CN113375881A - 模拟微重力环境的缆绳振动特征参数地面测量装置及方法 - Google Patents

模拟微重力环境的缆绳振动特征参数地面测量装置及方法 Download PDF

Info

Publication number
CN113375881A
CN113375881A CN202110642254.3A CN202110642254A CN113375881A CN 113375881 A CN113375881 A CN 113375881A CN 202110642254 A CN202110642254 A CN 202110642254A CN 113375881 A CN113375881 A CN 113375881A
Authority
CN
China
Prior art keywords
test block
test
cable
linear motor
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110642254.3A
Other languages
English (en)
Other versions
CN113375881B (zh
Inventor
崔宪莉
席隆
董文博
张建泉
张永康
王喆
于梦溪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology and Engineering Center for Space Utilization of CAS
Original Assignee
Technology and Engineering Center for Space Utilization of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology and Engineering Center for Space Utilization of CAS filed Critical Technology and Engineering Center for Space Utilization of CAS
Priority to CN202110642254.3A priority Critical patent/CN113375881B/zh
Publication of CN113375881A publication Critical patent/CN113375881A/zh
Application granted granted Critical
Publication of CN113375881B publication Critical patent/CN113375881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/027Specimen mounting arrangements, e.g. table head adapters

Abstract

本发明涉及模拟微重力环境的缆绳振动特征参数地面测量装置及方法,测量装置包括直线电机、试验台、第一三维转台、第二三维转台、水平相机和竖直相机,所述试验台和第一三维转台分别与所述直线电机的动子相连接并由动子带动在竖直方向直线运动,所述水平相机安装在所述第一三维转台上并水平朝向所述试验台上方布置;所述竖直相机通过第二三维转台安装在所述直线电机顶部并竖直朝向所述试验台上侧面布置。本发明的测量装置可以模拟空间微重力环境,可以为试验样品提供微重力环境,与试验样品的使用环境一致,数据真实可靠;该装置可以每隔几分钟测试一组缆绳、试验块a和试验块b的位移和角度数据,数据采集效率高,通过多次测量取平均值,可以减少误差,计算出准确的缆绳振动特征参数数据。

Description

模拟微重力环境的缆绳振动特征参数地面测量装置及方法
技术领域
本发明涉及缆绳振动特征参数测量相关技术领域,具体涉及一种模拟微重力环境的缆绳振动特征参数地面测量装置及方法,即在地面模拟微重力环境,测量缆绳的振动特征参数。
背景技术
期刊《机械科学与技术》中的“空间主动隔振系统的缆绳刚度测试装置”给出了空间缆绳刚度的测量装置,但是该装置没有模拟微重力环境。“空间主动隔振系统的缆绳刚度测试装置”公开了一套缆绳刚度测试装置。该测试系统主要由桁架结构、光学平台、六维位移台、六维力和力矩传感器、控制器、工控机、显示器、LabVIEW软件等组成。六维位移台由1个三轴位移台、1个旋转台、2个倾斜台以及2个直角固定块组成。如图2所示,它的安装顺序从左到右依次为2个直角块、1个倾斜台、1个倾斜台、1个旋转台、1个三轴位移台。六维位移台的三轴位移台在三个方向的位移、1个旋转台的旋转、2个倾斜台的倾斜分别驱动,3个方向的位移和3个方向的旋转没有耦合,每次都使六维位移台沿一个自由度方向运动。缆绳刚度测试的基本原理为:缆绳一端与六维力和力矩传感器相连,力和力矩传感器固定在桁架结构上,另一端与六维位移台上的直角块固定,实验过程中缆绳处于自由松弛状态,六维位移台带动缆绳一端仅沿一个自由度作低速往复运动,另一端的六维力和力矩传感器测量缆绳所受的力和力矩,并通过LabVIEW软件存储到.txt文档中。然后数据导入到Matlab,绘出线缆的位移、转角与力和力矩的关系,并用最小二乘法拟合求解斜率,即缆绳刚度。
“空间主动隔振系统的缆绳刚度测试装置”公开的一套缆绳刚度测试装置,该装置在地面有重力的环境下测试缆绳刚度。缆绳一端与桁架结构固定,另一端通过六维力和力矩传感器与六维位移台,缆绳悬置在空中,受地球重力影响,通过该装置测试的数据与微重力环境下的测试数据有误差。该装置每次使六维位移台沿一个自由度方向运动,用六维力和力矩传感器采集力或力矩值,用最小二乘法拟合求解斜率,即缆绳在该自由度上的刚度。但是在空间使用的缆绳实际工况是在六个自由度同时运动,在六个自由度上受的力与力矩相互耦合,关联性强,需要同时测量,因此通过该装置测试的数据与空间微重力环境下缆绳的受力情况不相符。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种模拟微重力环境的缆绳振动特征参数地面测量装置及方法。
本发明解决上述技术问题的技术方案如下:一种模拟微重力环境的缆绳振动特征参数地面测量装置,包括直线电机、试验台、第一三维转台、第二三维转台、水平相机和竖直相机,所述试验台和第一三维转台分别与所述直线电机的动子相连接并由动子带动在竖直方向直线运动,所述水平相机安装在所述第一三维转台上并水平朝向所述试验台上方布置;所述竖直相机通过第二三维转台安装在所述直线电机顶部并竖直朝向所述试验台上侧面布置。
本发明的有益效果是:本发明的测量装置可以模拟空间微重力环境,可以为试验样品提供微重力环境,与试验样品的使用环境一致,数据真实可靠;该装置可以每隔几分钟测试一组缆绳、试验块a和试验块b的位移和角度数据,数据采集效率高,通过多次测量取平均值,可以减少误差,计算出准确的缆绳振动特征参数数据。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述试验台通过支架安装在所述直线电机的动子上,所述支架一端位于所述试验台径向方向的外侧,所述第一三维转台安装在所述支架的一端。
采用上述进一步方案的有益效果是:方便安装水平相机,并使水平相机对准试验台上方。
进一步,所述试验台呈环形且套设在所述直线电机上。
采用上述进一步方案的有益效果是:可以根据需要调整样品组件的摆放位置,也方便调整水平相机和竖直相机的位置。
进一步,所述直线电机上设有电控箱,所述电控箱通过线缆与所述直线电机的定子相连。
采用上述进一步方案的有益效果是:电控箱为直线电机定子供电。
进一步,所述第一三维转台、第二三维转台、水平相机、竖直相机分别为两个,两个所述第一三维转台呈预设角度布置使对应连接的两个水平相机在同一水平面上呈预设角度布置,两个所述第二三维转台呈所述预设角度布置使对应连接的两个竖直相机呈所述预设角度布置。
采用上述进一步方案的有益效果是:采用两组转台、相机,可同时记录两个试验块的位移和角度,可同时计算出缆绳的阻尼、频率、拉压刚度和扭弯刚度等特征参数,测量更加精确、真实可靠。
一种模拟微重力环境的缆绳振动特征参数地面测量方法,采用上述测量装置实现,包括以下步骤:
S1,直线电机的定子加电,利用直线电机的动子带动试验台、第一三维转台和水平相机运动到起始位置;
S2,将缆绳两端分别与试验块a或/和试验块b连接成为试验组件,并将试验组件自由摆放在试验台上;调整竖直相机和水平相机的初始位置,使竖直相机在竖直方向对准试验块a或/和试验块b,使水平相机在水平方向对准试验块a或/和试验块b;
S3,利用直线电机的动子带动试验台、试验组件、第一三维转台和水平相机向上加速运动,待速度达到预定值后,动子减速,使试验组件与试验台分离,控制动子的速度,使水平相机的水平线与试验块a或/和试验块b平齐;
S4,利用水平相机记录试验块a或/和试验块b在竖直方向的位移和角度,利用竖直相机记录试验块a或/和试验块b在水平方向的位移和角度,计算得到缆绳的振动特征参数。
本发明的有益效果是:本发明的测量方法,可以模拟空间微重力环境,测试缆绳在微重力条件下六个自由度上的振动特征参数相关参数。
进一步,根据试验块a或试验块b在竖直方向或水平方向的位移和角度,拟合试验块a或试验块b在三个方向的位移时间历程曲线方程或角度时间历程曲线方程为:
Figure BDA0003108416640000041
其中,X为试验块a或试验块b在三个方向任意方向的位移或角度;t为时间;A为试验块a或试验块b的振幅;n为试验块a或试验块b衰减系数、ω为试验块a或试验块b振动的角频率、
Figure BDA0003108416640000042
为试验块a或试验块b振动的相位。
进一步,根据所述位移时间历程曲线方程或所述角度时间历程曲线方程,并利用系统辨识方法,计算得到缆绳的阻尼、频率、拉压刚度和扭弯刚度。
进一步,根据所述位移时间历程曲线方程,计算出缆绳的衰减系数
Figure BDA0003108416640000043
阻尼比
Figure BDA0003108416640000044
周期
Figure BDA0003108416640000045
根据计算出的衰减系数、阻尼比、周期,推算出缆绳的阻尼
Figure BDA00031084166400000412
缆绳固有频率
Figure BDA0003108416640000046
根据ω=2πf,计算出缆绳的角频率
Figure BDA0003108416640000047
根据k1=ω2m,计算出缆绳的拉压刚度
Figure BDA0003108416640000048
其中,m为试验块a或试验块b的质量。
进一步,根据所述角度时间历程曲线方程,计算出缆绳的衰减系数
Figure BDA0003108416640000049
阻尼比
Figure BDA00031084166400000410
周期
Figure BDA00031084166400000411
根据计算出的衰减系数、阻尼比、周期,推算出缆绳的阻尼
Figure BDA0003108416640000051
缆绳的固有频率
Figure BDA0003108416640000052
根据ω=2πf,计算出缆绳的角频率
Figure BDA0003108416640000053
根据k2=ω2J,计算出缆绳的扭弯刚度
Figure BDA0003108416640000054
其中,J为试验块a或试验块b绕轴的转动惯量。
附图说明
图1为本发明模拟微重力环境的缆绳振动特征参数地面测量装置的主视结构示意图;
图2为图1的A-A剖视图;
图3为本发明模拟微重力环境的缆绳振动特征参数地面测量装置的俯视结构示意图;
图4为试验块受力原理图一;
图5为试验块受力原理图二;
图6为试验块的位移或角度时间历程曲线图。
附图中,各标号所代表的部件列表如下:
1、直线电机;11、动子;12、定子;14、电控箱;15、线缆;2、试验台;3、第一三维转台;4、第二三维转台;5、水平相机;6、竖直相机;7、支架;8、试验块a;81、试验块b;82、缆绳;9、主结构。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
如图1-图3所示,本实施例的一种模拟微重力环境的缆绳振动特征参数地面测量装置,包括直线电机1、试验台2、第一三维转台3、第二三维转台4、水平相机5和竖直相机6,所述试验台2和第一三维转台3分别与所述直线电机1的动子11相连接并由动子11带动在竖直方向直线运动,所述水平相机5安装在所述第一三维转台3上并水平朝向所述试验台2上方布置;所述竖直相机6通过第二三维转台4安装在所述直线电机1顶部并竖直朝向所述试验台2上侧面布置。所述直线电机1安装在主结构9上,具体也可将第二三维转台4安装在直线电机1顶部的主结构9上。
本实施例的所述第一三维转台3、第二三维转台4、水平相机5、竖直相机6可分别只设置一个,第一三维转台3和第二三维转台4上下对应布置,可用于测量样品组件(试验块a8、试验块b81和缆绳82)中一个试验块的位移和角度数据。
如图1-图3所示,所述试验台2通过支架7安装在所述直线电机1的动子11上,所述支架7一端位于所述试验台2径向方向的外侧,所述第一三维转台3安装在所述支架7的一端。具体可参考图3所示,所述支架7一端固定在动子上,另一端水平径向向外延伸并与第一三维转台3进行连接,试验台2安装在支架7上表面上。利用支架方便安装水平相机,并使水平相机对准试验台上方。
如图3所示,本实施例的所述试验台2呈环形且套设在所述直线电机1上。试验台的形状可以任意选择,例如可以选用圆环形,也可以选用方环形等。可以根据需要调整样品组件的摆放位置,也方便调整水平相机和竖直相机的位置。
如图1-图3所示,本实施例的所述直线电机1上设有电控箱14,所述电控箱14通过线缆15与所述直线电机1的定子12相连。电控箱为直线电机定子供电。
本实施例的测量装置可以模拟空间微重力环境,可以为试验样品提供微重力环境,与试验样品的使用环境一致,数据真实可靠;该装置可以每隔几分钟测试一组缆绳、试验块a或试验块b的位移和角度数据,数据采集效率高,通过多次测量取平均值,可以减少误差,计算出准确的缆绳振动特征参数数据。
实施例2
如图1-图3所示,本实施例的一种模拟微重力环境的缆绳振动特征参数地面测量装置,包括直线电机1、试验台2、第一三维转台3、第二三维转台4、水平相机5和竖直相机6,所述试验台2和第一三维转台3分别与所述直线电机1的动子11相连接并由动子11带动在竖直方向直线运动,所述水平相机5安装在所述第一三维转台3上并水平朝向所述试验台2上方布置;所述竖直相机6通过第二三维转台4安装在所述直线电机1顶部并竖直朝向所述试验台2上侧面布置。所述直线电机1安装在主结构9上,具体也可将第二三维转台4安装在直线电机1顶部的主结构9上。
如图1-图3所示,所述试验台2通过支架7安装在所述直线电机1的动子11上,所述支架7一端位于所述试验台2径向方向的外侧,所述第一三维转台3安装在所述支架7的一端。具体可参考图3所示,所述支架7一端固定在动子上,另一端水平径向向外延伸并与第一三维转台3进行连接,试验台2安装在支架7上表面上。利用支架方便安装水平相机,并使水平相机对准试验台上方。
如图3所示,本实施例的所述试验台2呈环形且套设在所述直线电机1上。试验台的形状可以任意选择,例如可以选用圆环形,也可以选用方环形等。可以根据需要调整样品组件的摆放位置,也方便调整水平相机和竖直相机的位置。
如图1-图3所示,本实施例的所述直线电机1上设有电控箱14,所述电控箱14通过线缆15与所述直线电机1的定子12相连。电控箱为直线电机定子供电。
如图1-图3所示,所述第一三维转台3、第二三维转台4、水平相机5、竖直相机6分别为两个,两个所述第一三维转台3呈预设角度布置使对应连接的两个水平相机5在同一水平面上呈预设角度布置,两个所述第二三维转台4呈所述预设角度布置使对应连接的两个竖直相机6呈所述预设角度布置。采用两组转台、相机,可同时记录两个试验块的位移和角度,可同时计算出缆绳的阻尼、频率、拉压刚度和扭弯刚度等特征参数,测量更加精确、真实可靠。
本实施例的测量装置可以模拟空间微重力环境,可以为试验样品提供微重力环境,与试验样品的使用环境一致,数据真实可靠;该装置可以每隔几分钟测试一组缆绳、试验块a和试验块b的位移和角度数据,数据采集效率高,通过多次测量取平均值,可以减少误差,计算出准确的缆绳振动特征参数数据。
实施例3
本实施例的一种模拟微重力环境的缆绳振动特征参数地面测量方法,采用上述实施例1测量装置实现,包括以下步骤:
S1,电控箱14给直线电机1的定子12加电,利用直线电机1的动子11带动试验台2、第一三维转台3和水平相机5运动到起始位置;
S2,将缆绳82两端分别与试验块a8和试验块b81连接成为试验组件,并将试验组件自由摆放在试验台2上;调整竖直相机6和水平相机5的初始位置,使竖直相机6在竖直方向对准试验块a8或试验块b81,使水平相机5在水平方向对准试验块a8或试验块b81;
S3,利用直线电机1的动子11带动试验台2、试验组件、第一三维转台3和水平相机5向上加速运动,待速度达到预定值后,动子11减速,使试验组件与试验台2分离,控制动子11的速度,使水平相机5的水平线与试验块a8或试验块b81平齐;
S4,利用水平相机5记录试验块a8或试验块b81在竖直方向的位移和角度,利用竖直相机6记录试验块a8或试验块b81在水平方向的位移和角度,计算得到缆绳82的振动特征参数。
本实施例中,缆绳、试验块a、试验块b组成的试验组件做自由落体运动。试验组件在水平方向做自由运动,缆绳的刚性向试验块a或试验块b提供恢复力,缆绳的阻尼向试验块a或试验块b提供阻尼力,试验块受力示意图如图4所示。在水平方向作用在试验块a或试验块b上的力有恢复力Fk=-kx,方向指向平衡位置O;阻尼力
Figure BDA0003108416640000091
方向与速度方向相反。试验块a、试验块b在水平方向的运动微分方程为
Figure BDA0003108416640000092
式中m为试验块的质量、c为缆绳的阻尼系数、k为缆绳的刚度、x为试验块的位移、
Figure BDA0003108416640000093
为试验块的速度、
Figure BDA0003108416640000094
为试验块的加速度。试验块受力分析图如图5所示。
试验组件与水平相机在竖直方向同步做自由落体运动,建立竖直方向的振动微分方程时可以不计入重力作用,试验块的受力及运动情况同水平方向的运动。参考图4和图5,自由落体运动过程中,在竖直方向作用在试验块a或试验块b上的力有恢复力Fk=-kx,方向指向平衡位置O;阻尼力
Figure BDA0003108416640000095
方向与速度方向相反。试验块a、试验块b在竖直方向的运动微分方程为
Figure BDA0003108416640000096
式中m为试验块的质量、c为缆绳的阻尼系数、k为缆绳的刚度、x为试验块的位移、
Figure BDA0003108416640000097
为试验块的速度、
Figure BDA0003108416640000098
为试验块的加速度。
试验块a、试验块b在三个位移方向的运动微分方程均为
Figure BDA0003108416640000099
缆绳做欠阻尼运动,令
Figure BDA00031084166400000910
Figure BDA00031084166400000911
得微分方程
Figure BDA00031084166400000912
的解为
Figure BDA00031084166400000913
式中,X为试验块a或试验块b在三个方向任意方向的位移或角度;t为时间;A为试验块的振幅、n为衰减系数、ω为试验块振动的角频率、
Figure BDA00031084166400000914
为试验块振动的相位。根据相机采集的试验块a或试验块b的位置数据,绘制试验块a或b的位移时间历程曲线或角度时间历程曲线如图6所示。
根据所述位移时间历程曲线方程或所述角度时间历程曲线方程
Figure BDA0003108416640000101
并利用系统辨识方法,计算得到缆绳的阻尼、频率、拉压刚度和扭弯刚度。具体可以参考如下计算方法:
本实施例的一个具体可选方案为,根据所述位移时间历程曲线方程,读出时间值ti,及在ti瞬时,振动幅度达到的最大偏离值Ai;经过1个周期后,读出时间值ti+1,及在ti+1瞬时,振动幅度达到的最大偏离值Ai+1;经过j个周期后,读出时间值ti+j,及在ti+j瞬时,振动幅度达到的最大偏离值Ai+j。根据上述读数,缆绳为小阻尼系统,计算出缆绳的衰减系数
Figure BDA0003108416640000102
阻尼比
Figure BDA0003108416640000103
周期
Figure BDA0003108416640000104
根据计算出的衰减系数、阻尼比、周期,推算出缆绳的阻尼
Figure BDA0003108416640000105
缆绳固有频率
Figure BDA0003108416640000106
根据ω=2πf,计算出缆绳的角频率
Figure BDA0003108416640000107
根据k1=ω2m,计算出缆绳的拉压刚度
Figure BDA0003108416640000108
其中,m为试验块a或试验块b的质量。
本实施例的一个具体可选方案为,根据所述角度时间历程曲线方程,读出时间值ti,及在ti瞬时,扭转角度达到的最大偏离值Ai;经过1个周期后,读出时间值ti+1,及在ti+1瞬时,扭转角度达到的最大偏离值Ai+1;经过j个周期后,读出时间值ti+j,及在ti+j瞬时,扭转角度达到的最大偏离值Ai+j。根据上述读数,缆绳为小阻尼系统,计算出缆绳的衰减系数
Figure BDA0003108416640000109
阻尼比
Figure BDA00031084166400001010
周期
Figure BDA00031084166400001011
根据计算出的衰减系数、阻尼比、周期,推算出缆绳的阻尼
Figure BDA00031084166400001012
缆绳的固有频率
Figure BDA00031084166400001013
根据ω=2πf,计算出缆绳的角频率
Figure BDA00031084166400001014
根据k2=ω2J,计算出缆绳的扭弯刚度
Figure BDA00031084166400001015
其中,J为试验块a或试验块b绕轴的转动惯量。
本实施例可以计算缆绳的阻尼、频率、拉压刚度和扭弯刚度等振动特征相关参数。
实施例4
本实施例一种模拟微重力环境的缆绳振动特征参数地面测量方法,采用上述实施例2测量装置实现,包括以下步骤:
S1,电控箱14给直线电机1的定子12加电,利用直线电机1的动子11带动试验台2、两个第一三维转台3和两个水平相机5运动到起始位置;
S2,将缆绳82两端分别与试验块a8和试验块b81连接成为试验组件,并将试验组件自由摆放在试验台2上;调整两个竖直相机6和两个水平相机5的初始位置,使两个竖直相机6在竖直方向分别对准试验块a8和试验块b81,使两个水平相机5在水平方向分别对准试验块a8和试验块b81;
S3,利用直线电机1的动子11带动试验台2、试验组件、两个第一三维转台3和两个水平相机5向上加速运动,待速度达到预定值后,动子11减速,使试验组件与试验台2分离,控制动子11的速度,使两个水平相机5的水平线分别与试验块a8和试验块b81平齐;
S4,利用两个水平相机5分别记录试验块a8和试验块b81在竖直方向的位移和角度,利用两个竖直相机6分别记录试验块a8和试验块b81在水平方向的位移和角度,计算得到缆绳82的振动特征参数。
本实施例中,可以采用与实施例3相同的计算方法分别计算缆绳的阻尼、频率、拉压刚度和扭弯刚度等振动特征相关参数。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.模拟微重力环境的缆绳振动特征参数地面测量装置,其特征在于,包括直线电机、试验台、第一三维转台、第二三维转台、水平相机和竖直相机,所述试验台和第一三维转台分别与所述直线电机的动子相连接并由动子带动在竖直方向直线运动,所述水平相机安装在所述第一三维转台上并水平朝向所述试验台上方布置;所述竖直相机通过第二三维转台安装在所述直线电机顶部并竖直朝向所述试验台上侧面布置。
2.根据权利要求1所述模拟微重力环境的缆绳振动特征参数地面测量装置,其特征在于,所述试验台通过支架安装在所述直线电机的动子上,所述支架一端位于所述试验台径向方向的外侧,所述第一三维转台安装在所述支架的一端。
3.根据权利要求1所述模拟微重力环境的缆绳振动特征参数地面测量装置,其特征在于,所述试验台呈环形且套设在所述直线电机上。
4.根据权利要求1所述模拟微重力环境的缆绳振动特征参数地面测量装置,其特征在于,所述直线电机上设有电控箱,所述电控箱通过线缆与所述直线电机的定子相连。
5.根据权利要求1至4任一项所述模拟微重力环境的缆绳振动特征参数地面测量装置,其特征在于,所述第一三维转台、第二三维转台、水平相机、竖直相机分别为两个,两个所述第一三维转台呈预设角度布置使对应连接的两个水平相机在同一水平面上呈预设角度布置,两个所述第二三维转台呈所述预设角度布置使对应连接的两个竖直相机呈所述预设角度布置。
6.模拟微重力环境的缆绳振动特征参数地面测量方法,其特征在于,采用权利要求1至5任一项测量装置实现,包括以下步骤:
S1,直线电机的定子加电,利用直线电机的动子带动试验台、第一三维转台和水平相机运动到起始位置;
S2,将缆绳两端分别与试验块a和试验块b连接成为试验组件,并将试验组件按预设位置摆放在试验台上;调整竖直相机和水平相机的初始位置,使竖直相机在竖直方向对准试验块a或/和试验块b,使水平相机在水平方向对准试验块a或/和试验块b;
S3,利用直线电机的动子带动试验台、试验组件、第一三维转台和水平相机向上加速运动,待速度达到预定值后,动子减速,使试验组件与试验台分离,控制动子的速度,使水平相机的水平线与试验块a或/和试验块b平齐;
S4,利用水平相机记录试验块a或/和试验块b在竖直方向的位移和角度,利用竖直相机记录试验块a或/和试验块b在水平方向的位移和角度,计算得到缆绳的振动特征参数。
7.根据权利要求6所述模拟微重力环境的缆绳振动特征参数地面测量方法,其特征在于,根据试验块a或试验块b在竖直方向或水平方向的位移和角度,拟合试验块a或试验块b在三个方向的位移时间历程曲线方程或角度时间历程曲线方程为:
Figure FDA0003108416630000021
其中,X为试验块a或试验块b在三个方向任意方向的位移或角度;t为时间;A为试验块a或试验块b的振幅;n为试验块a或试验块b衰减系数、ω为试验块a或试验块b振动的角频率、
Figure FDA0003108416630000022
为试验块a或试验块b振动的相位。
8.根据权利要求7所述模拟微重力环境的缆绳振动特征参数地面测量方法,其特征在于,根据所述位移时间历程曲线方程或所述角度时间历程曲线方程,并利用系统辨识方法,计算得到缆绳的阻尼、频率、拉压刚度和扭弯刚度。
9.根据权利要求7所述模拟微重力环境的缆绳振动特征参数地面测量方法,其特征在于,根据所述位移时间历程曲线方程,计算出缆绳的衰减系数
Figure FDA0003108416630000023
阻尼比
Figure FDA0003108416630000024
周期
Figure FDA0003108416630000025
根据计算出的衰减系数、阻尼比、周期,推算出缆绳的阻尼
Figure FDA0003108416630000026
缆绳固有频率
Figure FDA0003108416630000027
根据ω=2πf,计算出缆绳的角频率
Figure FDA0003108416630000031
根据k1=ω2m,计算出缆绳的拉压刚度
Figure FDA0003108416630000032
其中,m为试验块a或试验块b的质量。
10.根据权利要求7所述模拟微重力环境的缆绳振动特征参数地面测量方法,其特征在于,根据所述角度时间历程曲线方程,计算出缆绳的衰减系数
Figure FDA0003108416630000033
阻尼比
Figure FDA0003108416630000034
周期
Figure FDA0003108416630000035
根据计算出的衰减系数、阻尼比、周期,推算出缆绳的阻尼
Figure FDA0003108416630000036
缆绳的固有频率
Figure FDA0003108416630000037
根据ω=2πf,计算出缆绳的角频率
Figure FDA0003108416630000038
根据k2=ω2J,计算出缆绳的扭弯刚度
Figure FDA0003108416630000039
其中,J为试验块a或试验块b绕轴的转动惯量。
CN202110642254.3A 2021-06-09 2021-06-09 模拟微重力环境的缆绳振动特征参数地面测量装置及方法 Active CN113375881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110642254.3A CN113375881B (zh) 2021-06-09 2021-06-09 模拟微重力环境的缆绳振动特征参数地面测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110642254.3A CN113375881B (zh) 2021-06-09 2021-06-09 模拟微重力环境的缆绳振动特征参数地面测量装置及方法

Publications (2)

Publication Number Publication Date
CN113375881A true CN113375881A (zh) 2021-09-10
CN113375881B CN113375881B (zh) 2022-02-01

Family

ID=77573173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110642254.3A Active CN113375881B (zh) 2021-06-09 2021-06-09 模拟微重力环境的缆绳振动特征参数地面测量装置及方法

Country Status (1)

Country Link
CN (1) CN113375881B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383525A (zh) * 2021-12-14 2022-04-22 浙江大学 用于模拟和监测海缆变形和振动的实验台架和实验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239061A (ja) * 2004-02-27 2005-09-08 Japan Aerospace Exploration Agency 微小重力装置
CN107314807A (zh) * 2017-07-07 2017-11-03 河南科技大学 一种钢丝绳横向空间振动测量的方法
CN107356419A (zh) * 2017-07-18 2017-11-17 厦门大学 一种用于测量绳索阻尼参数的实验方法
CN108725852A (zh) * 2018-05-30 2018-11-02 中国科学院空间应用工程与技术中心 一种电磁上抛微重力装置、控制方法以及系统
CN110375944A (zh) * 2019-07-19 2019-10-25 中国矿业大学 一种横置钢丝绳弯曲弹射冲击振动检测分析方法及装置
CN111157199A (zh) * 2019-12-16 2020-05-15 上海卫星工程研究所 柔性电缆刚度测定试验方法、系统及介质
CN111439401A (zh) * 2020-04-28 2020-07-24 华中科技大学 一种基于电磁弹射的微重力模拟装置及方法
CN111504582A (zh) * 2020-04-07 2020-08-07 上海卫星工程研究所 新型柔性电缆刚度测定方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239061A (ja) * 2004-02-27 2005-09-08 Japan Aerospace Exploration Agency 微小重力装置
CN107314807A (zh) * 2017-07-07 2017-11-03 河南科技大学 一种钢丝绳横向空间振动测量的方法
CN107356419A (zh) * 2017-07-18 2017-11-17 厦门大学 一种用于测量绳索阻尼参数的实验方法
CN108725852A (zh) * 2018-05-30 2018-11-02 中国科学院空间应用工程与技术中心 一种电磁上抛微重力装置、控制方法以及系统
CN110375944A (zh) * 2019-07-19 2019-10-25 中国矿业大学 一种横置钢丝绳弯曲弹射冲击振动检测分析方法及装置
CN111157199A (zh) * 2019-12-16 2020-05-15 上海卫星工程研究所 柔性电缆刚度测定试验方法、系统及介质
CN111504582A (zh) * 2020-04-07 2020-08-07 上海卫星工程研究所 新型柔性电缆刚度测定方法及系统
CN111439401A (zh) * 2020-04-28 2020-07-24 华中科技大学 一种基于电磁弹射的微重力模拟装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383525A (zh) * 2021-12-14 2022-04-22 浙江大学 用于模拟和监测海缆变形和振动的实验台架和实验方法
CN114383525B (zh) * 2021-12-14 2022-10-21 浙江大学 用于模拟和监测海缆变形和振动的实验台架和实验方法

Also Published As

Publication number Publication date
CN113375881B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN100445713C (zh) 高温超导磁悬浮动态性能测试装置及使用该装置的测试方法
CN104865034B (zh) 一种六自由度振动激励系统
CN113375881B (zh) 模拟微重力环境的缆绳振动特征参数地面测量装置及方法
CN109229421B (zh) 一种无人机动力性能测试系统及方法
WO2018081802A1 (en) Integrated smart sensing systems and methods
US3505863A (en) Method and apparatus for testing the acceleration of prime movers
CN106839968A (zh) 转子空间弯曲轴线测试系统及其测试方法
RU2402470C2 (ru) Система имитации невесомости многозвенных механизмов
CN110426147B (zh) 在重力或微重力下测量深沟球轴承摩擦力矩的装置和方法
EP1509757A1 (en) Device for measuring the inertia tensor of a rigid body
CN112828837A (zh) 一种重载两自由度转台
CN107067912A (zh) 一种可以感知振动的倒立摆机电系统
CN113295404B (zh) 一种可实现高回转加速度的航空齿轮传动实验系统及其试验方法
KR102067066B1 (ko) 반 타원형 회전체방식의 모형선 관성시험장치
CN216899603U (zh) 机器人关节测试装置
CN110398367A (zh) 用于测量滑动轴承动态系数的测量装置
CN217980784U (zh) 适用于等效缩比燃气轮机模拟倾斜摇摆试验的试验台
CN112683677B (zh) 模拟变重力、真空条件下岩土动力学的试验系统及方法
JP6502185B2 (ja) 垂直軸風車の動的アンバランス修正方法と、この修正方法を実施するための垂直軸風車の動的不釣り合いの測定装置
CN115320883A (zh) 一种无人机动力特性测试台架
Vargas et al. A centrifuge for studies of fluid dynamics phenomena in a rotating frame of reference
Popardovský et al. Tricopter vibration analysis
CN114858471A (zh) 等效缩比燃气轮机倾斜摇摆试验装置及装配、试验方法
JP3631911B2 (ja) 遠心載荷実験装置の振動台の支持装置
CN220670927U (zh) 一种阻尼轴承测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant