CN113378446B - 一种基于余氏理论的钛合金β相高温固溶组织模拟方法 - Google Patents

一种基于余氏理论的钛合金β相高温固溶组织模拟方法 Download PDF

Info

Publication number
CN113378446B
CN113378446B CN202110641410.4A CN202110641410A CN113378446B CN 113378446 B CN113378446 B CN 113378446B CN 202110641410 A CN202110641410 A CN 202110641410A CN 113378446 B CN113378446 B CN 113378446B
Authority
CN
China
Prior art keywords
solid solution
beta
titanium alloy
nucleation
phase high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110641410.4A
Other languages
English (en)
Other versions
CN113378446A (zh
Inventor
林成
林丽彬
李飞
史艳华
梁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Shihua University
Original Assignee
Liaoning Shihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Shihua University filed Critical Liaoning Shihua University
Priority to CN202110641410.4A priority Critical patent/CN113378446B/zh
Publication of CN113378446A publication Critical patent/CN113378446A/zh
Application granted granted Critical
Publication of CN113378446B publication Critical patent/CN113378446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/25Design optimisation, verification or simulation using particle-based methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/20Identification of molecular entities, parts thereof or of chemical compositions
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computing Systems (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于余氏理论的钛合金β相高温固溶组织模拟方法,利用钛合金成分及余氏理论计算的电子结构参数,建立钛合金β相高温固溶的原子团簇可能比例份额公式,得出不同固溶温度下各原子团簇形核点数目表征方法,提出基于原子团簇结合能或最强共价键上的共用电子对数及生命游戏规则的β相高温晶粒长大规则,在计算机上可以进行钛合金β相高温固溶组织模拟。本发明方法计算成本低、模拟精度高、模拟过程物理意义明确。

Description

一种基于余氏理论的钛合金β相高温固溶组织模拟方法
技术领域
本发明属于钛合金组织模拟领域,具体涉及一种基于余氏理论的钛合金β相高温固溶组织模拟方法。
背景技术
钛及钛合金具有比强度高、耐腐蚀、生物相容性好以及优异的高温稳定性等性能,被广泛应用于航空航天、化学工业、舰船、生物医疗等领域,钛合金组织性能研究也备受关注。当前,物理冶金模型、神经元网络、元胞自动机、相场模拟等广泛应用到钢铁合金组织模拟中,这些模拟方法因其各自局限性,在指导材料成分—制备工艺—组织间的优化匹配中仍很难广泛应用,使得钛合金中组织模拟方法研究仍不深入。另外,基于余氏理论的钛合金组织模拟目前更是没有相关报道。
发明内容
本发明的目的在于提供一种基于余氏理论的钛合金β相高温固溶组织模拟方法,可在计算机上实现组织模拟与晶粒尺寸测量,实现钛合金成分—制备工艺—组织间的优化匹配,解决了现有技术中钛合金组织性能研究存在局限性的问题。
本发明技术方案如下:
一种基于余氏理论的钛合金β相高温固溶组织模拟方法,包括如下步骤:
步骤1、将钛合金成分的质量百分数转化为原子百分数;
步骤2、利用余氏理论计算钛合金中β-Ti-Al、β-Ti-Al-M、β-Ti-M原子团簇电子结构,即结合能、最强共价键上的公用电子对数;
Figure BDA0003107963090000021
其中
Figure BDA0003107963090000022
Figure BDA0003107963090000023
CAl为Al的原子分数,CM为不包括Al在内的合金原子分数,z为合金元素种类数;P为参数,与Al的含量有关,P=1.0~2.0;AP代表各原子团簇的结合能或最强共价键上的公用电子对数;
步骤3、利用β相高温原子团簇可能比例份额计算元胞空间Nx×Ny中β相形核点数目,计算公式为
Figure BDA0003107963090000024
其中,Nj为j种原子团簇的不考虑温度的形核点数目;Fj为j种原子团簇的可能比例份额,见公式(1);
利用原子团簇结合能建立不同固溶温度下各原子团簇在元胞空间Nx×Ny中的形核点数目,计算公式为
Figure BDA0003107963090000031
其中Sj为j种原子团簇不同固溶温度的形核点数目;Kp=1000~1444;T为固溶温度,K;Ec为j种原子团簇结合能;R为摩尔气体常数;
步骤4、将步骤3计算的不同固溶温度的形核点数目按照生命游戏规则进行生长,在晶粒生长过程中,根据原子团簇结合能或最强共价键上的共用电子对数的大小确定形核点长大与消失的概率,并进行排序;
步骤5、将公式(1)至(3)以及生命游戏规则编制成计算机程序,向计算机程序中输入步骤3所得的形核点数目,然后按照计算步长范围进行模拟,模拟出钛合金β相高温固溶组织图。
所述的步骤4中,将形核点能长大的形核数目归入到形核点生长模块,将形核点消失的形核数目归入到形核点消失模块。
所述的步骤5中,同时获得晶粒尺寸的统计结果。
本发明的优点及有益效果是:
1.本发明可以在计算机上实现钛合金不同固溶温度的组织模拟,这为优化钛合金固溶处理温度参数提供了较好的方法手段。
2.本发明可以在计算机上开展不同计算步长的组织模拟,从而实现钛合金在不同固溶时间的组织模拟,这为优化钛合金固溶处理时间提供了较好的方法手段。
3.本发明利用计算机可以模拟钛合金不同固溶处理工艺参数下的模拟平均晶粒尺寸,晶粒尺寸模拟结果与实际符合较好。
4.本发明具有操作简单、计算成本低、精度高的特点。
附图说明
图1a为TC4合金1000℃固溶0.5h时的金相显微图;
图1b为TC4合金1000℃固溶0.5h时的形核点数目分布图;
图1c为TC4合金1000℃固溶0.5h时的模拟的组织图;
图1d为TC4合金1000℃固溶0.5h时的晶界处的形核点数目分布图;
图2a为TC4合金1050℃固溶0.5h时的金相显微图;
图2b为TC4合金1050℃固溶0.5h时的形核点数目分布图;
图2c为TC4合金1050℃固溶0.5h时的模拟的组织图;
图2d为TC4合金1050℃固溶0.5h时的晶界处的形核点数目分布图。
图3a为TC4合金1100℃固溶0.5h时的金相显微图;
图3b为TC4合金1100℃固溶0.5h时的形核点数目分布图;
图3c为TC4合金1100℃固溶0.5h时的模拟的组织图;
图3d为TC4合金1100℃固溶0.5h时的晶界处的形核点数目分布图。
具体实施方式
以下结合实例对本发明进行详细说明。
一种基于余氏理论的钛合金β相高温固溶组织模拟方法,包括如下步骤:
步骤1、将钛合金成分的质量百分数转化为原子百分数;
步骤2、利用余氏理论计算钛合金中β-Ti-Al、β-Ti-Al-M、β-Ti-M原子团簇电子结构,即结合能、最强共价键上的公用电子对数;钛合金β相高温固溶可能存在β-Ti-Al、β-Ti-Al-M、β-Ti-M原子团簇,这些原子团簇出现的概率与合金原子M含量及原子间竞争Al原子的能力有关,原子间竞争Al的能力可用合金原子M与Al原子间相互作用强弱表征。根据余氏理论的自洽键距差可以计算这些原子团簇中原子的相互作用,即结合能、最强共价键上的公用电子对数;
Figure BDA0003107963090000051
其中
Figure BDA0003107963090000052
Figure BDA0003107963090000053
CAl为Al的原子分数,CM为不包括Al在内的合金原子分数,z为合金元素种类数;P为参数,与Al的含量有关,P=1.0~2.0;AP代表各原子团簇的结合能或最强共价键上的公用电子对数;
步骤3、利用β相高温原子团簇可能比例份额计算元胞空间Nx×Ny中β相形核点数目,计算公式为
Figure BDA0003107963090000054
其中,Nj为j种原子团簇的不考虑温度的形核点数目;Fj为j种原子团簇的可能比例份额,见公式(1);
利用原子团簇结合能建立不同固溶温度下各原子团簇在元胞空间Nx×Ny中的形核点数目,计算公式为
Figure BDA0003107963090000061
其中Sj为j种原子团簇不同固溶温度的形核点数目;Kp=1000~1444;T为固溶温度,K;Ec为j种原子团簇结合能;R为摩尔气体常数;
步骤4、将步骤3计算的不同固溶温度的形核点数目按照生命游戏规则进行生长,在晶粒生长过程中,根据原子团簇结合能或最强共价键上的共用电子对数的大小确定形核点长大与消失的概率,并进行排序;将形核点能长大的形核数目归入到形核点生长模块,将形核点消失的形核数目归入到形核点消失模块;
步骤5、将公式(1)至(3)以及生命游戏规则编制成计算机程序,向计算机程序中输入步骤3所得的形核点数目,然后按照计算步长范围进行模拟,模拟出钛合金β相高温固溶组织图,同时获得晶粒尺寸的统计结果。
应用实施例1:以TC4合金1000℃固溶0.5h的组织模拟为例。
以TC4合金为例,TC4钛合金的主要成分见表1。
步骤1.将TC4合金的质量百分数转换为原子分数,见表2。
步骤2.利用余氏理论计算出不同原子团簇的结合能和最强键上共用电子对数(简称电子对数),见表3。
步骤3.利用公式(1)及表2、3的数据计算出不同原子团簇在β相区固溶时的可能比例份额,计算结果为β-Ti-Al-Fe,0.22696;β-Ti-Al,6.51453;β-Ti-Fe,0.09854;β-Ti-Al-V,2.69173;β-Ti-V,0.69858。在计算过程中,P取1.0。
步骤4.根据公式(2)利用β相高温原子团簇可能比例份额计算元胞空间50×50中β相形核点数目(不考虑温度的影响),分别为:Nβ-Ti-Al-Fe,11;Nβ-Ti-Al,326;Nβ-Ti-Fe,5;Nβ-Ti-Al-V,135;Nβ-Ti-V,35。
步骤5.根据公式(3)利用表3中结合能建立1000℃固溶温度下各原子团簇在元胞空间50×50中的形核点数目,计算时K取1313,各原子团簇形核点数目分别为:Sβ-Ti-Al-Fe,11;Sβ-Ti-Al,324;Sβ-Ti-Fe,5;Sβ-Ti-Al-V,134;Sβ-Ti-V,35。
步骤6.按照β相固溶晶粒生长规则:将步骤5计算的不同固溶温度的形核点数目按照生命游戏规则进行生长。在晶粒生长过程中,可根据原子团簇结合能的大小进行选择形核点的生长与消失。
步骤7.将公式(1)至(3)以及生命游戏规则编制成计算机程序,向计算机程序中输入步骤5计算的形核点数目,然后按照计算步长50-1400范围进行模拟;确定计算步长1250的模拟组织与实际组织比较吻合,模拟组织的模拟尺寸长为14.667元胞,实际组织尺寸为446.299μm,见图1a-1d。
实例2:以TC4合金1050℃固溶0.5h的组织模拟为例。
按照应用实施例1中的步骤1-4,计算TC4合金的原子团簇形核点数目(不考虑温度)。
利用步骤1-4计算结果及公式(3)计算TC4合金在1050℃固溶时元胞空间中50×50中的形核点数目,即Sβ-Ti-Al-Fe,11:Sβ-Ti-Al=,312;Sβ-Ti-Fe=,5;Sβ-Ti-Al-V,129;Sβ-Ti-V,34,其中K取1313。
在计算机程序中输入本实例步骤2的形核点数目,计算步长为1295时模拟组织与实际组织较符合,见图2a-2d。按照14.6667:446.299比例尺,模拟组织尺寸为669.4470μm;实际组织为825.0845μm,模拟尺寸误差为11.69%。
实例3:以TC4合金1100℃固溶0.5h的组织模拟为例。
按照应用实施例1中的步骤1-4,可以计算TC4合金的原子团簇形核点数目(不考虑温度)。
利用步骤1-4计算结果及公式(3)计算TC4合金在1100℃固溶时元胞空间中50×50中的形核点数目,即Sβ-Ti-Al-Fe,10;Sβ-Ti-Al,301;Sβ-Ti-Fe,5;Sβ-Ti-Al-V,=124;Sβ-Ti-V,33。
在计算机程序中输入本实例步骤2的形核点数目,计算步长1216时模拟组织与实际组织较符合,见图3a-3d。按照14.6667:446.299比例尺,模拟组织尺寸为745.5205μm;实际组织为825.0845μm,模拟尺寸误差为9.64%。
本发明还包括一种模拟方法所用设备,包括存储器和处理器,存储器用于存储计算机程序;处理器用于执行所述计算机程序时实现上述存储介质模拟方法的步骤。
不同热处理工艺的钛合金具有不同的性能,而钛合金的性能依赖于合金成分及不同尺度的微观组织,合理调控合金微观组织是进行合金性能优化与调控的最有效手段之一。本发明的模拟方法可以在计算机上进行合金成分、热处理工艺及组织状态之间的内在关系的匹配设计,为钛合金组织性能优化与新合金设计提供方法手段。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。
表1 Ti-6Al-4V主要成分(wt%)
Figure BDA0003107963090000091
表2 Ti-6Al-4V主要成分(at%)
Figure BDA0003107963090000092
表3原子团簇的结合能
Figure BDA0003107963090000093

Claims (3)

1.一种基于余氏理论的钛合金β相高温固溶组织模拟方法,其特征在于包括如下步骤:
步骤1、将钛合金成分的质量百分数转化为原子百分数;
步骤2、利用余氏理论计算钛合金中β-Ti-Al、β-Ti-Al-M、β-Ti-M原子团簇电子结构,即结合能、最强共价键上的公用电子对数;
Figure FDA0003107963080000011
其中
Figure FDA0003107963080000012
Figure FDA0003107963080000013
CAl为Al的原子分数,CM为不包括Al在内的合金原子分数,z为合金元素种类数;P为参数,与Al的含量有关,P=1.0~2.0;AP代表各原子团簇的结合能或最强共价键上的公用电子对数;
步骤3、利用β相高温原子团簇可能比例份额计算元胞空间Nx×Ny中β相形核点数目,计算公式为
Figure FDA0003107963080000014
其中,Nj为j种原子团簇的不考虑温度的形核点数目;Fj为j种原子团簇的可能比例份额,见公式(1);
利用原子团簇结合能建立不同固溶温度下各原子团簇在元胞空间Nx×Ny中的形核点数目,计算公式为
Figure FDA0003107963080000021
其中Sj为j种原子团簇不同固溶温度的形核点数目;Kp=1000~1444;T为固溶温度,K;Ec为j种原子团簇结合能;R为摩尔气体常数;
步骤4、将步骤3计算的不同固溶温度的形核点数目按照生命游戏规则进行生长,在晶粒生长过程中,根据原子团簇结合能或最强共价键上的共用电子对数的大小确定形核点长大与消失的概率,并进行排序;
步骤5、将公式(1)至(3)以及生命游戏规则编制成计算机程序,向计算机程序中输入步骤3所得的形核点数目,然后按照计算步长范围进行模拟,模拟出钛合金β相高温固溶组织图。
2.根据权利要求1所述的一种基于余氏理论的钛合金β相高温固溶组织模拟方法,其特征在于所述的步骤4中,将形核点能长大的形核数目归入到形核点生长模块,将形核点消失的形核数目归入到形核点消失模块。
3.根据权利要求1所述的一种基于余氏理论的钛合金β相高温固溶组织模拟方法,其特征在于所述的步骤5中,同时获得晶粒尺寸的统计结果。
CN202110641410.4A 2021-06-09 2021-06-09 一种基于余氏理论的钛合金β相高温固溶组织模拟方法 Active CN113378446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110641410.4A CN113378446B (zh) 2021-06-09 2021-06-09 一种基于余氏理论的钛合金β相高温固溶组织模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110641410.4A CN113378446B (zh) 2021-06-09 2021-06-09 一种基于余氏理论的钛合金β相高温固溶组织模拟方法

Publications (2)

Publication Number Publication Date
CN113378446A CN113378446A (zh) 2021-09-10
CN113378446B true CN113378446B (zh) 2023-04-25

Family

ID=77573055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110641410.4A Active CN113378446B (zh) 2021-06-09 2021-06-09 一种基于余氏理论的钛合金β相高温固溶组织模拟方法

Country Status (1)

Country Link
CN (1) CN113378446B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1149282A1 (ru) * 1983-11-28 1985-04-07 Одесский ордена Трудового Красного Знамени политехнический институт Устройство дл решени нелинейных задач теории пол
CN1415775A (zh) * 2002-11-29 2003-05-07 武汉钢铁(集团)公司 超细化完整铁素体晶粒及残余奥氏体钢的生产方法
CN101024155A (zh) * 2007-01-16 2007-08-29 山东建筑大学 一种合成高强度金刚石用粉末冶金触媒
CN105289638A (zh) * 2015-10-09 2016-02-03 河北工程大学 一种合成超细颗粒金刚石用铁基粉末触媒
CN107747029A (zh) * 2017-10-18 2018-03-02 宁国市开源电力耐磨材料有限公司 一种矿山湿法磨专用高耐蚀合金铸球及其生产方法
CN108893630A (zh) * 2018-08-03 2018-11-27 燕山大学 一种高强耐腐蚀钛合金及其制备方法
CN108913948A (zh) * 2018-08-03 2018-11-30 燕山大学 一种高强钛合金及其制备方法
CN109708533A (zh) * 2018-12-31 2019-05-03 苏州天为幕烟花科技有限公司 一种图文烟花点阵发射体专用火药块及其制备方法
CN110619157A (zh) * 2019-08-30 2019-12-27 西安理工大学 一种钛合金焊接熔池微观组织演化的模拟方法
CN112528465A (zh) * 2020-11-14 2021-03-19 辽宁石油化工大学 基于余氏理论的近α钛合金性能优化与成分逆向设计方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1149282A1 (ru) * 1983-11-28 1985-04-07 Одесский ордена Трудового Красного Знамени политехнический институт Устройство дл решени нелинейных задач теории пол
CN1415775A (zh) * 2002-11-29 2003-05-07 武汉钢铁(集团)公司 超细化完整铁素体晶粒及残余奥氏体钢的生产方法
CN101024155A (zh) * 2007-01-16 2007-08-29 山东建筑大学 一种合成高强度金刚石用粉末冶金触媒
CN105289638A (zh) * 2015-10-09 2016-02-03 河北工程大学 一种合成超细颗粒金刚石用铁基粉末触媒
CN107747029A (zh) * 2017-10-18 2018-03-02 宁国市开源电力耐磨材料有限公司 一种矿山湿法磨专用高耐蚀合金铸球及其生产方法
CN108893630A (zh) * 2018-08-03 2018-11-27 燕山大学 一种高强耐腐蚀钛合金及其制备方法
CN108913948A (zh) * 2018-08-03 2018-11-30 燕山大学 一种高强钛合金及其制备方法
CN109708533A (zh) * 2018-12-31 2019-05-03 苏州天为幕烟花科技有限公司 一种图文烟花点阵发射体专用火药块及其制备方法
CN110619157A (zh) * 2019-08-30 2019-12-27 西安理工大学 一种钛合金焊接熔池微观组织演化的模拟方法
CN112528465A (zh) * 2020-11-14 2021-03-19 辽宁石油化工大学 基于余氏理论的近α钛合金性能优化与成分逆向设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张竞元.低合金耐热钢WB36合金强化机理的EET计算研究.《中国优秀硕士学位论文全文数据库》.2019,(第5期),B022-138. *
李飞等.余氏理论的内涵及发展展望.《材料导报》.2020,第34卷(第13期),13109-13113+13130. *

Also Published As

Publication number Publication date
CN113378446A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
Willaime et al. Development of an N-body interatomic potential for hcp and bcc zirconium
Zhou et al. First-principles study of the phase stability and elastic properties of Ti-X alloys (X= Mo, Nb, Al, Sn, Zr, Fe, Co, and O)
Antonov et al. Design of novel precipitate-strengthened Al-Co-Cr-Fe-Nb-Ni high-entropy superalloys
CN107665274B (zh) 一种设计低弹性模量钛合金的方法
CN113378446B (zh) 一种基于余氏理论的钛合金β相高温固溶组织模拟方法
Liu et al. On the role of Ni in Cu precipitation in multicomponent steels
CN109145399B (zh) 一种基于改进的粒子滤波算法的疲劳裂纹扩展预测方法
CN113025932A (zh) 一种细晶和均匀析出相镍基高温合金的制备方法
CN110196262A (zh) 镍基单晶合金高温长期时效强化相粗化规律的评估方法
Toker et al. Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid
Ozdemir et al. Machine learning-assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic implants
Mukherjee et al. Temporal evolution of γ′ precipitate in HAYNES 282 during ageing: growth and coarsening kinetics, solute partitioning and lattice misfit
Lazarev et al. Growth kinetics and corrosion protection properties of plasma electrolytic oxidation coatings on biodegradable Mg− 2% Sr alloy
CN108229010A (zh) 基于xrd实验数据调整衬底和薄膜初始结构模型的结构参数的方法
Barker et al. The development of deformation substructures in face-centred cubic metals
Liang et al. Investigation on texture evolution mechanism of NiTiFe shape memory alloy under plane strain compression
Xu et al. Strengthening behavior of Nb in the modified Nimonic 80A
KR101979109B1 (ko) 조성 네트워크 토폴로지 구조의 해석 방법과 해석 프로그램
Kreitcberg et al. Optimization of post-processing annealing conditions of the laser powder bed-fused Ti–18Zr–14Nb shape memory alloy: structure and functional properties
CN111326220B (zh) 一种高强韧锆钛基合金的设计方法
Padilla et al. Electrochemical corrosion characterization of nickel aluminides in acid rain
Vidović On maximum likelihood estimates of a proportional hazard rate model parameters based on record values
CN110257732B (zh) 全吸收Mg-Zn-Ag系非晶态医用植入基材、其制备方法及应用
De Fontaine Spinodal and equilibrium reactions
Stubbins et al. The relative influence of helium/dpa ratio and other variables on neutron-induced swelling of Fe-Ni-Cr alloys at 495° C and 14 dpa

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant