CN113346784B - 三电平npc逆变器的在线监测调制方法 - Google Patents

三电平npc逆变器的在线监测调制方法 Download PDF

Info

Publication number
CN113346784B
CN113346784B CN202110731893.7A CN202110731893A CN113346784B CN 113346784 B CN113346784 B CN 113346784B CN 202110731893 A CN202110731893 A CN 202110731893A CN 113346784 B CN113346784 B CN 113346784B
Authority
CN
China
Prior art keywords
monitoring
phase
wave
monitored
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110731893.7A
Other languages
English (en)
Other versions
CN113346784A (zh
Inventor
马铭遥
孟娜
陈兆祥
王涵宇
李飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110731893.7A priority Critical patent/CN113346784B/zh
Publication of CN113346784A publication Critical patent/CN113346784A/zh
Application granted granted Critical
Publication of CN113346784B publication Critical patent/CN113346784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本发明公开了一种三电平NPC逆变器的在线监测调制策略,属于逆变器控制领域。该在线监测调制策略使得在线监测过程可以根据待监测逆变器的运行状况人为调整,且监测开始时刻和监测时长都是可控的,克服了已有在线监测方法的单一性。另外,本发明提供的在线监测调制策略不会对待监测逆变器的负载电流电能质量产生任何影响,因此可以在逆变器在线工作时随时对它进行监测,原理简单,实施方便。

Description

三电平NPC逆变器的在线监测调制方法
技术领域:
本发明涉及三电平NPC逆变器的调制方法,特别涉及三电平NPC逆变器在线监测时的调制波重构策略,属于逆变器控制领域。
背景技术:
三电平逆变器与两电平逆变器相比,具有输出电压电流谐波小,开关器件承受的电压及开关损耗减半等优势,可有效减小滤波器等无源器件的体积和重量。因此,三电平NPC逆变器已逐渐从大功率的中压应用,走向了低压光伏、风电及储能的并网逆变器系统。然而,随着开关器件数量的增多以及系统功率的增大,逆变器系统的可靠性问题面临着考验。IGBT具备开关速度快、驱动功率小、驱动电路简单、输入阻抗高、饱和压降低、承受电流大等优点,因此在逆变器系统中被广泛应用。由于IGBT的工作电压、电流、功率等级的升高,其运行环境变得恶劣,相关调查表明,超过30%的电力电子系统故障都是由于IGBT模块故障所造成的,因此这对器件的可靠性也提出更加严格的需求。
生产完成后的IGBT模块都会经过一些离线的测试与检验,才会投入工程应用中,但由于工程应用的电压、电流、功率等级不同,这些都通过测试标准的模块也会发生未知原因的大批量损坏,已损坏的模块也无法确认故障产生的原因。因此,需要寻求一种能够实现IGBT的在线状态监测、故障诊断与评估的有效方法,在IGBT模块正常运行时就能判断其健康状态,从而在接近失效状态时将模块替换,这样便能提高功率变换器运行管理的自检水平。而如何保证在线监测逆变器系统内IGBT模块时,逆变器自身的运行状态不受到监测的影响,也是目前广泛关注的问题。调整逆变器在在线监测过程中的运行状态,对于系统不停机情况下的无干预监测具有重要意义。
题为“NPC型三电平逆变器可靠性在线监测系统及方法”的中国发明专利文献(CN105337523B)完整地介绍了三电平NPC逆变器的在线监测系统及方法,但是却没有描述监测方法在待测逆变器上的适配性问题。
题为“三电平NPC逆变器开关器件在线监测时段调制波重构法”的中国发明专利文献(CN110336479B)介绍了待测逆变器如何在监测时段修改其三相调制波使得监测对逆变器的负载电流影响最小,但是负载电流的畸变仍然存在,无法完全消除,且该方法中监测时长为人为决定的固定值,不能做到视逆变器运行情况而决定。
综上,现有的三电平NPC逆变器在线监测策略具有以下问题:
1)没有考虑监测方法与待测系统的适配性问题;
2)已有的在线监测调制方法只能找到某一监测开始时刻,使得监测对逆变器正常运行的影响最小,却不能完全消除影响;
3)已有的在线监测调制方法中监测时长为人为决定的固定值,无法做到视逆变器运行状况而决定,监测策略不具备可选择性。
发明内容
本发明为解决上述问题,提供了一种三电平NPC逆变器的在线监测调制方法,监测时长可根据逆变器运行时的调制度做出相应改变,监测开始时刻可以自由选择,并且,通过在三相调制波中叠加相同的变化量可以完全消除在线监测对逆变器正常运行的影响。
为解决本发明的技术问题,本发明提供了一种三电平NPC逆变器的在线监测调制方法,所述三电平NPC逆变器由一个控制器DSP控制,所述在线监测调制方法包括以下步骤:
步骤1,设三电平NPC逆变器采用正弦脉宽调制方式,且在收到在线监测指令之前,三电平NPC逆变器运行在正常状态,该正常运行状态中的三相调制波的表达式如下:
fa(ωt)=M sin(ωt)0<t<T
Figure GDA0003755520740000031
Figure GDA0003755520740000032
其中,fa(ωt)为正常运行状态中的A相调制波,fb(ωt)为正常运行状态中的B相调制波,fc(ωt)为正常运行状态中的C相调制波,M为调制度,ω为基波角频率,π为圆周率,T为调制波的基波周期,t为基波周期T中的任一时刻;
步骤2,设当前基波周期为监测基波周期,给定三电平NPC逆变器调制度的值,并记为给定调制度M;
步骤3,记监测基波周期中的在线监测开始时刻为开始时刻tm,记在线监测时段的时长为时长Δt,根据步骤2得到的给定调制度M,确定开始时刻tm和时长Δt,具体如下:
(1)若
Figure GDA0003755520740000033
则Δt≤T,即时长Δt不受调制度M的约束,开始时刻tm为该监测基波周期内的任意时刻;
(2)若
Figure GDA0003755520740000034
且在线监测时段的中间时刻为被监测相调制波过零点时刻,记该被监测相调制波过零点时刻为t0,则tm=t0-Δt/2,时长Δt的计算式如下:
Figure GDA0003755520740000041
(3)若
Figure GDA0003755520740000042
且在线监测时段的中间时刻为被监测相调制波峰值时刻,记该被监测相调制波峰值时刻为tF,则tm=tF-Δt/2,时长Δt的计算式如下:
Figure GDA0003755520740000043
步骤4,人为地给出监测指令,该指令指定被监测桥臂,控制器DSP收到监测指令后,便向被监测桥臂施加调制波变化量,使得在线监测时段内被监测桥臂的调制波被构造为零,且零电平持续时间为在线监测时长Δt,同时,其他两相桥臂的调制波也加上被监测相桥臂的调制波变化量,以保持在线监测时段内三相桥臂平衡;计算在线监测时的三相调制波,具体的:
若被监测桥臂为A相桥臂,则在线监测时的三相调制波表达式为:
Figure GDA0003755520740000044
其中,fa(ωt)′为在线监测时的A相调制波,fb(ωt)′为在线监测时的B相调制波,fc(ωt)′为在线监测时的C相调制波;
若被监测桥臂为B相桥臂,则在线监测时的三相调制波表达式为:
Figure GDA0003755520740000051
若被监测桥臂为C相桥臂,则在线监测时的三相调制波表达式为:
Figure GDA0003755520740000052
步骤5,在线监测周期结束后,控制三相调制波恢复到步骤1所述的正常运行状态,且三电平NPC逆变器等待下一次监测指令。
相对于现有技术,本发明的有益效果如下:
1、本发明通过将待监测桥臂的三相调制波在监测时段内做出相应调整,使得被监测相中的IGBT模块处于可以监测的状态,解决了监测方法的适配性问题;
2、本发明通过在在线监测时间段内将三相调制波叠加相同的变化量,可以完全避免在线监测对待测逆变器正常运行造成影响;
3、本发明计算了不同调制度下的在线监测时长,相应地得出最适宜的在线监测开始时刻,使得在线监测可以视逆变器运行状况做出相应改变,具备可选择性。
附图说明
图1为本发明实施例中三电平NPC逆变器拓扑图。
图2为本发明三电平NPC逆变器的在线监测调制流程图。
图3为本发明实施例中调制度M=0.8时在被监测相调制波过零点附近时刻实施在线监测的三相调制波波形。
图4为本发明实施例中调制度M=0.8时在被监测相调制波过零点附近时刻实施在线监测的三相负载电流波形。
图5为本发明实施例中调制度M=0.6时在被监测相调制波正峰值附近时刻实施在线监测的三相调制波波形。
图6为本发明实施例中调制度M=0.6时在被监测相调制波正峰值附近时刻实施在线监测的三相负载电流波形。
图7为本发明实施例中调制度M=0.5时在被监测相调制波负峰值附近时刻实施在线监测的三相调制波波形。
图8为本发明实施例中调制度M=0.5时在被监测相调制波负峰值附近时刻实施在线监测的三相负载电流波形。
具体实施方式
下面结合附图,对本发明进行进一步说明。
图1为本发明实施例中三电平NPC逆变器拓扑图。由图1可见,所述三电平NPC逆变器包括一个直流侧电源E、两个相同的直流侧电容、三相逆变主电路、一个三相负载电阻和一个三相负载电感。所述直流侧电源E处的电压记为直流侧电压Udc,两个直流侧电容分别记为直流侧电容CH和直流侧电容CL,所述直流侧电容CH和直流侧电容CL串联后并联在直流侧电源E的直流正母线P和直流负母线N之间,直流侧电容CH和直流侧电容CL的的连接点记为中性点Y。
所述三相逆变主电路分为三相桥臂,三相桥臂均与直流侧电源E并联,且三相桥臂拓扑完全相同,将三相桥臂记为k相桥臂,k表示相序,k=A,B,C,k相桥臂的中点记为输出点δk
所述三相负载电阻记为电阻Rk、三相负载电感记为电感Lk,电阻Rk的一端与输出点δk相连,另一端和电感Lk相连,电感Lk的另一端接地,k表示相序,k=A,B,C。
具体的,在图1中给出了三相桥臂中开关器件和二极管的连接情况。从图上看,在三相桥臂中,每相桥臂包括4个IGBT模块,记为开关器件Ski,i表示开关器件的序号,i=1,2,3,4。在三相桥臂中,每相桥臂包括2个钳位二极管,将2个钳位二极管记为钳位二极管Dkj,j表示钳位二极管的序号,j=1,2。所述开关器件Sk1、开关器件Sk2、开关器件Sk3、开关器件Sk4依次串联,开关器件Sk2和开关器件Sk3的连接点为k相桥臂的中点,即输出点δk,所述钳位二极管Dk1的阳极连接中性点Y、阴极连接开关器件Sk2的集电极,所述钳位二极管Dk2的阳极连接开关器件Sk3的发射极、阴极连接中性点Y。
另外,从图1可见,三电平NPC逆变器由一个控制器DSP控制。
根据本发明提供的调制方法搭建了三电平NPC逆变器在线监测调制的MATLAB/Simulink仿真模型,电路参数如下:直流侧电压Udc=150V,直流侧电容CH=6mF,直流侧电容CL=6mF,三相负载电阻Rk=10Ω,三相负载电感Lk=2mH,k表示相序,k=A,B,C。给定三电平NPC逆变器工作的三种调制度M:M=0.8,M=0.6,M=0.55,调制波的基波周期T=0.02s。
在本实施例中,设定被监测桥臂为A相桥臂。设定调制度M=0.8时在A相调制波过零点附近时刻实施在线监测,即在线监测时段的中间时刻为A相调制波过零点时刻;设定调制度M=0.6时在A相调制波正峰值附近时刻实施在线监测,即在线监测时段的中间时刻为A相调制波正峰值时刻;设定调制度M=0.5时在A相调制波负峰值附近时刻实施在线监测,即在线监测时段的中间时刻为A相调制波负峰值时刻。
图2为本发明三电平NPC逆变器的在线监测调制流程图,由该图可见,本发明所述在线监测调制方法包括以下步骤:
步骤1,设三电平NPC逆变器采用正弦脉宽调制方式,且在收到在线监测指令之前,三电平NPC逆变器运行在正常状态,该正常运行状态中的三相调制波的表达式如下:
fa(ωt)=M sin(ωt)0<t<T
Figure GDA0003755520740000081
Figure GDA0003755520740000082
其中,fa(ωt)为正常运行状态中的A相调制波,fb(ωt)为正常运行状态中的B相调制波,fc(ωt)为正常运行状态中的C相调制波,M为调制度,ω为基波角频率,π为圆周率,T为调制波的基波周期,t为基波周期T中的任一时刻。
步骤2,设当前基波周期为监测基波周期,给定三电平NPC逆变器调制度的值,并记为给定调制度M。在本实施例中,给定了三种调制度,即M=0.8,M=0.6,M=0.55。
步骤3,记监测基波周期中的在线监测开始时刻为开始时刻tm,记在线监测时段的时长为时长Δt,根据步骤2得到的给定调制度M,确定开始时刻tm和时长Δt,具体如下:
(1)若
Figure GDA0003755520740000091
则Δt≤T,即时长Δt不受调制度M的约束,开始时刻tm为该监测基波周期内的任意时刻;
(2)若
Figure GDA0003755520740000092
且在线监测时段的中间时刻为被监测相调制波过零点时刻,记该被监测相调制波过零点时刻为t0,则tm=t0-Δt/2,时长Δt的计算式如下:
Figure GDA0003755520740000093
(3)若
Figure GDA0003755520740000094
且在线监测时段的中间时刻为被监测相调制波峰值时刻,记该被监测相调制波峰值时刻为tF,则tm=tF-Δt/2,时长Δt的计算式如下:
Figure GDA0003755520740000095
在本实施例中,调制度M=0.5满足条件
Figure GDA0003755520740000096
属于(1)。开始时刻tm可以任意设定,故将开始时刻tm设为被监测相调制波负峰值时刻,即tm=0.035s,监测时长Δt只需满足Δt≤0.02s即可,设此时的监测时长Δt=5ms。
在本实施例中,调制度M=0.8时在A相调制波过零点附近时刻实施在线监测,属于(2),根据计算,Δt=1.8ms,A相调制波过零点时刻为0.03s,故tm=0.291s。
在本实施例中,调制度M=0.6时在被监测相调制波正峰值附近时刻实施在线监测,属于(3),根据计算,Δt=1.58ms,A相调制正峰值时刻为0.025s,故tm=0.2421s。
步骤4,人为地给出监测指令,该指令指定被监测桥臂,控制器DSP收到监测指令后,便向被监测桥臂施加调制波变化量,使得在线监测时段内被监测桥臂的调制波被构造为零,且零电平持续时间为在线监测时长Δt,同时,其他两相桥臂的调制波也加上被监测相桥臂的调制波变化量,以保持在线监测时段内三相桥臂平衡;计算在线监测时的三相调制波,具体的:
若被监测桥臂为A相桥臂,则在线监测时的三相调制波表达式为:
Figure GDA0003755520740000101
其中,fa(ωt)′为在线监测时的A相调制波,fb(ωt)′为在线监测时的B相调制波,fc(ωt)′为在线监测时的C相调制波;
若被监测桥臂为B相桥臂,则在线监测时的三相调制波表达式为:
Figure GDA0003755520740000111
若被监测桥臂为C相桥臂,则在线监测时的三相调制波表达式为:
Figure GDA0003755520740000112
步骤5,在线监测周期结束后,控制三相调制波恢复到步骤1所述的正常运行状态,且三电平NPC逆变器等待下一次监测指令。
图3为本发明的实例中调制度M=0.8时在被监测相调制波过零点附近时刻实施在线监测的三相调制波波形,所述被监测相调制波过零点附近时刻实施在线监测即在线监测时段的中间时刻为被监测相调制波过零点时刻。由该图可见,在线监测开始之前,三相调制波为原始正弦波,在线监测开始后一个基波周期内A相调制波在0.0291s时被构造为零,且持续1.8ms,在线监测结束之后三相调制波又恢复为原始正弦波。
图4为本发明的实例中调制度M=0.8时在被监测相调制波过零点附近时刻实施在线监测的三相负载电流波形,由该图可见,在线监测开始后一个周期内的三相负载电流较监测开始前和监测结束后并无畸变,说明在监测时段内改变三相调制波并不会使负载电流畸变,即在线监测不会影响逆变器的正常运行。
图5为本发明的实例中调制度M=0.6时在被监测相调制波正峰值附近时刻实施在线监测的三相调制波波形,所述被监测相调制波正峰值附近时刻实施在线监测即在线监测时段的中间时刻为被监测相调制波正峰值时刻。由该图可见,在线监测开始之前,三相调制波为原始正弦波,在线监测开始后的一个基波周期内A相调制波在0.02421s时被构造为零,且持续1.58ms,在线监测结束之后三相调制波又恢复为原始正弦波。
图6为本发明的实例中调制度M=0.6时在被监测相调制波正峰值附近时刻实施在线监测的三相负载电流波形,由该图可见,在线监测开始后一个周期内的三相负载电流较监测开始前和监测结束后并无畸变,说明在监测时段内改变三相调制波并不会使负载电流畸变,即在线监测不会影响逆变器的正常运行。
图7为本发明的实例中调制度M=0.5时在被监测相调制波负峰值附近时刻实施在线监测的三相调制波波形,所述被监测相调制波负峰值附近时刻实施在线监测即在线监测时段的中间时刻为被监测相调制波负峰值时刻。由该图可见,在线监测开始之前,三相调制波为原始正弦波,在线监测开始后的一个基波周期内A相调制波在0.035s时被构造为零,且持续5ms,在线监测结束之后三相调制波又恢复为原始正弦波。
图8为本发明的实例中调制度M=0.5时在被监测相调制负峰值附近时刻实施在线监测的三相负载电流波形,由该图可见,在线监测开始后一个周期内的三相负载电流较监测开始前和监测结束后并无畸变,说明在监测时段内改变三相调制波并不会使负载电流畸变,即在线监测不会影响逆变器的正常运行。

Claims (1)

1.一种三电平NPC逆变器的在线监测调制方法,其特征在于,所述三电平NPC逆变器由一个控制器DSP控制,所述在线监测调制方法包括以下步骤:
步骤1,设三电平NPC逆变器采用正弦脉宽调制方式,且在收到在线监测指令之前,三电平NPC逆变器运行在正常状态,该正常运行状态中的三相调制波的表达式如下:
fa(ωt)=M sin(ωt) 0<t<T
Figure FDA0003755520730000011
Figure FDA0003755520730000012
其中,fa(ωt)为正常运行状态中的A相调制波,fb(ωt)为正常运行状态中的B相调制波,fc(ωt)为正常运行状态中的C相调制波,M为调制度,ω为基波角频率,π为圆周率,T为调制波的基波周期,t为基波周期T中的任一时刻;
步骤2,设当前基波周期为监测基波周期,给定三电平NPC逆变器调制度的值,并记为给定调制度M;
步骤3,记监测基波周期中的在线监测开始时刻为开始时刻tm,记在线监测时段的时长为时长Δt,根据步骤2得到的给定调制度M,确定开始时刻tm和时长Δt,具体如下:
(1)若
Figure FDA0003755520730000013
则Δt≤T,即时长Δt不受调制度M的约束,开始时刻tm为该监测基波周期内的任意时刻;
(2)若
Figure FDA0003755520730000014
且在线监测时段的中间时刻为被监测相调制波过零点时刻,记该被监测相调制波过零点时刻为t0,则tm=t0-Δt/2,时长Δt的计算式如下:
Figure FDA0003755520730000021
(3)若
Figure FDA0003755520730000022
且在线监测时段的中间时刻为被监测相调制波峰值时刻,记该被监测相调制波峰值时刻为tF,则tm=tF-Δt/2,时长Δt的计算式如下:
Figure FDA0003755520730000023
步骤4,人为地给出监测指令,该指令指定被监测桥臂,控制器DSP收到监测指令后,便向被监测桥臂施加调制波变化量,使得在线监测时段内被监测桥臂的调制波被构造为零,且零电平持续时间为在线监测时长Δt,同时,其他两相桥臂的调制波也加上被监测相桥臂的调制波变化量,以保持在线监测时段内三相桥臂平衡;计算在线监测时的三相调制波,具体的:
若被监测桥臂为A相桥臂,则在线监测时的三相调制波表达式为:
Figure FDA0003755520730000024
其中,fa(ωt)′为在线监测时的A相调制波,fb(ωt)′为在线监测时的B相调制波,fc(ωt)′为在线监测时的C相调制波;
若被监测桥臂为B相桥臂,则在线监测时的三相调制波表达式为:
Figure FDA0003755520730000031
若被监测桥臂为C相桥臂,则在线监测时的三相调制波表达式为:
Figure FDA0003755520730000032
步骤5,在线监测周期结束后,控制三相调制波恢复到步骤1所述的正常运行状态,且三电平NPC逆变器等待下一次监测指令。
CN202110731893.7A 2021-06-28 2021-06-28 三电平npc逆变器的在线监测调制方法 Active CN113346784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110731893.7A CN113346784B (zh) 2021-06-28 2021-06-28 三电平npc逆变器的在线监测调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110731893.7A CN113346784B (zh) 2021-06-28 2021-06-28 三电平npc逆变器的在线监测调制方法

Publications (2)

Publication Number Publication Date
CN113346784A CN113346784A (zh) 2021-09-03
CN113346784B true CN113346784B (zh) 2022-09-13

Family

ID=77481547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110731893.7A Active CN113346784B (zh) 2021-06-28 2021-06-28 三电平npc逆变器的在线监测调制方法

Country Status (1)

Country Link
CN (1) CN113346784B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337523A (zh) * 2015-11-11 2016-02-17 合肥工业大学 Npc型三电平逆变器可靠性在线监测系统及方法
CN109444621A (zh) * 2018-10-01 2019-03-08 徐州中矿大传动与自动化有限公司 一种大功率npc三电平逆变器功率模块电流在线检测方法
CN110336479A (zh) * 2019-06-12 2019-10-15 合肥工业大学 三电平npc逆变器开关器件在线监测时段调制波重构法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119159B2 (en) * 2015-11-13 2021-09-14 Marquette University On-line diagnostic method for electronic switch faults in neutral-point-clamped converters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337523A (zh) * 2015-11-11 2016-02-17 合肥工业大学 Npc型三电平逆变器可靠性在线监测系统及方法
CN109444621A (zh) * 2018-10-01 2019-03-08 徐州中矿大传动与自动化有限公司 一种大功率npc三电平逆变器功率模块电流在线检测方法
CN110336479A (zh) * 2019-06-12 2019-10-15 合肥工业大学 三电平npc逆变器开关器件在线监测时段调制波重构法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An on-line diagnostic method for open-circuit switch faults in NPC multilevel converters;Jiangbiao He et al.;《2016 IEEE Energy Conversion Congress and Exposition (ECCE)》;20170216;第1-7页 *
Condition Analysis on Implementation of On-Line Monitoring of IGBT Modules of Three-Level NPC Inverters;Mingyue Zhan et al.;《2019 IEEE 3rd International Electrical and Energy Conference (CIEEC)》;20200427;第1042-1047页 *
大功率三电平逆变器的开关模态转换状态的实时监测;何湘宁等;《中国电机工程学报》;20121025;第32卷(第30期);第54-60页 *

Also Published As

Publication number Publication date
CN113346784A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Liu et al. Modeling and SVPWM control of quasi-Z-source inverter
CN109687747A (zh) 基于零序电压注入的t型三电平逆变器中点电位平衡与容错控制方法
CN108599609B (zh) 一种基于三模块级联h桥的改进载波移相调制方法
CN108539723B (zh) 一种分相分压式级联h桥柔性限流装置及其控制方法
CN104539220A (zh) 一种三相四开关逆变器自适应脉宽调制方法
CN106786738A (zh) 基于svpwm和模糊pi的z源逆变器并网控制方法
CN108306332A (zh) 一种lcl型并网逆变系统及电流跟踪控制方法
CN110336479B (zh) 三电平npc逆变器开关器件在线监测时段调制波重构法
CN105703650A (zh) 一种采用shepwm的多台t型三电平逆变器并联控制方法
Zhou et al. Reliability analysis of grid-interfaced filter capacitors
CN108963980B (zh) 一种基于故障隔离库的多模态故障隔离方法
Lin et al. NOC-based multiple low-order harmonic currents suppression method
CN112034392B (zh) 一种基于滞环控制的有源电力滤波器的故障诊断方法
CN113346784B (zh) 三电平npc逆变器的在线监测调制方法
CN108649825B (zh) 一种级联型多电平逆变器的多故障隔离方法
CN108448630A (zh) 基于单周期和双电流环控制的z源逆变器并网控制方法
CN105680711B (zh) 一种采用shepwm的t型三电平逆变器中点电压平衡控制方法
CN218416221U (zh) 一种低滤波电容电机模拟器
CN116087623A (zh) 一种新能源并网系统整体阻抗测量方法及装置
CN109067147B (zh) 级联型变流器子模块电容电压扰动量及不平衡度提取方法
CN114362549B (zh) 基于非隔离型背靠背拓扑的级联多电平变流器及其控制策略
CN105656057A (zh) 一种级联多电平静止同步补偿器及控制方法
CN113629763B (zh) 非理想电网下中压直挂储能变流器电流控制方法及系统
CN110460252B (zh) 具有输入lc滤波器的电力电子系统工况模拟装置
CN104639009A (zh) 一种矢量控制型变频器的控制方法、装置和一种矢量控制型变频器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant