CN113376698B - 一种低漏检的地震数据尖峰噪声检测及压制方法 - Google Patents

一种低漏检的地震数据尖峰噪声检测及压制方法 Download PDF

Info

Publication number
CN113376698B
CN113376698B CN202110724142.2A CN202110724142A CN113376698B CN 113376698 B CN113376698 B CN 113376698B CN 202110724142 A CN202110724142 A CN 202110724142A CN 113376698 B CN113376698 B CN 113376698B
Authority
CN
China
Prior art keywords
noise
detection
sampling point
peak
serial numbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110724142.2A
Other languages
English (en)
Other versions
CN113376698A (zh
Inventor
姜弢
胡秋月
王鑫
王京椰
晁云峰
覃锴
王开开
李爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110724142.2A priority Critical patent/CN113376698B/zh
Publication of CN113376698A publication Critical patent/CN113376698A/zh
Application granted granted Critical
Publication of CN113376698B publication Critical patent/CN113376698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/30Noise handling
    • G01V2210/32Noise reduction
    • G01V2210/324Filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明涉及一种低漏检的地震数据尖峰噪声检测及压制方法,首先应用高阈值对尖峰噪声进行检测,以保证有用信号的低误检;然后以已检测到的尖峰噪声为中心,取一定长度的窗口,应用低阈值对窗口内的数据进行二次检测,从而保证尖峰噪声的低漏检;最后整合检测到的全部尖峰噪声并进行尖峰噪声簇判断,进而对尖峰噪声进行压制。经试验,本方法能够实现尖峰噪声的检测及压制,特别是对尖峰噪声簇尤为适用。与现有的尖峰噪声检测及压制方法相比,本方法在保证有用信号低误检的同时,还实现了尖峰噪声的低漏检,使得压噪后的地震数据质量大大提高,特别适合于受人员行走和风吹树动等干扰的地震数据去噪。

Description

一种低漏检的地震数据尖峰噪声检测及压制方法
技术领域:
本发明涉及一种地震数据处理方法,尤其是低漏检的地震数据尖峰噪声检测及压制方法,特别适用于受尖峰噪声簇干扰严重的地震数据去噪。
背景技术:
在地震勘探、地震监测和使用地震数据对火车、飞机和船舶等进行检测时,地震记录中常常会伴有强烈的尖峰噪声干扰,大大降低了地震数据质量。尖峰噪声常表现为单尖峰或尖峰噪声簇的形式。尖峰噪声簇由多个幅值和持续时间各异的单尖峰组成,这些单尖峰在时间轴上无规则紧密排列。尖峰噪声多以尖峰噪声簇的形式出现,其主要来源于人员行走、风吹树动和物体的突然放电等。此外,尖峰噪声在时域上表现为持续时间短、幅值与有用信号相当或远高于有用信号等特征。
目前,中值滤波器和均值滤波器是被广泛应用的尖峰噪声抑制方法,二者原理相近,对单尖峰噪声压制效果明显。但是,由于它们对数据中所有采样点都采用无差别平滑滤波策略,故而在用长滤波窗口滤除尖峰噪声簇时,会严重损坏有用信号。CN110542927A提出了一种变窗口加权地震数据尖峰噪声压制方法,该方法对不同持续时间的单尖峰噪声进行压制,但无法压制尖峰噪声簇。CN110542925A提出了一种基于峰值包络线的地震数据尖峰噪声识别及压制方法,但该方法主要适用于尖峰噪声与有用信号不重叠的情况,当二者混叠时则无效。
CN110542926A提出了一种地震数据尖峰噪声簇的自主检测和压制方法,该方法首先应用一个高阈值对尖峰噪声进行检测,然后进行尖峰噪声簇判断并实现噪声压制。该方法中的阈值设置值较高,从而确保了有用信号的低误检,但这也意味着尖峰噪声的高漏检。高阈值可以确保有用信号的低误检,低阈值则可以保证噪声的低漏检,而一个阈值难以兼顾有用信号的低误检和尖峰噪声的低漏检,因此,需要一种双阈值的地震数据尖峰噪声检测及压制方法,使误检和漏检得以兼顾,以解决现有技术在进行尖峰噪声检测时存在的高漏检问题。
发明内容:
本发明的目的就在于针对上述现有技术的不足,提供一种低漏检的地震数据尖峰噪声检测及压制方法。
本发明的技术要点是,首先应用高阈值对尖峰噪声进行检测,以保证有用信号的低误检,称此高阈值为全阈值;然后以已检测到的尖峰噪声为中心,取一定长度的窗口,应用低阈值对窗口内的数据进行二次检测,从而保证尖峰噪声的低漏检,称此低阈值为局部阈值;最后整合检测到的全部尖峰噪声并进行尖峰噪声簇判断,进而对尖峰噪声进行压制。
本发明的目的是通过以下技术方案实现的:
一种低漏检的地震数据尖峰噪声检测及压制方法,包括以下步骤:
a、读取一道包含尖峰噪声的地震数据X(n),n=1,2,...,N,N为数据总采样点数,采样率为Fs,观察时域波形并确定尖峰噪声的最短持续时间tp
b、应用STA/LTA方法对X(n)进行处理,记振幅的短时变化量与长时变化量的比值为R(n),其中,特征函数、振幅的短时变化量、振幅的长时变化量和短时窗口长度Ls的计算方法参考CN110542926A,则0.01Fs≤Ls≤9Fs·tp,取长时窗口长度L1=8Ls
c、参考CN110542926A,计算全阈值
H=Γ(R(n))+2γ(R(n)) (1)
其中,Γ()为计算均值的函数,γ()为计算标准差的函数;拾取所有满足R(n)>H条件的采样点序号,将这些采样点序号构成的集合记为W;
d、拾取W中的所有采样点序号,对其进行从小到大排序,构成矩阵A,A为1行J列的矩阵,A=[a1,a2,...,aJ],J为W中采样点序号的总个数;令矩阵B=[a2,a3,...,aJ,0],计算B与A的差值
C=B-A (2)
将C中的任意整数记为cj,j=1,2,...,J;拾取所有满足cj≠1条件的j,并进行从小到大排序构成一个序列,记为(b1,b2,...,bM),M为满足cj≠1条件的j的个数,将该序列中的任意项记为bm,m=1,2,...,M;将A分为M块,每个子块记为Am
Figure BSA0000245909490000011
其中,b0=0;将此过程称为拾取W中的采样点序号所对应的尖峰噪声的时间段;
e、令m=1;
f、计算Am中采样点序号的个数
Figure BSA0000245909490000021
确定用于计算Am局部阈值的采样点序号的个数
Lm′=10Lm (4)
g、拾取小于且紧邻
Figure BSA0000245909490000022
的采样点序号,这些采样点序号构成的集合为
Figure BSA0000245909490000023
拾取大于且紧邻
Figure BSA0000245909490000024
的采样点序号,这些采样点序号构成的集合为
Figure BSA0000245909490000025
计算Pm′和Pm″的并集
Pm=Pm′∪Pm″ (7)
h、令Tm=Pm-W,将Tm中每个采样点序号记为tm,g,g=1,2,...,G,G为Tm中所有采样点序号的总个数;拾取Tm中采样点序号的最小值和最大值,分别记为
Figure BSA0000245909490000026
Figure BSA0000245909490000027
i、拾取所有tm,g对应的R(n)值,构成集合Rm′;
j、计算Am局部阈值
Hm′=Γ(Rm′)+1.5γ(Rm′) (8)
拾取所有满足R(v)>Hm′条件的采样点序号,
Figure BSA0000245909490000028
将这些采样点序号构成的集合记为Zm
k、令m=m+1;
l、重复执行步骤f至步骤k,直到m=M+1时停止,得到M个集合Z1,Z2,...,ZM;计算这M个集合的并集
W′=Z1∪Z2∪...∪ZM (9)
m、参考步骤c,拾取W′中的采样点序号所对应的尖峰噪声的时间段,记为矩阵Dq,q=1,2,...,Q,Q为尖峰噪声的个数,Dq=[dq,dq+1,dq+2,...,dq′],dq和dq′分别为Dq的起始采样点序号和终止采样点序号,将由所有Dq构成的集合记为D,D={D1,D2,...,DQ};
n、对D中的所有Dq进行尖峰噪声簇判断,然后进行噪声压制,方法参考CN110542926A的步骤e至步骤h,记压制尖峰噪声后的数据为X(n)′。
有益效果:
经试验,本发明公开的一种低漏检的地震数据尖峰噪声检测及压制方法,能够实现尖峰噪声的检测及压制,特别是对尖峰噪声簇尤为适用。在利用可控震源或冲击震源进行地震勘探、进行地震监测或对火车、飞机和船舶进行检测时,所采集到的地震数据通常会受到人员行走、风吹树动和物体的突然放电等引起的尖峰噪声簇干扰。现有的尖峰噪声簇检测及压制方法只考虑到避免有用信号误检,而未考虑尖峰噪声的漏检问题,而本方法在保证有用信号低误检的同时,还可以有效解决漏检问题,实现了尖峰噪声的低漏检,使得压噪后的地震数据质量大大提高。
附图说明:
图1地震数据尖峰噪声压制结果比较
(a)不含噪声的理想可控震源输出信号s(n)
(b)s(n)中加入随机噪声和尖峰噪声后的地震数据X(n)
(c)中值滤波压制尖峰噪声的结果
(d)CN110542926A方法压制尖峰噪声的结果
(e)本方法压制尖峰噪声的结果
具体实施方式:
下面结合附图和实施例对本发明做进一步的详细说明。
低漏检的地震数据尖峰噪声检测及压制方法,包括以下步骤:
a、给定不含噪声的理想可控震源输出信号s(n),n=1,2,...,14001,将其作为理想信号,如图1(a)所示。对s(n)叠加随机噪声和尖峰噪声,其中尖峰噪声包括短持续时间的单尖峰噪声r1(n)、尖峰噪声簇r2(n)和长持续时间的单尖峰噪声r3(n),r1(n)、r2(n)和r3(n)的持续时间分别为0.002s、0.241s和0.03s,如图1(b)中三个虚线框所示,得到含噪地震数据X(n)。采样率Fs=1000。尖峰噪声的最短持续时间tp=0.002。此时X(n)信噪比SNR0=0.2108;
b、应用STA/LTA方法对X(n)进行处理,记振幅的短时变化量与长时变化量的比值为R(n),其中,特征函数、振幅的短时变化量、振幅的长时变化量和短时窗口长度Ls的计算方法参考CN110542926A,则10≤Ls≤18,取长时窗口长度L1=8Ls
c、参考CN110542926A,计算全阈值
H=Γ(R(n))+2γ(R(n)) (1)
其中,Γ()为计算均值的函数,γ()为计算标准差的函数,本例中H=2.284;拾取所有满足R(n)>H条件的采样点序号,将这些采样点序号构成的集合记为W;
d、拾取W中的所有采样点序号,对其进行从小到大排序,构成矩阵A,A为1行98列的矩阵,A=[a1,a2,...,a98];令矩阵B=[a2,a3,...,a98,0],计算B与A的差值
C=B-A (2)
将C中的任意整数记为cj,j=1,2,...,98;拾取所有满足cj≠1条件的j,并进行从小到大排序构成一个序列,记为(b1,b2,...,b6),共有6个满足cj≠1条件的j,将该序列中的任意项记为bm,m=1,2,...,6;将A分为6块,每个子块记为Am
Figure BSA0000245909490000031
其中,b0=0;将此过程称为拾取W中的采样点序号所对应的尖峰噪声的时间段;
e、令m=1;
f、计算Am中采样点序号的个数
Figure BSA0000245909490000032
确定用于计算Am局部阈值的采样点序号的个数
Lm′=10Lm (4)
g、拾取小于且紧邻
Figure BSA0000245909490000033
的采样点序号,这些采样点序号构成的集合为
Figure BSA0000245909490000034
拾取大于且紧邻
Figure BSA0000245909490000035
的采样点序号,这些采样点序号构成的集合为
Figure BSA0000245909490000036
计算Pm′和Pm″的并集
Pm=Pm′∪Pm″ (7)
h、令Tm=Pm-W,将Tm中每个采样点序号记为tm,g,g=1,2,...,G,G为Tm中所有采样点序号的总个数;拾取Tm中采样点序号的最小值和最大值,分别记为
Figure BSA0000245909490000037
Figure BSA0000245909490000038
i、拾取所有tm,g对应的R(n)值,构成集合Rm′;
j、计算Am局部阈值
Hm′=Γ(Rm′)+1.5γ(Rm′) (8)
拾取所有满足R(v)>Hm′条件的采样点序号,
Figure BSA0000245909490000039
将这些采样点序号构成的集合记为Zm
k、令m=m+1;
l、重复执行步骤f至步骤k,直到m=7时停止,得到6个集合Z1,Z2,...,Z6;计算这6个集合的并集
W′=Z1∪Z2∪...∪Z6 (9)
m、参考步骤c,拾取W′中的采样点序号所对应的尖峰噪声的时间段,记为矩阵Dq,q=1,2,...,9,共9个尖峰噪声,Dq=[dq,dq+1,dq+2,...,dq′],dq和dq′分别为Dq的起始采样点序号和终止采样点序号,将由所有Dq构成的集合记为D,D={D1,D2,...,D9};
n、对D中的所有Dq进行尖峰噪声簇判断,然后进行噪声压制,方法参考CN110542926A的步骤e至步骤h,记压制尖峰噪声后的数据为X(n)′,如图1(e)所示。
此时,经本发明提出的方法处理后的地震数据信噪比SNR′=6.4708,尖峰噪声能量压制百分比Per′=98.59%,数据质量大大提高,此外,可以看到r1(n)和r3(n)完全被压制,r2(n)处理后振幅仅为原来的1/4,如图1(e)虚线框。图1(c)为应用中值滤波器处理后的结果,其中r1(n)完全被压制,r2(n)的振幅约为原来的2/5,r3(n)基本没有改变,此时信噪比SNR″=-0.3112,尖峰噪声能量压制百分比Per″=81.50%,虽然大部分尖峰噪声的能量得到压制,但由于中值滤波器对有用信号的损坏严重,使得数据质量差于去噪前的数据。图1(d)为应用CN110542926A方法压制尖峰噪声后的结果,其中r1(n)完全被压制,r2(n)稍有削减,r3(n)的振幅约为原来的3/5,此时信噪比SNR′″=0.3446,尖峰噪声能量压制百分比Per′″=35.08%,尖峰噪声漏检严重,从而使得噪声压制效果差,数据质量改善不明显。而本专利提出的方法可以有效检测尖峰噪声,实现尖峰噪声的低漏检,对于长持续时间有用信号中混叠的尖峰噪声的检测和压制效果明显,尤其适用于尖峰噪声簇的检测和压制。

Claims (1)

1.一种低漏检的地震数据尖峰噪声检测及压制方法,其特征在于,包括以下步骤:
a、读取一道包含尖峰噪声的地震数据X(n),n=1,2,...,N,N为数据总采样点数,采样率为Fs,观察时域波形并确定尖峰噪声的最短持续时间tp
b、应用STA/LTA方法对X(n)进行处理:
b1)、计算地震信号X(n)的特征函数
Figure FSB0000200177840000011
b2)、利用递归算法计算地震信号振幅的短时变化量
Figure FSB0000200177840000012
长时变化量
Figure FSB0000200177840000013
式中Ll和Ls为整数,且0.01Fs≤Ls≤9Fs·tp,取长时窗口长度Ll=8Ls
b3)、记振幅的短时变化量与长时变化量的比值为R(n),即
Figure FSB0000200177840000014
c、为了有效检测出尖峰噪声,采用阈值检测的方式;针对检测中出现的尖峰噪声漏检现象,需要进行二次阈值检测,为了区分两种阈值,将前者定义为全阈值,后者定义为局部阈值;
计算尖峰噪声全阈值
H=Γ(R(n))+2γ(R(n)) (5)
其中,Γ()为计算均值的函数,γ()为计算标准差的函数;拾取所有满足R(n)>H条件的采样点序号,将这些采样点序号构成的集合记为W;
d、拾取W中的所有采样点序号,对其进行从小到大排序,构成矩阵A,A为1行J列的矩阵,A=[a1,a2,...,aJ],J为W中采样点序号的总个数;令矩阵B=[a2,a3,...,aJ,0],计算B与A的差值
C=B-A (6)
将C中的任意整数记为cj,j=1,2,...,J;拾取所有满足cj≠1条件的j,并进行从小到大排序构成一个序列,记为(b1,b2,...,bM),M为满足cj≠1条件的j的个数,将该序列中的任意项记为bm,m=1,2,...,M;将A分为M块,每个子块记为Am,
Figure FSB0000200177840000015
其中,b0=0;将此过程称为拾取W中的采样点序号所对应的尖峰噪声的时间段;
e、令m=1;
f、计算Am中采样点序号的个数
Figure FSB0000200177840000016
确定用于计算Am局部阈值的采样点序号的个数
Lm′=10Lm (8)
g、拾取小于且紧邻
Figure FSB0000200177840000017
的采样点序号,这些采样点序号构成的集合为
Figure FSB0000200177840000018
拾取大于且紧邻
Figure FSB0000200177840000019
的采样点序号,这些采样点序号构成的集合为
Figure FSB0000200177840000021
计算Pm′和Pm″的并集
Pm=Pm′∪Pm″ (11)
h、令Tm=Pm-W,将Tm中每个采样点序号记为tm,g,g=1,2,...,G,G为Tm中所有采样点序号的总个数;拾取Tm中采样点序号的最小值和最大值,分别记为
Figure FSB0000200177840000022
Figure FSB0000200177840000023
i、拾取所有tm,g对应的R(n)值,构成集合Rm′;
j、计算Am局部阈值
Hm′=Γ(Rm′)+1.5γ(Rm′) (12)
拾取所有满足R(v)>Hm′条件的采样点序号,
Figure FSB0000200177840000024
将这些采样点序号构成的集合记为Zm
k、令m=m+1;
l、重复执行步骤f至步骤k,直到m=M+1时停止,得到M个集合Z1,Z2,...,ZM;计算这M个集合的并集
W′=Z1∪Z2∪...∪ZM (13)
m、参考步骤c,拾取W′中的采样点序号所对应的尖峰噪声的时间段,记为矩阵Dq,q=1,2,...,Q,Q为尖峰噪声的个数,Dq=[dq,dq+1,dq+2,...,dq′],dq和dq′分别为Dq的起始采样点序号和终止采样点序号,将由所有Dq构成的集合记为D,D={D1,D2,...,DQ};
n、对D中的所有Dq进行尖峰噪声簇判断,然后进行噪声压制:
n1)、对每一个Dq判断其长度是否满足条件
d′q-dq+1≤FS (14)
若满足条件,该区间被认为存在尖峰噪声,否则视为不存在尖峰噪声;
n2)、经过步骤n1)判断得出尖峰噪声的连续采样点区间D′={D′1,D′2,...,D′K},K为尖峰噪声个数,
Figure FSB0000200177840000025
Figure FSB0000200177840000026
为第k个尖峰噪声段,
Figure FSB0000200177840000027
Figure FSB0000200177840000028
为该尖峰噪声所在连续采样点区间的起始采样点序号和终止采样点序号,k∈[1,K];定义第k个尖峰噪声的持续采样点数的一半为
Figure FSB0000200177840000029
Figure FSB00002001778400000210
为向上取整运算;
n3)、对于每一个D′k的定义两个权值
Figure FSB00002001778400000211
式中
Figure FSB00002001778400000212
n4)、对于每一个D′k的采样点,在其两侧各取Lk窗长的信号
Figure FSB00002001778400000213
Figure FSB00002001778400000214
式中Θ()为计算中值的函数;X′(n)为压制尖峰噪声后的信号。
CN202110724142.2A 2021-06-23 2021-06-23 一种低漏检的地震数据尖峰噪声检测及压制方法 Active CN113376698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110724142.2A CN113376698B (zh) 2021-06-23 2021-06-23 一种低漏检的地震数据尖峰噪声检测及压制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110724142.2A CN113376698B (zh) 2021-06-23 2021-06-23 一种低漏检的地震数据尖峰噪声检测及压制方法

Publications (2)

Publication Number Publication Date
CN113376698A CN113376698A (zh) 2021-09-10
CN113376698B true CN113376698B (zh) 2022-09-27

Family

ID=77579657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110724142.2A Active CN113376698B (zh) 2021-06-23 2021-06-23 一种低漏检的地震数据尖峰噪声检测及压制方法

Country Status (1)

Country Link
CN (1) CN113376698B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646637A (zh) * 2016-12-27 2017-05-10 吉林大学 一种去除核磁信号中尖峰噪声的方法
CN110542927A (zh) * 2019-09-02 2019-12-06 吉林大学 变窗口加权地震数据尖峰噪声压制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137889A (ja) * 1992-10-22 1994-05-20 Yamatake Honeywell Co Ltd スパイクノイズフィルタ
JP4795567B2 (ja) * 2001-06-11 2011-10-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮像装置
WO2005043085A1 (ja) * 2003-10-31 2005-05-12 Hitachi Chemical Co., Ltd. 平均化反復法を用いたスパイクノイズ除去方法及びコンピュータプログラム
US8630479B2 (en) * 2011-01-07 2014-01-14 Kla-Tencor Corporation Methods and systems for improved localized feature quantification in surface metrology tools
US8930155B2 (en) * 2011-11-15 2015-01-06 Fuji Electrict Co., Ltd. Pulse processing device and radiation measuring device
CN104502968B (zh) * 2014-12-26 2017-12-12 吉林大学 基于阈值多级中值滤波的可控震源地震数据检测方法
US10705170B1 (en) * 2019-02-15 2020-07-07 GE Precision Healthcare LLC Methods and systems for removing spike noise in magnetic resonance imaging
CN110542926B (zh) * 2019-09-02 2020-07-28 吉林大学 一种地震数据尖峰噪声簇的自主检测和压制方法
US20210181365A1 (en) * 2019-12-12 2021-06-17 King Fahd University Of Petroleum And Minerals Adaptive noise estimation and removal method for microseismic data
CN111650654B (zh) * 2020-05-13 2022-03-22 吉林大学 联合emd与wt算法的地面磁共振信号尖峰噪声剔除方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646637A (zh) * 2016-12-27 2017-05-10 吉林大学 一种去除核磁信号中尖峰噪声的方法
CN110542927A (zh) * 2019-09-02 2019-12-06 吉林大学 变窗口加权地震数据尖峰噪声压制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于标准差中位数的磁共振信号尖峰去除方法;李同等;《吉林大学学报(信息科学版)》;20150515(第03期);21-25 *

Also Published As

Publication number Publication date
CN113376698A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN101477801B (zh) 一种检测和消除数字音频信号中脉冲噪声的方法
RU2010120713A (ru) Способ обнаружения и автоматической идентификации повреждения подшипников качения
CN106653062A (zh) 一种低信噪比环境下基于谱熵改进的语音端点检测方法
CN102819043B (zh) 阵列信号随机噪声自适应模型去噪方法
CN110443104A (zh) 一种应用于超声波局放检测的数据滤波方法
CN110542926B (zh) 一种地震数据尖峰噪声簇的自主检测和压制方法
CN101858988A (zh) 一种大地电磁信号采集方法与装置
CN113642484B (zh) 一种基于bp神经网络的大地电磁信号噪声压制方法及系统
CN115061203A (zh) 一种基于频域奇异值分解的矿山单通道微震信号降噪方法及应用
CN110568073B (zh) 一种在噪声环境中拾取击打信号的方法
CN113376698B (zh) 一种低漏检的地震数据尖峰噪声检测及压制方法
CN102988041A (zh) 心磁信号噪声抑制中的信号选择性平均方法
CN111708087A (zh) 一种基于DnCNN神经网络对地震数据噪声压制的方法
CN110542927B (zh) 变窗口加权地震数据尖峰噪声压制方法
Malik et al. Automatic threshold optimization in nonlinear energy operator based spike detection
CN110673210B (zh) 一种地震原始数据信噪比定量分析评价方法
CN103915102A (zh) 一种lfm水声多途信号的噪声抑制方法
CN114114400B (zh) 微地震事件有效信号拾取方法
CN104570118B (zh) 一种基于双因素的自动识别与去除工业干扰的方法
Yao et al. Research on wavelet denoising method based on soft threshold in wire rope damage detection
CN112006679B (zh) 一种基于窗口方差变换的穿戴式心电信号r波检测方法
CN104502968B (zh) 基于阈值多级中值滤波的可控震源地震数据检测方法
CN107910016A (zh) 一种带噪语音的噪声可容度判断方法
CN110542925B (zh) 一种基于峰值包络线的地震数据尖峰噪声识别及压制方法
CN110007342B (zh) 一种用于低信噪比地震信号的时频域直接拾取初至方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant