CN113346017B - 基于全忆阻器的人工视觉神经系统及其制备方法和应用 - Google Patents

基于全忆阻器的人工视觉神经系统及其制备方法和应用 Download PDF

Info

Publication number
CN113346017B
CN113346017B CN202110559297.5A CN202110559297A CN113346017B CN 113346017 B CN113346017 B CN 113346017B CN 202110559297 A CN202110559297 A CN 202110559297A CN 113346017 B CN113346017 B CN 113346017B
Authority
CN
China
Prior art keywords
cavity
memristor
film layer
sputtering
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110559297.5A
Other languages
English (en)
Other versions
CN113346017A (zh
Inventor
闫小兵
裴逸菲
赵莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN202110559297.5A priority Critical patent/CN113346017B/zh
Publication of CN113346017A publication Critical patent/CN113346017A/zh
Application granted granted Critical
Publication of CN113346017B publication Critical patent/CN113346017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Micromachines (AREA)

Abstract

本发明提供了一种基于全忆阻器的人工视觉神经系统及其制备方法和应用,人工视觉神经系统包括光敏忆阻器和神经元电路,所述神经元电路包括阈值开关型忆阻器、电容器和电阻器。所述光敏忆阻器用于模拟生物突触,并感知可见光,所述神经元电路用于模拟生物神经元。本发明光敏忆阻器不仅在电导方面表现出连续可调的突触行为,而且在不同光照条件下实现稳定的光学感知。通过连接光敏忆阻器到LIF神经元电路中,一个能够模拟敏化的人工视觉神经系统被创建。最后,将人工视觉神经系统仿真应用于无人驾驶汽车,实现了会车场景的速度变化,根据迎面来车的光强自动调整汽车的速度。

Description

基于全忆阻器的人工视觉神经系统及其制备方法和应用
技术领域
本发明属于忆阻器技术领域,具体涉及一种基于全忆阻器的人工视觉神经系统及其制备方法和应用。
背景技术
感觉神经系统作为人类生物系统的基石,能够将外界信息转化为生物信号。在这个系统中,记忆、逻辑思维、语言能力、视觉空间认知构成了大量的知识。其中人类80%的信息是通过视觉感知从外部世界获得的。如今,迫切需要模拟生物人工视觉感知神经系统,使其能够自适应光电信号的检测、处理和记忆,以应对人工智能技术和未来先进机器人系统的快速发展。在灵敏度极高的整个可见光谱覆盖范围内,理想的人工视觉感知神经系统应具有反应性,在不同光照强度下实现自适应反应。人造神经系统作为硬件必须成功地结合两个主要元素:人造电子突触和神经元。互补金属氧化物半导体(CMOS)电路通常用来复制突触和神经元的功能。然而,由于CMOS器件缺乏固有的生物学相似性,所建电路仍然很复杂。
近年来,由于记忆电阻器结构简单、与生物突触相似、电导可连续调节等特点,已成为人工突触的有力替代品。另一方面,基于记忆电阻器的人工神经元正在研究中,神经元的基本功能正在初步实现,这些单元的实现为人工神经系统的发展铺平了道路,具有重要的研究意义。
发明内容
本发明的目的是提供一种基于全忆阻器的人工视觉神经系统及其制备方法和应用,以解决现有技术中模拟生物突触和神经元器件较为复杂,生物相似性不理想的问题。
本发明为实现其目的采用的技术方案是:一种基于全忆阻器的人工视觉神经系统,包括光敏忆阻器和神经元电路,所述神经元电路包括阈值开关型忆阻器、电容器和电阻器。
所述光敏忆阻器用于模拟生物突触,并感知可见光,所述神经元电路用于模拟生物神经元。
所述光敏忆阻器的结构自下而上依次包括衬底、PbS量子点膜层和TiN电极膜层。所述衬底为ITO或Pt,PbS量子点膜层的厚度为2~20nm,TiN电极膜层的厚度为10~50nm。
所述阈值开关型忆阻器的结构自下而上依次包括衬底、Ag底电极层、二硫化钼膜层、Ag膜层、氧化钼膜层和Ag顶电极层。所述衬底为Pt或Si,Ag底电极层的厚度为10~70nm,二硫化钼膜层的厚度为5~50nm,Ag膜层的厚度为5~10nm,氧化钼膜层的厚度为5~50nm,Ag顶电极层的厚度为10~70nm。
上述人工视觉神经系统的制备方法,其将光敏忆阻器的输出端与阈值开关型忆阻器的输入端相连,同时光敏忆阻器的输出端与电容器相连,电容器的另一端连接电阻器,同时电容器的另一端接地,电阻器的另一端与阈值开关型忆阻器的输出端连接。
所述光敏忆阻器通过以下方法制备得到:
a、将PbS量子点溶液旋涂到经过预处理的衬底上,制成PbS量子点膜层;
b、在步骤a所得样品上放置掩膜版,所述掩膜版上均布有直径为0.5~1mm的圆形孔,然后固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4 ~4×10-4Pa;
c、向腔体内通入20~30sccm的Ar,调整充气阀使腔体内的压强维持在1~6Pa,打开直流源,调整直流源功率为13~17W,压强0.5~1Pa,使TiN靶材起辉,预溅射7~13min;
d、TiN靶材预溅射7~13min后,正式溅射55~65min,从而在PbS量子点膜层上形成TiN电极膜层。
所述阈值开关型忆阻器通过以下方法制备得到:
a、将经过预处理的衬底固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4 ~4×10-4Pa;向腔体内通入20~30sccm的Ar,调整充气阀使腔体内的压强维持在1~6Pa,打开直流源,调整直流源功率为13~17W,压强3Pa,使Ag靶材起辉,预溅射7~13min;
b、Ag靶材预溅射7~13min后,正式溅射15~25min,在衬底上形成Ag底电极层;
c、在Ag底电极层上旋涂MoS2溶液,晾干,制成二硫化钼膜层;
d、将步骤c所得样品固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4~4×10-4Pa;
e、向磁控溅射设备腔体内通入30~80sccm的Ar,使腔体内的压强维持在1~6Pa,打开控制氧化钼靶材起辉的射频源,调整射频源功率为80~90W,压强0.2~3Pa,使氧化钼靶材起辉,预溅射7~13min;氧化钼靶材预溅射7~13min后,打开氧化钼靶材的挡板正式溅射17~23min,形成氧化钼膜层;
f、在步骤e所得样品上放置掩膜版,所述掩膜版上均布有直径为0.5~1mm的圆形孔,固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4 ~4×10-4Pa;
g、向腔体内通入20~30sccm的Ar,调整充气阀使腔体内的压强维持在1~6Pa,打开直流源,调整直流源功率为13~17W,压强0.5~1Pa,使Ag靶材起辉,预溅射7~13min;Ag靶材预溅射7~13min后,正式溅射15~20min,从而形成Ag顶电极膜层。
上述人工视觉神经系统在汽车无人驾驶或自动驾驶领域的应用。
本发明所提供的基于全忆阻器的人工视觉神经系统由一个光电突触和一个人工神经元组成。人工光电突触采用光敏忆阻器,不仅在电导方面表现出连续可调的突触行为,而且在不同光照条件下实现稳定的光学感知。通过连接光电突触到LIF神经元,一个人工视觉神经系统被创建。最后,在会车场景中,将人工神经系统仿真应用于无人驾驶汽车,根据迎面来车的光强自动调整汽车的速度。结果表明,本发明基于全忆阻器的人工视觉神经系统可以应用于人工智能技术。而且,低维材料忆阻器不仅提高了器件的性能,还推动器件向高集成化方向发展。
附图说明
图1是本发明结构原理示意图。其中,图(a)为生物神经系统示意图,图(b)为本发明人工视觉神经系统电路图。
图2是本发明中基于PbS的光敏忆阻器的I-V 特性曲线。其中,(a)为无光状态下测试图,(b)为可见光(450nm脉冲激光)照射状态下测试图,(c)为撤去光照后测试图。
图3是本发明中神经元电路测试图。其中,(a)为测试时,神经元电路结构示意图;(b)为阈值开关型器件I-V特性曲线,(c)模拟生物神经元积分-发射过程。
图4是本发明人工视觉神经系统应用于无人驾驶会车场景的示意图。其中,(a)表示会车场景,(b)为会车控制系统工作流程图,(c)为会车过程中控制系统中参数的演变图。
具体实施方式
下面结合实施例对本发明做进一步的阐述,下述实施例仅作为说明,并不以任何方式限制本发明的保护范围。
实施例1 人工视觉神经系统
如图1所示,人工视觉神经系统结构包括光敏忆阻器和神经元电路,神经元电路包括阈值开关型忆阻器、电容器和电阻器。光敏忆阻器用于模拟生物突触,并感知可见光,神经元电路用于模拟生物神经元。将光敏忆阻器的输出端与阈值开关型忆阻器的输入端相连,同时光敏忆阻器的输出端与电容器相连,电容器的另一端连接电阻器,同时电容器的另一端接地,电阻器的另一端与阈值开关型忆阻器的输出端连接。
光敏忆阻器的结构自下而上依次包括衬底、PbS量子点膜层和TiN电极膜层。衬底为ITO,PbS量子点膜层的厚度为10nm,TiN电极膜层的厚度为15nm。
阈值开关型忆阻器的结构自下而上依次包括衬底、Ag底电极层、二硫化钼膜层、Ag膜层、氧化钼膜层和Ag顶电极层。衬底为Pt,Ag底电极层的厚度为10nm,二硫化钼膜层的厚度为5nm,Ag膜层的厚度为5nm,氧化钼膜层的厚度为10nm,Ag顶电极层的厚度为15nm。
实施例2 基于PbS的光敏忆阻器的制备
a、将PbS量子点溶液(浓度为10mg/mL,溶剂为甲苯)旋涂到经过预处理的衬底上,制成厚度为10nm的PbS量子点膜层;
b、打开磁控溅射设备腔体,拿出压片台,用砂纸打磨干净至发亮,用丙酮清洗打磨下来的废物和表面附着的有机物,用酒精最后擦拭干净;在步骤a所得样品上放置掩膜版,掩膜版上均布有直径为0.8mm的圆形孔,然后将衬底放在压片台上压片,压片时保证衬底稳固压在压片台上并且压平,将整理好的压片台放入腔体内的衬底台上,固定好后关闭腔体;通过机械泵与分子泵将磁控溅射设备腔体抽真空至2×10-4Pa;
c、向腔体内通入25sccm的Ar,调整充气阀使腔体内的压强维持在3Pa,打开直流源,调整直流源功率为15W,压强0.7Pa,使TiN靶材起辉,预溅射10min;
d、TiN靶材预溅射10min后,正式溅射60min,从而在PbS量子点膜层上形成TiN电极膜层。
分别在无光、有光和撤光后测试了光敏忆阻器的I-V特性曲线,如图2所示,结果证明了器件的光敏性。
实施例3 阈值开关型忆阻器的制备
a、将经过预处理的衬底固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4 Pa;向腔体内通入25sccm的Ar,调整充气阀使腔体内的压强维持在3Pa,打开直流源,调整直流源功率为15W,压强3Pa,使Ag靶材起辉,预溅射10min;
b、Ag靶材预溅射10min后,正式溅射15min,在衬底上形成厚度为10nm的Ag底电极层;
c、在Ag底电极层上旋涂MoS2溶液(浓度为10mg/mL,溶剂为水),晾干,制成厚度为5nm的二硫化钼膜层;
d、将步骤c所得样品固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至2×10-4Pa;向磁控溅射设备腔体内通入50 sccm的Ar,使腔体内的压强维持在3Pa,打开控制Ag靶材起辉的直流源,调整直流源功率为15 W,压强3Pa,使Ag靶材起辉,后,打开Ag靶材的挡板正式溅射5 min,形成Ag膜层。e、向磁控溅射设备腔体内通入50sccm的Ar,使腔体内的压强维持在3 Pa,打开控制氧化钼靶材起辉的射频源,调整射频源功率为90W,压强3Pa,使氧化钼靶材起辉,预溅射7min;氧化钼靶材预溅射7 min后,打开氧化钼靶材的挡板正式溅射23 min,形成厚度为10nm的氧化钼膜层;
f、在步骤e所得样品上放置掩膜版,掩膜版上均布有直径为0.5mm的圆形孔,固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4Pa;
g、向腔体内通入25 sccm的Ar,调整充气阀使腔体内的压强维持在3Pa,打开直流源,调整直流源功率为15W,压强3Pa,使Ag靶材起辉,预溅射7min;Ag靶材预溅射7min后,正式溅射15min,从而形成厚度为15nm的Ag顶电极膜层。
实施例4 神经元电路测试
按照图3(a)的电路图组成神经元电路。通过施加电压,如图3所示,该器件有连续50个循环的这种阈值切换动作,且没有出现明显的衰变,表现出了良好的重复性。
实施例5 人工视觉神经系统在无人驾驶会车场景的应用
本发明所提出的会车控制系统的功能是控制自动驾驶汽车车速,在夜间安全完成会车,会车场景如图4a所示。会车控制系统由一个光敏突触和一个LIF神经元组成,图4b为会车控制系统工作流程图。图4c显示了会车过程中控制系统中参数的演变。表现出光敏突触的权重和LIF神经元的输出频率增加导致自动驾驶汽车在会车过程中减速,且当会车过程结束后,灯光消失,参数恢复到初始状态,证实了本发明可以控制自动驾驶汽车在会车时降低车速。
实施例6
人工视觉神经系统结构包括光敏忆阻器和神经元电路,神经元电路包括阈值开关型忆阻器、电容器和电阻器。光敏忆阻器用于模拟生物突触,并感知可见光,神经元电路用于模拟生物神经元。将光敏忆阻器的输出端与阈值开关型忆阻器的输入端相连,同时光敏忆阻器的输出端与电容器相连,电容器的另一端连接电阻器,同时电容器的另一端接地,电阻器的另一端与阈值开关型忆阻器的输出端连接。
光敏忆阻器的结构自下而上依次包括衬底、PbS量子点膜层和TiN电极膜层。衬底为Pt,PbS量子点膜层的厚度为20nm,TiN电极膜层的厚度为50nm。
阈值开关型忆阻器的结构自下而上依次包括衬底、Ag底电极层、二硫化钼膜层、Ag膜层、氧化钼膜层和Ag顶电极层。所述衬底为Si,Ag底电极层的厚度为70nm,二硫化钼膜层的厚度为50nm,Ag膜层的厚度为10nm,氧化钼膜层的厚度为50nm,Ag顶电极层的厚度为70nm。对该器件进行性能测试,其具有同上述结构类似的性能。
实施例7
人工视觉神经系统结构包括光敏忆阻器和神经元电路,神经元电路包括阈值开关型忆阻器、电容器和电阻器。光敏忆阻器用于模拟生物突触,并感知可见光,神经元电路用于模拟生物神经元。将光敏忆阻器的输出端与阈值开关型忆阻器的输入端相连,同时光敏忆阻器的输出端与电容器相连,电容器的另一端连接电阻器,同时电容器的另一端接地,电阻器的另一端与阈值开关型忆阻器的输出端连接。
光敏忆阻器的结构自下而上依次包括衬底、PbS量子点膜层和TiN电极膜层。衬底为ITO,PbS量子点膜层的厚度为2nm,TiN电极膜层的厚度为30nm。
阈值开关型忆阻器的结构自下而上依次包括衬底、Ag底电极层、二硫化钼膜层、Ag膜层、氧化钼膜层和Ag顶电极层。衬底为Pt,Ag底电极层的厚度为40nm,二硫化钼膜层的厚度为30nm,Ag膜层的厚度为8nm,氧化钼膜层的厚度为30nm,Ag顶电极层的厚度为40nm。对该器件进行性能测试,其具有同上述结构类似的性能。

Claims (8)

1.一种基于全忆阻器的人工视觉神经系统,其特征在于,包括光敏忆阻器和神经元电路,所述神经元电路包括阈值开关型忆阻器、电容器和电阻器;所述光敏忆阻器用于模拟生物突触,并感知可见光,所述神经元电路用于模拟生物神经元;所述光敏忆阻器的结构自下而上依次包括衬底、PbS量子点膜层和TiN电极膜层。
2.根据权利要求1所述人工视觉神经系统,其特征在于,所述衬底为ITO或Pt,PbS量子点膜层的厚度为2~20nm,TiN电极膜层的厚度为10~50nm。
3.根据权利要求1所述人工视觉神经系统,其特征在于,所述阈值开关型忆阻器的结构自下而上依次包括衬底、Ag底电极层、二硫化钼膜层、Ag膜层、氧化钼膜层和Ag顶电极层。
4.根据权利要求3所述人工视觉神经系统,其特征在于,所述阈值开关型忆阻器的衬底为Pt或Si,Ag底电极层的厚度为10~70nm,二硫化钼膜层的厚度为5~50nm,Ag膜层的厚度为5~10nm,氧化钼膜层的厚度为5~50nm,Ag顶电极层的厚度为10~70nm。
5.一种制备权利要求1~4任一所述人工视觉神经系统的方法,其特征在于,将光敏忆阻器的输出端与阈值开关型忆阻器的输入端相连,同时光敏忆阻器的输出端与电容器相连,电容器的另一端连接电阻器,同时电容器的另一端接地,电阻器的另一端与阈值开关型忆阻器的输出端连接。
6.根据权利要求5所述的方法,其特征在于,所述光敏忆阻器通过以下方法制备得到:
a、将PbS量子点溶液旋涂到经过预处理的衬底上,制成PbS量子点膜层;
b、在步骤a所得样品上放置掩膜版,所述掩膜版上均布有直径为0.5~1mm的圆形孔,然后固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4 ~4×10-4Pa;
c、向腔体内通入20~30sccm的Ar,调整充气阀使腔体内的压强维持在1~6Pa,打开直流源,调整直流源功率为13~17W,压强0.5~1Pa,使TiN靶材起辉,预溅射7~13min;
d、TiN靶材预溅射7~13min后,正式溅射55~65min,从而在PbS量子点膜层上形成TiN电极膜层。
7.根据权利要求6所述的方法,其特征在于,所述阈值开关型忆阻器通过以下方法制备得到:
a、将经过预处理的衬底固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4 ~4×10-4Pa;向腔体内通入20~30sccm的Ar,调整充气阀使腔体内的压强维持在1~6Pa,打开直流源,调整直流源功率为13~17W,压强1~5Pa,使Ag靶材起辉,预溅射7~13min;
b、Ag靶材预溅射7~13min后,正式溅射15~25min,在衬底上形成Ag底电极层;
c、在Ag底电极层上旋涂MoS2溶液,晾干,制成二硫化钼膜层;
d、将步骤c所得样品固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4~4×10-4Pa;向磁控溅射设备腔体内通入30~80sccm的Ar,使腔体内的压强维持在1~6Pa,打开控制Ag靶材起辉的直流源,调整直流源功率为5~15W,压强0.2~3Pa,使Ag靶材起辉后,打开Ag靶材的挡板正式溅射1~5min,形成Ag膜层;
e、向磁控溅射设备腔体内通入30~80sccm的Ar,使腔体内的压强维持在1~6Pa,打开控制氧化钼靶材起辉的射频源,调整射频源功率为80~90W,压强0.2~3Pa,使氧化钼靶材起辉,预溅射7~13min;氧化钼靶材预溅射7~13min后,打开氧化钼靶材的挡板正式溅射17~23min,形成氧化钼膜层;
f、在步骤e所得样品上放置掩膜版,所述掩膜版上均布有直径为0.5~1mm的圆形孔,固定到磁控溅射设备腔体的衬底台上,并将腔体抽真空至1×10-4 ~4×10-4Pa;
g、向腔体内通入20~30sccm的Ar,调整充气阀使腔体内的压强维持在1~6Pa,打开直流源,调整直流源功率为13~17W,压强0.5~1Pa,使Ag靶材起辉,预溅射7~13min;Ag靶材预溅射7~13min后,正式溅射15~20min,从而形成Ag顶电极膜层。
8.一种权利要求1~4任一所述人工视觉神经系统在汽车无人驾驶或自动驾驶领域的应用。
CN202110559297.5A 2021-05-21 2021-05-21 基于全忆阻器的人工视觉神经系统及其制备方法和应用 Active CN113346017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110559297.5A CN113346017B (zh) 2021-05-21 2021-05-21 基于全忆阻器的人工视觉神经系统及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110559297.5A CN113346017B (zh) 2021-05-21 2021-05-21 基于全忆阻器的人工视觉神经系统及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113346017A CN113346017A (zh) 2021-09-03
CN113346017B true CN113346017B (zh) 2023-03-24

Family

ID=77470736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110559297.5A Active CN113346017B (zh) 2021-05-21 2021-05-21 基于全忆阻器的人工视觉神经系统及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113346017B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518117A (zh) * 2019-08-22 2019-11-29 华中科技大学 一种二维材料异质结的忆阻器及其制备方法
CN110647982A (zh) * 2019-09-26 2020-01-03 中国科学院微电子研究所 人工感受神经电路及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051545B (zh) * 2014-02-26 2017-02-15 东北师范大学 基于pn异质结构的忆阻器及其制备方法
PL3221898T3 (pl) * 2014-11-21 2021-02-08 Hunt Perovskite Technologies, L.L.C. Dwu- i trójwarstwowe międzyfazowe warstwy w urządzeniach z materiału perowskitowego
EP3190619A1 (en) * 2016-01-07 2017-07-12 Nokia Technologies Oy A photodetector apparatus and associated methods
CN111725401B (zh) * 2020-06-30 2023-04-07 中南大学 一种光存储复合型忆阻器及其制备方法与应用
CN112382721A (zh) * 2020-10-13 2021-02-19 深圳大学 一种导电细丝型忆阻器及制备方法与存储模式的调控方法
CN112467031A (zh) * 2020-11-26 2021-03-09 南京邮电大学 基于Ag-In-Zn-S量子点的低功耗忆阻器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518117A (zh) * 2019-08-22 2019-11-29 华中科技大学 一种二维材料异质结的忆阻器及其制备方法
CN110647982A (zh) * 2019-09-26 2020-01-03 中国科学院微电子研究所 人工感受神经电路及其制备方法

Also Published As

Publication number Publication date
CN113346017A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Wang et al. Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system
Qian et al. Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing
Alquraishi et al. Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors
Guo et al. Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities
Kwon et al. Large‐area pixelized optoelectronic neuromorphic devices with multispectral light‐modulated bidirectional synaptic circuits
Dang et al. One‐Phototransistor–One‐Memristor Array with High‐Linearity Light‐Tunable Weight for Optic Neuromorphic Computing
Lee et al. In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing
Lee et al. Realization of an artificial visual nervous system using an integrated optoelectronic device array
Li et al. Multi-modulated optoelectronic memristor based on Ga2O3/MoS2 heterojunction for bionic synapses and artificial visual system
CN113346017B (zh) 基于全忆阻器的人工视觉神经系统及其制备方法和应用
Wang et al. Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation
Deng et al. Ultra‐Sensitive and Low‐Power‐Consumption Organic Phototransistor Enables Nighttime Illumination Perception for Bionic Mesopic Vision
Yang et al. Optoelectronic artificial synaptic device based on amorphous InAlZnO films for learning simulations
Zhang et al. Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks
Gao et al. InP quantum dots tailored oxide thin film phototransistor for bioinspired visual adaptation
Shang et al. ZnO photoconductive synaptic devices for neuromorphic computing
Han et al. Multimodal‐Synergistic‐Modulation Neuromorphic Imaging Systems for Simulating Dry Eye Imaging
US3735141A (en) Electronic lighting control responsive to ambient light
CN115117177A (zh) 一种神经形态光电传感器、其制备及调控方法
Guo et al. Titanium oxide-based optoelectronic synapses with visual memory synergistically adjusted by internal emotions and ambient illumination
CN112053657A (zh) 一种具有原位计算功能的神经元显示器及其制作方法
Kwon et al. P‐80: Light‐Adjustable Optoelectronic Neuromorphic Device for Artificial Visual Display System
Fu et al. High-performance IGZO/In2O3 NW/IGZO phototransistor with heterojunctions architecture for image processing and neuromorphic computing
Shan et al. Light-controlled threshold switching memristive neuron devices for color photoreceptor
CN118234263A (zh) 一种柔性光适应视觉传感器阵列及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant