CN113361037B - 一种不确定性情况下的相邻齿轮间的失效相关性计算方法 - Google Patents
一种不确定性情况下的相邻齿轮间的失效相关性计算方法 Download PDFInfo
- Publication number
- CN113361037B CN113361037B CN202110651900.2A CN202110651900A CN113361037B CN 113361037 B CN113361037 B CN 113361037B CN 202110651900 A CN202110651900 A CN 202110651900A CN 113361037 B CN113361037 B CN 113361037B
- Authority
- CN
- China
- Prior art keywords
- gear
- adjacent gears
- failure correlation
- distribution function
- life distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000005315 distribution function Methods 0.000 claims abstract description 15
- 241000039077 Copula Species 0.000 claims description 5
- 238000007476 Maximum Likelihood Methods 0.000 claims description 2
- 230000004927 fusion Effects 0.000 abstract description 14
- 238000004364 calculation method Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 5
- 230000001149 cognitive effect Effects 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 206010063385 Intellectualisation Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012826 global research Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/02—Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/04—Ageing analysis or optimisation against ageing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
该发明公开了一种不确定性情况下的相邻齿轮间的失效相关性计算方法,涉及可靠性信息融合领域。本发明首先将一个齿轮的可靠性范围转换为寿命分布函数,再对相邻的两个齿轮的寿命分布函数进行融合计算,可以达到在其中一个齿轮在不确定性情况下,计算两个相邻齿轮的失效相关性。
Description
技术领域
本发明涉及可靠性信息融合领域,具体而言,涉及一种不确定性情况下的相邻齿轮间的失效相关性计算方法。
背景技术
信息融合是将各种类型的数据进行整合和组合的过程:例如,人类的大脑就是最佳的融合处理器。人类大脑对信息进行捕取、信息分析、信息,最终得到有效信息,而融合就是模拟人类大脑对信息处理的这一过程,即集成、关联、组合。多源信息融合得到的信息比单一信息源更加全面、可靠,并有较高的容错性,因而所做出的决策也就更加可信。信息融合是信息发展,科技智能化的极其重要的一部分,是现阶段全球研究热点之一。
如今,信息融合技术将多传感器中得到的各个信息进行归类分析,所得到的信息可能互补,亦可能冗余。因此,针对信息间的关系选择合适的方法进行融合,才能得到准确度和可信度较高的结果。随着系统越来越复杂,信息源越来越多,单个传感器和单一信息源已无法对系统进行准确的评估和决策。为提高结果精度得到准确的信息,人们对此领域进行了大量的研究并发展成多源信息融合技术。
实际工程机电装备系统极为复杂,由于共享变量的存在,各特征参数之间存在较强的相关性,收集到的可靠性数据信息同样存在较强的相关性;如若处理不当,则很有可能产生有偏估计,设置完全错误的估计,导致融合结果出现较大偏差,不利于工程实际可靠性评估,甚至导致完全错误的评估结论。工作中的齿轮之间也存在相关信息融合问题。啮合的齿轮之间,其中一个如果失效,另外的齿轮也会受到影响。
发明内容
本发明针对背景技术中的不足之处,提供的一种不确定性情况下的齿轮失效关系的信息融合方法。
本发明提供一种技术方案为:一种不确定性情况下的相邻齿轮间的失效相关性计算方法,该方法包括:
步骤2:采用如下公式将齿轮2的可靠性范围转换为寿命分布函数u2;
fYj(yj)表示寿命分布函数u2中第j个时间点对应的寿命;
步骤3:采用如下公式计算齿轮1和齿轮2之间的失效相关性C
其中,θ为采用下式根据极大似然估计法进行计算得到,c(u1,u2;θ)为Copula函数C((u1,u2;θ))的密度函数
本发明将一个齿轮的可靠性范围转换为寿命分布函数,再对寿命分布函数进行融合,可以达到在其中一个齿轮在不确定性情况下,计算两个相邻齿轮的失效相关性。
附图说明
图1为本发明具体实施方式中的齿轮结构图。
图2为本发明的随机与认知不确定共存失效关系图。
具体实施方式
下面以齿轮间失效关系为例对本发明的具体实施方式进行详细说明。
针对Copula函数的分布函数随机与认知不确定性共存情况,本发明提供以下方案:
步骤1:若齿轮间失效关系为随机与认知不确定性共存情况,三个齿轮的结构图如图2所示,三个传动齿轮,齿轮1和齿轮3的寿命分布函数为:
通过最大熵可以得到f2(t):
步骤3:可得齿轮1和齿轮2、齿轮2和齿轮3的Copula函数为:
则C1,2C2,3,C1,2,3的图形分别如图2所示。
图2可以看出,齿轮1和齿轮2的寿命失效关系随着工作时间的增加,失效关系关联性越强,齿轮2和齿轮3的寿命失效关系随着工作时间的增加,失效关系关联性越强,由齿轮1、齿轮2和齿轮3组成齿轮箱,随着工作时间的增加,齿轮箱失效关系关联性越强。
本发明提供的技术方案能够解决经典的Copula函数无法解决的随机与认知不确定性共存情况的信息融合。
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110651900.2A CN113361037B (zh) | 2021-06-11 | 2021-06-11 | 一种不确定性情况下的相邻齿轮间的失效相关性计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110651900.2A CN113361037B (zh) | 2021-06-11 | 2021-06-11 | 一种不确定性情况下的相邻齿轮间的失效相关性计算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113361037A CN113361037A (zh) | 2021-09-07 |
CN113361037B true CN113361037B (zh) | 2022-06-03 |
Family
ID=77533813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110651900.2A Expired - Fee Related CN113361037B (zh) | 2021-06-11 | 2021-06-11 | 一种不确定性情况下的相邻齿轮间的失效相关性计算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113361037B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106383959A (zh) * | 2016-09-23 | 2017-02-08 | 南京航空航天大学 | 一种基于最大熵模型的材料疲劳寿命的预测方法 |
CN109657260A (zh) * | 2018-09-19 | 2019-04-19 | 北京航空航天大学 | 一种考虑失效相关性的涡轮转子系统可靠性分配方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2976586B1 (fr) * | 2011-06-15 | 2015-01-23 | Centre Nat Rech Scient | Methode pour generer des proteines fluorescentes cyans ayant une sensibilite reduite au ph |
-
2021
- 2021-06-11 CN CN202110651900.2A patent/CN113361037B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106383959A (zh) * | 2016-09-23 | 2017-02-08 | 南京航空航天大学 | 一种基于最大熵模型的材料疲劳寿命的预测方法 |
CN109657260A (zh) * | 2018-09-19 | 2019-04-19 | 北京航空航天大学 | 一种考虑失效相关性的涡轮转子系统可靠性分配方法 |
Non-Patent Citations (5)
Title |
---|
"Remaining Useful Life Prediction for a Machine With Multiple Dependent Features Based on Bayesian Dynamic Linear Model and Copulas";Fuqiang Sun 等;《IEEE Access》;20170804;第5卷;第16277-16287页 * |
"不同情形下的机电设备可靠性信息融合";魏晨竹;《中国优秀硕士学位论文全文数据库 (基础科学辑)》;20220115;第35-50页 * |
"基于零部件寿命相关的风电齿轮箱可靠性建模";刘波;《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》;20131215;第20页 * |
"考虑零件失效相关的风电齿轮箱寿命建模";张宇;《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》;20141015;第37-48页 * |
基于Copula函数的齿轮箱剩余寿命预测方法;宋仁旺等;《系统工程理论与实践》;20200916(第09期);第2466-2474页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113361037A (zh) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ding et al. | State of AI-based monitoring in smart manufacturing and introduction to focused section | |
JP4573036B2 (ja) | 検査装置および検査方法 | |
US20230153574A1 (en) | Deep auto-encoder for equipment health monitoring and fault detection in semiconductor and display process equipment tools | |
CN104267668B (zh) | 基于贝叶斯方法的航天阀门零件加工过程故障诊断方法 | |
CA2467230A1 (en) | System and method for processing a new diagnostics case relative to historical case data and determining a ranking for possible repairs | |
CN102968109B (zh) | 基于d-s证据理论的安全仪表系统 | |
Royère et al. | Data association with believe theory | |
US11067717B2 (en) | Optoelectronic sensor and method for a safe evaluation of measurement data | |
CN113361037B (zh) | 一种不确定性情况下的相邻齿轮间的失效相关性计算方法 | |
Isermann et al. | Integrated fault detection and diagnosis | |
Abid et al. | Multi-sensor, multi-level data fusion and behavioral analysis based fault detection and isolation in mobile robots | |
CN110059413B (zh) | 一种故障诊断方法 | |
CN117278591A (zh) | 基于云平台的园区异常报警系统 | |
Chien et al. | Big data analytics for modeling WAT parameter variation induced by process tool in semiconductor manufacturing and empirical study | |
Niu et al. | An evaluation method for emergency procedures in automatic metro based on complexity | |
Costa | Fuzzy fault detection and diagnosis | |
Jaenisch et al. | Data Modeling for Fault Detection | |
MONTGOMERY | Abductive diagnostics | |
Dakil et al. | Generic methodology for the probabilistic reliability assessment of some structural properties: a graph theoretical approach | |
Bhardwaj et al. | Fuzzy reliability evaluation of a fire detector system | |
Zhou et al. | A method for deriving the analytical structure of the TS fuzzy controllers with two linear interval type-2 fuzzy sets for each input variable | |
Min et al. | Application of Dempster-Shafer's theory of evidence for transformer incipient fault diagnosis | |
Hong et al. | Compound fault diagnosis based on probability box theory | |
Pinto et al. | Aerial human activity recognition through a cognitive architecture and a new automata proposal | |
Li et al. | Fault diagnosis of rotating system based on multi-sensor data fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220603 |
|
CF01 | Termination of patent right due to non-payment of annual fee |