CN113354394A - 一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法 - Google Patents

一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法 Download PDF

Info

Publication number
CN113354394A
CN113354394A CN202110800033.4A CN202110800033A CN113354394A CN 113354394 A CN113354394 A CN 113354394A CN 202110800033 A CN202110800033 A CN 202110800033A CN 113354394 A CN113354394 A CN 113354394A
Authority
CN
China
Prior art keywords
entropy oxide
ball milling
carried out
entropy
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110800033.4A
Other languages
English (en)
Other versions
CN113354394B (zh
Inventor
高祥虎
王伟明
刘维民
刘刚
何成玉
刘宝华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202110800033.4A priority Critical patent/CN113354394B/zh
Publication of CN113354394A publication Critical patent/CN113354394A/zh
Application granted granted Critical
Publication of CN113354394B publication Critical patent/CN113354394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法,是以CuO、MnO2、Fe2O3、Cr2O3、Co3O4、TiO2、ZnO、MgO粉末中的任意六种为原料,进行球磨混合、烘干、研磨后在空气氛围中高温煅烧,经冷却、研磨,即得具有尖晶石结构的高熵氧化物。本发明采用机械湿磨法和固相合成法结合的方法制备高熵氧化物,可确保金属元素充分混匀,具有制备技术简单,可重复性强,生产效率高,可适用于工业化生产等优点,且制备的高熵氧化物具有物相单一、纯度高、粒径较小和元素分布均匀,具有较高的太阳能吸收率和红外发射率,且在空气中热稳定性良好,因此可用于红外辐射材料和太阳能吸收材料。

Description

一种具有高太阳能吸收率和红外发射率高熵氧化物的制备 方法
技术领域
本发明涉及一种高熵氧化物的制备,尤其涉及一种具有高太阳能吸收率和红外发射率的高熵氧化物及其制备方法,属于红外辐射材料和太阳能吸收材料领域。
背景技术
高熵氧化物是高熵合金概念向熵稳定氧化物的延伸,是一种新型陶瓷材料,因其具有简单的结构和优异的性能等受到国内研究人员的广泛关注。高熵设计的关键点在于使用四种或四种以上等原子比或近等原子比的阳离子组合。高混合熵降低了吉布斯自由能,其简单的结构稳定了无序固溶体相,克服了通常在重掺杂中观察到的由焓驱动的相分离。2015年,Rost等首次制备了高熵氧化物[(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O],其具有五种等原子比的不同的阳离子(C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, DHou, J.L. Jones, S. Curtarolo, J.-P. Maria, Nat. Commun. 6 (2015) 8485.),该高熵氧化物材料具有较高的熵值和较低的吉布斯自由能,且具有较大晶格畸变,从而在电、光、磁学等方面表现出优异的性能,是近年来高熵材料领域的重大发现之一。
目前国内外文献报道或中国发明专利公布的尖晶石型高熵氧化物的制备方法主要有固相反应法和湿化学方法两种。2017年,Dabrowa J等首次采用传统的高温固相合成法制备了具有尖晶石结构的高熵氧化物材料(Ni,Mn,Fe,Co,Cr)3O4。CN 108933248A公开了一种锂离子电池负极材料尖晶石型球形高熵氧化物材料的制备方法,采用溶胶-凝胶自蔓延燃烧法和低温热处理相结合制备得到高熵氧化物材料。CN 111620681A公开了一种采用水热法和等离子技术相结合制备高熵氧化物材料的方法。上述文献中固相反应法所采用的保温时间较长(20小时),而且需要放置在铝板上进行空气淬火,具有工艺较为复杂、周期长的缺点;湿化学方法制备的高熵氧化物则存在原料成本高、制备步骤多、过程复杂且不可控等缺点。
发明内容
本发明的目的是提供一种具高太阳能吸收率和红外发射率的高熵氧化物的制备方法,以应用于红外辐射加热/散热材料和太阳能吸收材料领域。
一、高熵氧化物的制备
选用CuO、MnO2、Fe2O3、Cr2O3、Co3O4、TiO2、ZnO、MgO粉末中的任意六种为原料,进行球磨混合、烘干、研磨后在空气氛围中高温煅烧,经冷却、研磨,即得具有尖晶石结构的高熵氧化物。
所述各原料以金属原子等摩尔比进行配比。
所述球磨采用行星式球磨机进行球磨,球磨转速为300~500r/min,球磨时间为5~12小时,球料水比为(2~5): 1:3。所述球磨过程:先球磨1小时,随后暂停10min,再球磨1小时,暂停10min,以此为周期循环球磨。
所述煅烧温度为500~1200℃,升温速率为10~15℃/min,煅烧时间为1~10小时。
所述冷却方式为随炉冷却、空气淬火冷却、液氮淬火冷却中的一种。
EDS表征结果表明,本发明制备的高熵氧化物中各金属元素的摩尔比为等摩尔比,符合原始成分设计,为典型的高熵化合物状态。
SEM图、TEM图、XRD的表征显示,通过机械湿磨法和固相合成法结合,本发明制备的高熵氧化物为尖晶石晶体结构的单相固溶体。
高熵氧化物多元素的无序化排列,相比较传统的二元三元尖晶石,引起了严重晶格畸变,改变了晶格振动周期,从而使晶格振动增加,提高了材料的红外辐射性能。高熵氧化物因其独特的多元尖晶石结构,金属元素分布在氧八面体空隙和氧四面体空隙中,金属元素与氧形成较强的化学键,使得晶体结构稳定,因此具有良好的热稳定性。
二、高熵氧化物的性能
1、太阳能吸收率
采用美国PerkinElmer公司制造的Lambda 950型紫外/可见/近红外分光光度计(配有150mm积分球)来评估该高熵氧化物的太阳能吸收率,测出其在0.3~2.5μm波段的吸收率,然后根据国际标准ISO 9845-1(1992)中的计算公式来计算太阳能吸收率。经测试,本发明制备的高熵氧化物的太阳能吸收率为0.829~0.883。即该高熵氧化物具有较高的太阳能吸收率,作为太阳能吸收材料可以保证的光热转换效率。
2、红外发射率
采用日本Senor公司制造的TSS-5X-2红外发射率检测仪来评估该高熵氧化物的红外发射率,测得其在2~22μm波段的法向红外发射率。经测试,本发明制备的高熵氧化物的红外发射率为0.88~0.92。即该高熵氧化物具有较高的红外发射率,可作为红外辐射材料加热材料。
3、热稳定性
将高熵氧化物置于箱式炉空气氛围中,在1500℃条件下进行了100小时的热稳定实验。结果显示,本发明制备的高熵氧化物的晶体结构稳定,且太阳能吸收率和红外发射率波动仅为0.01~0.04。
综上所述,本发明采用机械湿磨法和固相合成法结合的方法制备高熵氧化物,可确保金属元素充分混匀,具有制备技术简单,可重复性强,生产效率高,可适用于工业化生产等优点,且制备的高熵氧化物具有物相单一、纯度高、粒径较小和元素分布均匀,具有较高的太阳能吸收率和红外发射率,且在空气中热稳定性良好,因此可用于红外辐射材料和太阳能吸收材料。
附图说明
图1为本发明实施例1的(Cu, Mg, Fe, Cr, Co, Ti)3O4的XRD图;
图2为本发明实施例1的(Cu, Mg, Fe, Cr, Co, Ti)3O4的SEM图;
图3为本发明实施例1的(Cu, Mg, Fe, Cr, Co, Ti)3O4的TEM图;
图4为本发明实施例1的(Cu, Mg, Fe, Cr, Co, Ti)3O4的EDS结果;
图5为本发明实施例1的(Cu, Mg, Fe, Cr, Co, Ti)3O4在0.3~2.5μm波段的太阳能吸收光谱图;
图6为本发明实施例1的(Cu, Mg, Fe, Cr, Co, Ti)3O4热稳定实验后的XRD图;
图7为本发明实施例2的(Cu, Co, Fe, Cr, Zn, Ti)3O4的XRD图;
图8为本发明实施例3的(Cu, Mg, Fe, Cr, Co, Zn)3O4的XRD图;
图9为本发明实施例4的(Cu, Mg, Cr, Co, Zn, Ti)3O4的XRD图;
图10为本发明实施例5的(Cu, Mn, Mg, Co, Zn, Ti)3O4的XRD图。
具体实施方式
下面通过具体实施对于本发明高熵陶瓷材料的制备和性能做进一步说明。
实施例1
分别称取CuO 8.751g(0.11mol)、MgO4.433g(0.11mol)、Fe2O38.783g(0.055mol)、Cr2O38.359g(0.055mol)、Co3O48.829g(0.0367mol)、TiO28.789g(0.11mol)粉末;按球:料:水质量比3:1:3将球磨珠、原料及超纯水倒入球磨罐;并将球磨罐放置在球磨机工位上,先进行1小时球磨,转速为450r/min,随后暂停10min,以此为一个球磨周期,10min过后再进行1小时球磨,转速为450r/min,共计球磨7小时得到混合粉末;随后混合粉末干燥、研磨;再将研磨后的混合物粉末置于箱式电阻炉,在空气氛围中升温至680℃(升温速率为12℃/min),煅烧2小时,然后空气淬火冷却至室温,得到单相的(Cu, Mg, Fe, Cr, Co, Ti)3O4高熵氧化物。
图1为所制备(Cu, Mg, Fe, Cr, Co, Ti)3O4高熵氧化物的XRD图,该谱线与ICDD数据库中具有尖晶石结构的Fe3O4谱线(PDF#72-2303)非常吻合,表明本实施例所制得的高熵氧化物为面心立方晶体结构的单相固溶体。
图2、3为所制备的(Cu, Mg, Fe, Cr, Co, Ti)3O4高熵氧化物的SEM图、TEM图,与XRD结果一致。
图4为所制备的(Cu, Mg, Fe, Cr, Co, Ti)3O4高熵氧化物的EDS结果,表明高熵氧化物中各金属元素的摩尔比为等摩尔比,符合原始成分设计,为典型的高熵化合物状态。
图5为所制备的(Cu, Mg, Fe, Cr, Co, Ti)3O4高熵氧化物在0.3~2.5μm波段的太阳能吸收光谱图,表明所述高熵氧化物在该波段具有较高的太阳能吸收率。
图6为所制备的(Cu, Mg, Fe, Cr, Co, Ti)3O4高熵氧化物热稳定实验前后的XRD图,显示该高熵氧化物在1500℃的热稳定实验后没有发生相变,表明所述高熵氧化物具有良好的热稳定性。
取0.2 g所制备的(Cu, Mg, Fe, Cr, Co, Ti)3O4高熵氧化物,测得该高熵氧化物在2~22 μm波段的法向红外发射率为0.92,在0.3~2.5μm波段的太阳能吸收率为0.883;该高熵氧化物经热稳定实验后,测得其在2~22μm波段的法向红外发射率为0.91,在0.3~2.5μm波段的太阳能吸收率为0.872。
实施例2
分别称取CuO8.751g(0.11mol)、Co3O48.829g(0.0367mol)、Fe2O38.783g(0.055mol)、Cr2O38.359g(0.055mol)、ZnO8.952g(0.11mol)、TiO28.789g(0.11mol)粉末;按球:料:水质量比2:1:3将球磨珠、原料及超纯水倒入球磨罐;并将球磨罐放置在球磨机工位上,先进行1小时球磨,转速为300r/min,随后暂停10min,以此为一个球磨周期,10min过后再进行1小时球磨,转速为300r/min,共计球磨5小时得到混合粉末;随后混合粉末干燥、研磨;之后置于箱式电阻炉,空气氛围中升温至500℃(升温速率为10℃/min),煅烧1小时,然后随炉冷却至室温,得到单相的(Cu,Co,Fe,Cr,Zn,Ti)3O4高熵氧化物。
图7为所制备(Cu,Co,Fe,Cr,Zn,Ti)3O4高熵氧化物的XRD图,该谱线与ICDD数据库中具有尖晶石结构的Fe3O4谱线(PDF#72-2303)非常吻合,表明本实施例所制得的高熵氧化物为面心立方晶体结构的单相固溶体。
取0.2g本实施例制备的(Cu,Co,Fe,Cr,Zn,Ti)3O4高熵氧化物,测得该高熵氧化物在2~22μm波段的法向红外发射率为0.89,在0.3~2.5μm波段的太阳能吸收率为0.875;该高熵氧化物经热稳定实验后,测得其在2~22μm波段的法向红外发射率为0.87,在0.3~2.5μm波段的太阳能吸收率为0.863。
实施例3
分别称取CuO8.751g(0.11mol)、MgO4.433g(0.11mol)、Fe2O38.783g(0.055mol)、Cr2O38.359g(0.055mol)、Co3O48.829g(0.0367mol)、ZnO8.952g(0.11mol)粉末;按球:料:水质量比4:1:3将球磨珠、原料及超纯水倒入球磨罐;并将球磨罐放置在球磨机工位上,先进行1小时球磨,转速为400r/min,随后暂停10min,以此为一个球磨周期,10min过后再进行1小时球磨,转速为400r/min,共计球磨9小时得到混合粉末;随后将混合粉末干燥、研磨;再将混合粉末置于箱式电阻炉,空气氛围中升温至780℃(升温速率为14℃/min),煅烧4小时,然后液氮淬火冷却至室温,得到单相的(Cu, Mg, Fe, Cr,Co, Zn)3O4高熵氧化物。
图8为所制备的(Cu, Mg, Fe,Cr,Co,Zn)3O4高熵氧化物的XRD图,该谱线与ICDD数据库中具有尖晶石结构的Fe3O4谱线(PDF#72-2303)非常吻合,表明本实施例所制得的高熵氧化物为面心立方晶体结构的单相固溶体。
取0.2 g所制备的(Cu,Mg,Fe,Cr,Co,Zn)3O4高熵氧化物,测得该高熵氧化物在2~22μm波段的法向红外发射率为0.90,在0.3~2.5μm波段的太阳能吸收率为0.874;该高熵氧化物经热稳定实验后,测得其在2~22μm波段的法向红外发射率为0.87,在0.3~2.5μm波段的太阳能吸收率为0.868。
实施例4
分别称取CuO8.751g(0.11mol)、MgO4.433g(0.11mol)、Cr2O38.359g(0.055mol)、Co3O48.829g(0.0367mol)、ZnO8.952g(0.11mol)、TiO28.789g(0.11mol)粉末;按球:料:水质量比3:1:3将球磨珠、原料及超纯水倒入球磨罐;并将球磨罐放置在球磨机工位上,先进行1小时球磨,转速为500r/min,随后暂停10min,以此为一个球磨周期,10min过后再进行1小时球磨,转速为500r/min,共计球磨8小时得到混合粉末;随后将混合粉末干燥、研磨;再将混合粉末置于箱式电阻炉,空气氛围中升温至1080℃(升温速率为13℃/min),煅烧6小时,然后随炉冷却至室温,得到单相的(Cu, Mg, Cr, Co, Zn, Ti)3O4高熵氧化物。
图9为所制备(Cu, Mg, Cr, Co, Zn, Ti)3O4高熵氧化物的XRD图,该谱线与ICDD数据库中具有尖晶石结构的Fe3O4谱线(PDF#72-2303)非常吻合,表明本实施例所制得的高熵氧化物为面心立方晶体结构的单相固溶体。
取0.2 g本实施例制备的(Cu, Mg, Cr, Co, Zn, Ti)3O4高熵氧化物,测得该高熵氧化物在2~22μm波段的法向红外发射率为0.88,在0.3~2.5μm波段的太阳能吸收率为0.829;该高熵氧化物经热稳定实验后,测得其在2~22μm波段的法向红外发射率为0.86,在0.3~2.5μm波段的太阳能吸收率为0.851。
实施例5
分别称取CuO8.751g(0.11mol)、MnO29.563g(0.11mol)、MgO4.433g(0.11mol)、Co3O48.829g(0.0367mol)、ZnO8.952g(0.11mol)、TiO28.789g(0.11mol)粉末;按球:料:水的质量比为5:1:3将球磨珠、原料及超纯水倒入球磨罐;并将球磨罐放置在球磨机工位上,先进行1小时球磨,转速为500r/min,随后暂停10min,以此为一个球磨周期,10min过后再进行1小时球磨,转速为500r/min,共计球磨12小时得到混合粉末;随后混合粉末干燥、研磨;再将混合粉末置于箱式电阻炉,空气氛围中升温至1200℃(升温速率为15℃/min),煅烧10小时,然后空气淬火冷却,得到单相的(Cu, Mn, Mg, Co, Zn, Ti)3O4高熵氧化物。
图10为所制备(Cu, Mn,Mg,Co,Zn,Ti)3O4高熵氧化物的XRD图,该谱线与ICDD数据库中具有尖晶石结构的Fe3O4谱线(PDF#72-2303)非常吻合,表明本实施例所制得的高熵氧化物为面心立方晶体结构的单相固溶体。
取0.2 g所制备(Cu, Mn,Mg,Co,Zn,Ti)3O4高熵氧化物,测得该高熵氧化物在2~22μm波段的法向红外发射率为0.89,在0.3~2.5μm波段的太阳能吸收率为0.867;该高熵氧化物经热稳定实验后,测得其在2~22μm波段的法向红外发射率为0.85,在0.3~2.5μm波段的太阳能吸收率为0.843。

Claims (6)

1.一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法,是以CuO、MnO2、Fe2O3、Cr2O3、Co3O4、TiO2、ZnO、MgO粉末中的任意六种为原料,进行球磨混合、烘干、研磨后在空气氛围中高温煅烧,经冷却、研磨,即得具有尖晶石结构的高熵氧化物。
2.如权利要求1所述一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法,其特征在于:所述各原料以金属原子等摩尔比进行配比。
3.如权利要求1所述一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法,其特征在于:所述球磨采用行星式球磨机进行球磨,球磨转速为300~500r/min,球磨时间为5~12小时,球料水比为(2~5): 1:3。
4.如权利要求3所述一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法,其特征在于:所述球磨过程:先球磨1小时,随后暂停10min,再球磨1小时,暂停10min,以此为周期循环球磨。
5.如权利要求1所述一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法,其特征在于:所述煅烧温度为500~1200℃,升温速率为10~15℃/min,煅烧时间为1~10小时。
6.如权利要求1所述一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法,其特征在于:所述冷却方式为随炉冷却、空气淬火冷却、液氮淬火冷却中的一种。
CN202110800033.4A 2021-07-15 2021-07-15 一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法 Active CN113354394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110800033.4A CN113354394B (zh) 2021-07-15 2021-07-15 一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110800033.4A CN113354394B (zh) 2021-07-15 2021-07-15 一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法

Publications (2)

Publication Number Publication Date
CN113354394A true CN113354394A (zh) 2021-09-07
CN113354394B CN113354394B (zh) 2023-03-24

Family

ID=77539534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110800033.4A Active CN113354394B (zh) 2021-07-15 2021-07-15 一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法

Country Status (1)

Country Link
CN (1) CN113354394B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853458A (zh) * 2022-04-02 2022-08-05 郑州航空工业管理学院 一种高熵陶瓷及其制备方法和作为电磁波吸收材料的应用
CN114920546A (zh) * 2022-05-06 2022-08-19 武汉理工大学 一种高熵陶瓷涂层及其制备方法和应用
CN114956802A (zh) * 2022-06-01 2022-08-30 武汉科技大学 一种低导热红外发射材料及其制备方法与应用
CN116396080A (zh) * 2023-04-06 2023-07-07 中国科学院合肥物质科学研究院 一种低碳高熵陶瓷粉体及其制备方法
CN117902890A (zh) * 2024-01-26 2024-04-19 中国科学院兰州化学物理研究所 一种尖晶石-刚玉双相高熵陶瓷粉体材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180022928A1 (en) * 2016-07-20 2018-01-25 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
US20180022929A1 (en) * 2016-07-20 2018-01-25 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
CN110701803A (zh) * 2019-10-11 2020-01-17 中国科学院兰州化学物理研究所 一种彩色太阳能吸收涂层及其制备方法
CN111233454A (zh) * 2020-03-10 2020-06-05 南昌航空大学 一种尖晶石型铁钴铬锰镁系高熵氧化物粉体的制备方法
CN112830769A (zh) * 2021-01-20 2021-05-25 中国科学院金属研究所 一种高发射率高熵陶瓷粉体材料及涂层制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180022928A1 (en) * 2016-07-20 2018-01-25 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
US20180022929A1 (en) * 2016-07-20 2018-01-25 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
CN110701803A (zh) * 2019-10-11 2020-01-17 中国科学院兰州化学物理研究所 一种彩色太阳能吸收涂层及其制备方法
CN111233454A (zh) * 2020-03-10 2020-06-05 南昌航空大学 一种尖晶石型铁钴铬锰镁系高熵氧化物粉体的制备方法
CN112830769A (zh) * 2021-01-20 2021-05-25 中国科学院金属研究所 一种高发射率高熵陶瓷粉体材料及涂层制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853458A (zh) * 2022-04-02 2022-08-05 郑州航空工业管理学院 一种高熵陶瓷及其制备方法和作为电磁波吸收材料的应用
CN114920546A (zh) * 2022-05-06 2022-08-19 武汉理工大学 一种高熵陶瓷涂层及其制备方法和应用
CN114920546B (zh) * 2022-05-06 2023-08-08 武汉理工大学 一种高熵陶瓷涂层及其制备方法和应用
CN114956802A (zh) * 2022-06-01 2022-08-30 武汉科技大学 一种低导热红外发射材料及其制备方法与应用
CN116396080A (zh) * 2023-04-06 2023-07-07 中国科学院合肥物质科学研究院 一种低碳高熵陶瓷粉体及其制备方法
CN116396080B (zh) * 2023-04-06 2023-11-28 中国科学院合肥物质科学研究院 一种低碳高熵陶瓷粉体及其制备方法
CN117902890A (zh) * 2024-01-26 2024-04-19 中国科学院兰州化学物理研究所 一种尖晶石-刚玉双相高熵陶瓷粉体材料及其制备方法
CN117902890B (zh) * 2024-01-26 2024-05-28 中国科学院兰州化学物理研究所 一种尖晶石-刚玉双相高熵陶瓷粉体材料及其制备方法

Also Published As

Publication number Publication date
CN113354394B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN113354394B (zh) 一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法
CN113372108B (zh) 一种具有良好光吸收性能的高熵陶瓷材料的制备方法
CN113501709B (zh) 水热法合成尖晶石型高熵氧化物材料(MCoFeCrMn)3O4的方法
CN113387684A (zh) 一种具有良好红外辐射性能高熵氧化物的制备方法
Kusuya et al. Structural change at metal-insulator transition of Tb2Ba2Co4O11
Ma et al. Solution combustion of spinel CuMn2O4 ceramic pigments for thickness sensitive spectrally selective (TSSS) paint coatings
CN111908922A (zh) 一种低温合成稀土铪酸盐高熵陶瓷粉体及制备方法
Ma et al. Spectrally selective Cu 1.5 Mn 1.5 O 4 spinel ceramic pigments for solar thermal applications
CN115240940B (zh) 一种稀土碱金属磷酸盐及其制备方法及应用
CN111348910A (zh) 一种六元尖晶石型铁钴铬锰镍铜系高熵氧化物及其粉体制备方法
Nouri et al. Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles
CN113443654B (zh) 一种具有电磁波调控功能的稀土掺杂尖晶石材料及其制备
Wang et al. Enhancing infrared emissivity of GdCoO3 with Ca doping: Potential for advanced thermal control materials
Chen et al. A/B sites Co-doping in spinel oxide enabled by a high-entropy strategy for enhanced thermal radiation
Amaran et al. Structural and morphology changes in PrMnO3 manganite induced by Ba (x= 0.33) doping
CN117902890B (zh) 一种尖晶石-刚玉双相高熵陶瓷粉体材料及其制备方法
CN113401946B (zh) 一种光吸收材料及其制备方法
CN117902879A (zh) 一种尖晶石-钙钛矿双相高熵陶瓷粉体材料及其制备方法
Dimri et al. Studies of doped LaMnO3 samples prepared by citrate combustion process
CN108395215A (zh) 一种四方相双钙钛矿Ba2-xSrxSmTaO6陶瓷材料的制备方法
Li et al. Preparation of nanocrystalline solid material LaFe0. 5Co0. 5O3 with the citric acid method and its XPS study on the absorption of oxygen
CN118026273A (zh) 一种高熵铁酸钙钛矿红外辐射材料及其制备方法
CN105884353A (zh) 一种亚稳铌酸锰反铁磁材料及其制备方法
Munazat et al. Investigation of the impact of A-site cation disorder on the structure, magnetic properties, and magnetic entropy change of trisubstituted divalent ions in La 0.7 (Ba, Ca, Sr) 0.3 MnO 3 manganite
Yonemura et al. Phase transitions and low-temperature structure of lithium manganese oxide spinel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant