二回流污泥流量计和泥位计;
    所述进水流量计设于所述厌氧池的进水口处,用于监测原水的进水流量;所述COD分析仪设于所述厌氧池的进水口处,用于监测原水的COD浓度;所述两个NH3-N分析仪分别设于所述厌氧池的进水口处和所述好氧池的出水口处,分别用于监测原水的NH3-N浓度和所述好氧池的出水口处的污水的NH3-N浓度;所述DO监测仪设于所述好氧池的出水口处;所述两个MLSS分析仪分别设于所述厌氧池和所述缺氧池内;所述气体流量计设于所述曝气管路上,用于监测所述曝气系统的曝气量;所述第一回流污泥流量计设于所述第一回流污泥管路上,用于监测回流到所述厌氧池的污泥流量;所述第二回流污泥流量计设于所述第二回流污泥管路上,用于监测回流到所述缺氧池的污泥流量;所述泥位计设于所述沉淀池内,用于监测污泥层的高度;
    所述曝气系统与所述好氧池内相连;所述排泥系统与所述沉淀池连通。
  2. 根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述曝气系统包括风机、曝气管路以及曝气调节阀,所述风机与所述曝气管路连通,所述曝气调节阀设于所述曝气管路上,用于调节所述曝气管路的气体流量;所述曝气管路的曝气口设于所述好氧池内;
    所述风机以及所述曝气调节阀与所述控制系统通信连接。
  3. 根据权利要求2所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述风机设置为变频风机或所述曝气调节阀设置为电动调节阀。
  4. 根据权利要求2所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述气体流量计设于所述曝气管路上。
  5. 根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述排泥系统包括排泥泵、排泥管路和排泥调节阀,所述排泥泵与所述排泥管路的一端连通,所述排泥管路的另一端与所述沉淀池连通;所述排泥调节阀设于所述排泥管路上,用于调节所述排泥管路的排泥量,所述排泥调节阀与所述控制系统通信连接。
  6. 根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述第一回流污泥管上还设有第一回流污泥泵和第一回流污泥调节阀,所述第一回流污泥调节阀用于调节所述第一回流污泥管的排泥量;所述第二回流污泥管上还设有第一回流污泥泵和第二回流污泥调节阀,所述第二回流污泥调节阀用于调节所述第二回流污泥管的排泥量;
    其中,所述第一回流污泥调节阀和所述第二回流污泥调节阀均与所述控制系统通信连接。
  7. 根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述全流程自动控制系统还包括进水系统,所述进水系统与所述厌氧池连通,用于将原水输入所述厌氧池。
  8. 根据权利要求7所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述进水系统包括进水泵、进水管路和进水调节阀,所述进水调节阀的一端与所述进水泵连通,另一端与所述厌氧池连通,所述进水调节阀设于所述进水管路上,用于调节所述进水管路的流量;所述进水泵以及所述进水调节阀均与所述控制系统通信连接;
    所述COD分析仪、所述NH3-N分析仪以及所述进水流量计均设于所述进水管路上。
  9. 根据权利要求1所述的一种基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于:
    所述厌氧池以及所述缺氧池中均设置有搅拌机构。
  10. 一种基于污泥双回流AOA工艺的全流程自动控制方法,适用于权利要求1-9中任一项所述的基于污泥双回流AOA工艺的全流程自动控制系统,其特征在于,所述方法包括:
    进水控制、曝气控制、污泥回流控制和排泥控制;
    所述进水控制包括:控制系统获取设计进水流量值,对比进水流量计采集的进水管路中实时进水流量,通过调节进水泵频率或进水调节阀的开度来调节所述进水管路的进水实时流量,使所述进水实时流量稳定在设计进水量;
    所述曝气控制包括全程硝化和短程硝化两种模式,其中:
    所述全程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH3-N分析仪采集的NH3-N浓度,并基于全程硝化的理论需氧量公式计算理论供氧量作为风机供气量的前馈参数;基于DO预测模型,根据设于所述好氧池的出水口处的NH3-N分析仪采集的NH3-N浓度和DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;并根据修正后的供氧量调节所述风机的频率或曝气调节阀的开度;
    所述短程硝化模式包括:所述控制系统获取拟达到的好氧池的出水口处的NH3-N浓度,根据COD分析仪采集的COD浓度和设于所述厌氧池的进水口处的NH3-N分析仪采集的NH3-N浓度,并基于短程硝化的理论需氧量公式计算理论供氧量作为风机供氧量的前馈参数;再基于DO预测模型,根据设于好氧池的出水口处的NH3-N分析仪采集的好氧池的NH3-N浓度以及DO监测仪采集的DO浓度作为后馈参数对所述理论供氧量进行修正;根据修正后的供氧量调节风机的频率或曝气调节阀的开度;
    所述污泥回流控制包括:控制系统获取厌氧池的设定污泥浓度A1,设于厌氧池的MLSS分析仪采集厌氧池的实时污泥浓度B1,使A1-500≤B1≤A1+500;若B1<A1-500,调大第一回流污泥泵频率或第一回流污泥调节阀开度,若B1>A1+500,调小第一回流污泥泵频率或第一回流污泥调节阀开度;A1的取值范围为3500~5500mg/L;
    控制系统获取缺氧池的设定污泥浓度A2,设于缺氧池的MLSS分析仪采集缺氧池的实时污泥浓度B2,调小第一回流污泥泵频率或第一回流污泥调节阀开度,使A2-500≤B2≤A2+500;若B2<A2-500,则调大第二回流污泥泵频率或第二回流污泥调节阀开度;若 B2>A2+500,调小第二回流污泥泵频率或第二回流污泥调节阀开度;A2的取值范围为5500~8500mg/L;
    所述排泥控制包括:利用设于所述沉淀池的泥位计实时监测污泥层高度,控制系统获取排泥高泥位和排泥低泥位的设定值,当所述污泥层的高度达到所述排泥高泥位时,开启排泥泵;当所述污泥层的高度降至所述排泥低泥位时,关闭所述排泥泵。
PCT/CN2021/135052 2021-07-28 2021-12-02 基于污泥双回流aoa工艺的全流程自动控制系统和方法 WO2023005088A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202121732574.XU CN215327224U (zh) 2021-07-28 2021-07-28 基于污泥双回流aoa工艺的全流程自动控制系统
CN202110859346.7A CN113387442B (zh) 2021-07-28 2021-07-28 基于污泥双回流aoa工艺的全流程自动控制系统和方法
CN202121732574.X 2021-07-28
CN202110859346.7 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023005088A1 true WO2023005088A1 (zh) 2023-02-02

Family

ID=85086235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135052 WO2023005088A1 (zh) 2021-07-28 2021-12-02 基于污泥双回流aoa工艺的全流程自动控制系统和方法

Country Status (1)

Country Link
WO (1) WO2023005088A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177719A (zh) * 2023-04-27 2023-05-30 湖南先导洋湖再生水有限公司 一种调节污水处理系统中缺氧池反应环境的方法及系统
CN116332382A (zh) * 2023-02-15 2023-06-27 重庆阁林环保科技有限公司 一种污水净化设备及污水净化系统
CN117228841A (zh) * 2023-11-16 2023-12-15 北京华益德环境科技有限责任公司 一种侧流颗粒化连续流好氧颗粒污泥处理装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110807A (ja) * 2010-11-22 2012-06-14 Metawater Co Ltd 下水処理システム
CN106938863A (zh) * 2017-04-24 2017-07-11 北京工业大学 污泥双回流aoa实现城市污水深度脱氮除磷的装置与方法
CN107032488A (zh) * 2017-04-24 2017-08-11 北京工业大学 一种通过污泥双回流aoa工艺实现城市污水短程硝化的方法
CN109368792A (zh) * 2018-12-06 2019-02-22 北京工业大学 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN109485152A (zh) * 2018-12-19 2019-03-19 北京工业大学 一种连续流城市污水短程反硝化部分anammox深度脱氮除磷的装置与方法
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN110104773A (zh) * 2019-04-30 2019-08-09 北京工业大学 全流程厌氧氨氧化强化脱氮的aoa工艺处理城市污水的方法与装置
CN112875859A (zh) * 2021-01-12 2021-06-01 珠海九通水务股份有限公司 基于aoa工艺的污水脱氮除磷控制系统
CN113387442A (zh) * 2021-07-28 2021-09-14 北控水务(中国)投资有限公司 基于污泥双回流aoa工艺的全流程自动控制系统和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110807A (ja) * 2010-11-22 2012-06-14 Metawater Co Ltd 下水処理システム
CN106938863A (zh) * 2017-04-24 2017-07-11 北京工业大学 污泥双回流aoa实现城市污水深度脱氮除磷的装置与方法
CN107032488A (zh) * 2017-04-24 2017-08-11 北京工业大学 一种通过污泥双回流aoa工艺实现城市污水短程硝化的方法
CN109368792A (zh) * 2018-12-06 2019-02-22 北京工业大学 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN109485152A (zh) * 2018-12-19 2019-03-19 北京工业大学 一种连续流城市污水短程反硝化部分anammox深度脱氮除磷的装置与方法
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN110104773A (zh) * 2019-04-30 2019-08-09 北京工业大学 全流程厌氧氨氧化强化脱氮的aoa工艺处理城市污水的方法与装置
CN112875859A (zh) * 2021-01-12 2021-06-01 珠海九通水务股份有限公司 基于aoa工艺的污水脱氮除磷控制系统
CN113387442A (zh) * 2021-07-28 2021-09-14 北控水务(中国)投资有限公司 基于污泥双回流aoa工艺的全流程自动控制系统和方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332382A (zh) * 2023-02-15 2023-06-27 重庆阁林环保科技有限公司 一种污水净化设备及污水净化系统
CN116177719A (zh) * 2023-04-27 2023-05-30 湖南先导洋湖再生水有限公司 一种调节污水处理系统中缺氧池反应环境的方法及系统
CN116177719B (zh) * 2023-04-27 2023-12-15 湖南先导洋湖再生水有限公司 一种调节污水处理系统中缺氧池反应环境的方法及系统
CN117228841A (zh) * 2023-11-16 2023-12-15 北京华益德环境科技有限责任公司 一种侧流颗粒化连续流好氧颗粒污泥处理装置
CN117228841B (zh) * 2023-11-16 2024-02-09 北京华益德环境科技有限责任公司 一种侧流颗粒化连续流好氧颗粒污泥处理装置

Similar Documents

Publication Publication Date Title
WO2023005088A1 (zh) 基于污泥双回流aoa工艺的全流程自动控制系统和方法
US11339069B2 (en) Anaerobic ammoxidation synergistic nitrogen removal process device of municipal sewage main and side streams and application method thereof
CN110577275B (zh) 一种污水处理智能化曝气控制系统及方法
CN110422928B (zh) 一种缺氧池精细化碳源投加控制系统及运行控制方法
CN101759290B (zh) 连续流工艺中快速实现并稳定维持短程硝化的方法
CN113387442B (zh) 基于污泥双回流aoa工艺的全流程自动控制系统和方法
CN107986428B (zh) 一种污水处理精确曝气方法
CN111847634A (zh) 一种用于泥膜复合污水处理工艺的曝气和碳源投加优化控制系统及方法
CN110550738B (zh) 一种基于侧流膜生物反应器的污水短程硝化方法及装置
CN109592804B (zh) 一种污水处理趋近循优精确曝气方法
CN211141640U (zh) 高效节能型多模式强化脱氮污水处理系统
CN112479370A (zh) 一种污水自养脱氮装置和方法
CN113023889B (zh) 一种aoa+mabr耦合工艺的碳源投加优化控制系统及方法
CN216997850U (zh) 用于aao工艺污水处理的碳源投加装置
CN216141333U (zh) 一种aoa+mabr耦合工艺的碳源投加优化控制系统
CN109205790B (zh) 一种城市污水厂二级出水深度脱氮的装置和方法
CN215327224U (zh) 基于污泥双回流aoa工艺的全流程自动控制系统
CN113233586A (zh) 多模式微氧曝气aao-mbr高效节能污水处理装置及方法
CN217677005U (zh) 一种污水处理厂生物脱氮过程优化控制的装置
CN214174904U (zh) 一种污水处理智能曝气量计算控制系统
CN114920358A (zh) 污水厂rbs智能控制方法
CN210163206U (zh) 一种短程生物脱氮除磷系统
CN209702394U (zh) 一种强化厌氧氨氧化活性提高好氧氮去除的装置
CN113354069A (zh) 一种mbr工艺精确曝气控制系统及方法
CN110127848A (zh) 一种短程生物脱氮除磷系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE