CN113340939A - 一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法 - Google Patents

一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法 Download PDF

Info

Publication number
CN113340939A
CN113340939A CN202110698794.3A CN202110698794A CN113340939A CN 113340939 A CN113340939 A CN 113340939A CN 202110698794 A CN202110698794 A CN 202110698794A CN 113340939 A CN113340939 A CN 113340939A
Authority
CN
China
Prior art keywords
montmorillonite
measuring
aqueous solution
qass
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110698794.3A
Other languages
English (en)
Inventor
李宏亮
徐雯楠
李蕊
潘昱蒿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202110698794.3A priority Critical patent/CN113340939A/zh
Publication of CN113340939A publication Critical patent/CN113340939A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明目的在于提供一种水溶液中蒙脱石‑有机物之间偶极相互作用的测量方法,属于表面‑分子间力的技术领域,通过该方法,不仅提高了蒙脱石表面的疏水性,而且通过测试不同亲水基团的QASs与蒙脱石相互作用后的蒙脱石分散性,宏观比较有机基团‑蒙脱石间的偶极作用强弱,最后通过仪器分析技术对疏水絮团作用及偶极相互作用进行了表征,分析了QASs对蒙脱石疏水化改性的强弱,最终得出水溶液中有机基团‑蒙脱石间的偶极相互作用规律。

Description

一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法
技术领域
本发明属于表面-分子间力的技术领域,具体涉及一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法。
背景技术
蒙脱石-有机物纳米复合材料是材料科学中的一个重要研究方向。有机物(表面活性剂、聚合物等)在工业应用中会改变蒙脱石颗粒的表面特征和蒙脱石分散体的胶体行为,形成的有机衍生物包括用于污染防控吸附剂、用于太阳能的直接转化、储存和利用的三维网状蒙脱土/水杨酸复合相变材料等等(Yi, H., Ai, Z., Zhao, Y., Zhang, X., Song,S., 2020. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage. Sol. EnergyMater. Sol. Cells 204, 110233)。Bergaya等人发现聚合物中添加少量无机纳米粒子可以增强聚合物的性能(Bergaya, F., Detellier, C., Lambert, J.F., Lagaly, G.,2013. Introduction to clay-polymer nanocomposites (CPN), 2nd ed, Developmentsin Clay Science)。因为粘土聚合物纳米复合材料(CPN)具有比常规无机填料聚合物复合材料无法比拟的优势( 如优异的力学、热学性能和气体阻隔性能等),粘土基聚合物纳米复合材料(CPN)的发展已引起了广泛的关注。
通过QASs进行简单的阳离子交换对蒙脱石进行表面改性,就可使CPN更具有多功能性和高效益。QASs的疏水端绝大多数都是长链饱和烷烃结构(-CH2-),因此,QASs亲水端-蒙脱石间范德华相互作用在有机粘土科学中十分重要。
发明内容
本发明的目的在于提供一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法,通过该方法,不仅提高了蒙脱石表面的疏水性,而且通过测试不同亲水基团的QASs与蒙脱石相互作用后的蒙脱石分散性,宏观比较有机基团-蒙脱石间的偶极作用强弱,最后通过仪器分析技术对疏水絮团作用及偶极相互作用进行了表征,分析了QASs对蒙脱石疏水化改性的强弱,最终得出水溶液中有机基团-蒙脱石间的偶极相互作用规律。
本发明采用如下技术方案:
一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法,包括如下步骤:
第一步,将季铵盐表面活性剂QASs溶于水中,得到QASs水溶液;
第二步,将QASs溶液稀释到目标浓度,添加到配置好的蒙脱石悬浮液中,在400-600r/min的剪切速率下,搅拌3-10min,使QASs吸附到蒙脱石表面;
第三步,采用法国Setaram C80型微量热仪测定蒙脱石表面的水化热和试剂吸附热,设定30℃恒温状态,检测精度为0.10μW,在测试过程中,将0.1-0.3g改性前和改性后的蒙脱石样品及1-3mL的去离子水分别放在膜混合反应池的底部和上部,用铝箔膜将两者隔开,待温度达到平衡后,用膜混合池自带的顶针刺破铝箔膜,使去离子水和蒙脱石样品接触,用Dataacquisition软件记录水化热过程的热流曲线,数据收集至吸附平衡时为止,对热流曲线进行积分,分别得到改性前和改性后的蒙脱石样品的水化热值;
取浓度为10-30g/L的蒙脱石悬浮液1-3ml和浓度为10-50g/L的QASs溶液1-3ml,分别放在膜混合反应池的底部和上部,用铝箔膜将两者隔开,其余操作步骤与测量蒙脱石水化热步骤相同,蒙脱石悬浮液和试剂混合可以得到试剂吸附热变化。
进一步地,所述季铵盐包括十六烷基三甲基氯化铵CTAC、十六烷基二甲基苄基氯化铵HDBAC或十六烷基氯化吡啶CPC。
进一步地,所述蒙脱石为提纯后的高纯纳米钠基蒙脱石,粒度小于70μm。
本发明的有益效果如下:
本发明基于蒙脱石对QASs的吸附特征,在低转速下水溶液中利用搅拌器搅拌,QASs(如CTAC、HDBAC或CPC)与蒙脱石颗粒表面混合均匀并吸附,QASs吸附在蒙脱石颗粒表面后,蒙脱石由亲水性变为疏水性,排出了结构水。通过本发明技术方案处理后蒙脱石的疏水性提高,并通过仪器分析技术获得了有机基团-蒙脱石间相互作用规律,例如,采用本方法分别以季铵盐表面活性剂CTAC、HDBAC或CPC为试剂,首先通过FTIR确定三者的吸附为物理吸附,通过FBRM及沉降上清液透光率定量分析了三种QASs的疏水作用的强弱,TG-DSC分析了表面水的吸附行为,采用法国Setaram C80型微量热仪测定蒙脱石表面的水化热和试剂吸附热。在测试过程中,将0.1-0.3g改性前和改性后的蒙脱石样品及1-3mL的去离子水分别放在膜混合反应池的底部和上部,用铝箔膜将两者隔开。待温度达到平衡后,用膜混合池自带的顶针刺破铝箔膜,使去离子水和蒙脱石样品接触。用Dataacquisition软件记录水化热过程的热流曲线,数据收集至吸附平衡时为止,对热流曲线进行积分,分别得到改性前和改性后的蒙脱石样品的水化热值。MMT、MMT+CTAC、MMT + HDBAC、MMT + CPC的水化热分别是-46.026 J/g、-12.084 J/g、-7.938 J/g 、-5.277 J/g,表明改性后的蒙脱石疏水性提高。取浓度为10-30g/L的蒙脱石悬浮液1-3ml和浓度分别为10-50g/L的CTAC、HDBAC和CPC水溶液1-3ml,分别放在膜混合反应池的底部和上部,用铝箔膜将两者隔开,其余操作步骤与测量蒙脱石水化热步骤相同,蒙脱石悬浮液和试剂混合可以得到试剂吸附热变化。MMT+CTAC、MMT + HDBAC、MMT + CPC的试剂吸附热分别是-430.15 J/g 、-636.77 J/g、-703.87J/g。表明偶极(有机基团)与偶极(蒙脱石表面)的相互作用为吡啶-蒙脱石>苄基-蒙脱石>烷基-蒙脱石,水溶液中有机基团-蒙脱石之间的范德华相互作用遵循偶极相互作用原则,即,具有固定偶极的基团与蒙脱石之间的相互作用大于只有诱导偶极基团与蒙脱石之间的相互作用,相互作用大小与偶极大小成正相关,对于具有固定偶极的基团,固定偶极越大,基团与蒙脱石之间的相互作用越大。
附图说明
图1为本发明实施例试剂浓度为15g/L时,CTAC、HDBAC或CPC处理后蒙脱石-有机基团间偶极的相互作用图。
图2为本发明实施例试剂浓度为15g/L时,CTAC、HDBAC或CPC处理后蒙脱石-有机基团间偶极的相互作用。
图3为本发明实施例试剂浓度为15g/L时,CTAC、HDBAC或CPC处理后蒙脱石-有机基团间偶极的相互作用。
图4为本发明实施例试剂为10g/L-50g/L时,CTAC、HDBAC或CPC处理后蒙脱石-有机基团间偶极的相互作用,其中,(a)图表示MMT+CTAC,(b)图表示MMT + HDBAC,(c)图表示MMT+ CPC。
图5为本发明实施例试剂浓度为15g/L时,CTAC、HDBAC或CPC处理后蒙脱石-有机基团间偶极的相互作用。
具体实施方式
本实施例所用蒙脱石为内蒙古高纯纳米蒙脱石散。
通过机械搅拌的方法测量蒙脱石-有机物之间偶极相互作用步骤如下:
分别以15g/L浓度的CTAC、HDBAC或CPC为试剂,然后将14g/L粒度小于70μm的蒙脱石悬浮液与试剂混合,再加入80ml去离子水,用搅拌器在500r/min的转速下搅拌3-10min,随后用注射器每次在相同水平位置取2ml蒙脱石上清液转移到石英玻璃皿中,使用紫外-可见分光光度计在930nm的波长下测量上清液的透光率。
为测定有机基团-蒙脱石间的偶极相互作用规律,采用微量热法定量分析。图1、图2、图3、图5分别为本实施例试剂浓度为15g/L时CTAC、HDBAC或CPC处理后蒙脱石-有机基团间偶极的相互作用。图4为50 g/L的CTAC和CPC或30 g/L的HDBAC标准溶液稀释目标浓度处理后的蒙脱石-有机基团间偶极的相互作用。由图1可知,CTAC、HDBAC或CPC试剂确实吸附在了蒙脱石表面。由图2可知,疏水絮团的强弱变化与有机基团-蒙脱石之间的吸附作用成正相关,由图3可知,改性后的蒙脱石疏水絮团粒度增大,由图4可知,QASs促进蒙脱石疏水絮团顺序为CPC>HDBAC>CTAC。由图5(a)可知,MMT、MMT+CTAC、MMT + HDBAC、MMT + CPC的水化热分别是-46.026 J/g、-12.084 J/g、-7.938 J/g、-5.277 J/g,水化热绝对值越小,说明蒙脱石-水分子相互作用越弱,试剂在蒙脱石表面吸附使矿物表面的疏水性提高。由图5(b)可知CTAC、HDBAC或CPC试剂改性后的蒙脱石吸附热分别是-430.15 J/g、-636.77 J/g、-703.87 J/g,试剂吸附热的绝对值CPC>HDBAC>CTAC,表明吡啶-蒙脱石相互作用>苄基-蒙脱石相互作用>烷基-蒙脱石相互作用,并且具有固定偶极的分子与蒙脱石表面的相互作用大于只有瞬时偶极的分子与蒙脱石表面的相互作用,说明了有机基团与蒙脱石表面偶极间的相互作用强弱与基团偶极大小成正相关。

Claims (3)

1.一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法,其特征在于:包括如下步骤:
第一步,将季铵盐表面活性剂QASs溶于水中,得到QASs水溶液;
第二步,将QASs溶液稀释到目标浓度,添加到配置好的蒙脱石悬浮液中,在400-600r/min的剪切速率下,搅拌3-10min,使QASs吸附到蒙脱石表面;
第三步,采用法国Setaram C80型微量热仪测定蒙脱石表面的水化热和试剂吸附热,设定30℃恒温状态,检测精度为0.10μW,在测试过程中,将0.1-0.3g改性前和改性后的蒙脱石样品及1-3mL的去离子水分别放在膜混合反应池的底部和上部,用铝箔膜将两者隔开,待温度达到平衡后,用膜混合池自带的顶针刺破铝箔膜,使去离子水和蒙脱石样品接触,用Dataacquisition软件记录水化热过程的热流曲线,数据收集至吸附平衡时为止,对热流曲线进行积分,分别得到改性前和改性后的蒙脱石样品的水化热值;
取浓度为10-30g/L的蒙脱石悬浮液1-3ml和浓度为10-50g/L的QASs溶液1-3ml,分别放在膜混合反应池的底部和上部,用铝箔膜将两者隔开,其余操作步骤与测量蒙脱石水化热步骤相同,蒙脱石悬浮液和试剂混合可以得到试剂吸附热变化。
2.根据权利要求1所述的一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法,其特征在于:所述季铵盐包括十六烷基三甲基氯化铵CTAC、十六烷基二甲基苄基氯化铵HDBAC或十六烷基氯化吡啶CPC。
3.根据权利要求1所述的一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法,其特征在于:所述蒙脱石为提纯后的高纯纳米钠基蒙脱石,粒度小于70μm。
CN202110698794.3A 2021-06-23 2021-06-23 一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法 Pending CN113340939A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110698794.3A CN113340939A (zh) 2021-06-23 2021-06-23 一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110698794.3A CN113340939A (zh) 2021-06-23 2021-06-23 一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法

Publications (1)

Publication Number Publication Date
CN113340939A true CN113340939A (zh) 2021-09-03

Family

ID=77478108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110698794.3A Pending CN113340939A (zh) 2021-06-23 2021-06-23 一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法

Country Status (1)

Country Link
CN (1) CN113340939A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172121B1 (en) * 1999-05-21 2001-01-09 The University Of Chicago Process for preparing organoclays for aqueous and polar-organic systems
US20060293424A1 (en) * 2005-06-24 2006-12-28 Mun-Fu Tse Functionalized propylene copolymer adhesive composition
US20110217254A1 (en) * 2008-10-22 2011-09-08 Beiersdorf Ag Antiperspirant preparations comprising hydrotalcite
CN102978301A (zh) * 2012-12-28 2013-03-20 陕西科技大学 原位法制备季铵盐插层蒙脱土改性菜籽油阻燃型纳米复合加脂剂的方法
CN103145140A (zh) * 2013-01-29 2013-06-12 北京化工大学 一种改性有机膨润土的制备方法
US20150355158A1 (en) * 2014-06-05 2015-12-10 Geocosm, LLC Predicting sediment and sedimentary rock properties
CN106145442A (zh) * 2016-07-31 2016-11-23 武汉理工大学 一种防止蒙脱石在水溶液中剥离的方法
CN110793926A (zh) * 2019-10-30 2020-02-14 刘圣梅 一种蒙脱石吸附力测定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172121B1 (en) * 1999-05-21 2001-01-09 The University Of Chicago Process for preparing organoclays for aqueous and polar-organic systems
US20060293424A1 (en) * 2005-06-24 2006-12-28 Mun-Fu Tse Functionalized propylene copolymer adhesive composition
US20110217254A1 (en) * 2008-10-22 2011-09-08 Beiersdorf Ag Antiperspirant preparations comprising hydrotalcite
CN102978301A (zh) * 2012-12-28 2013-03-20 陕西科技大学 原位法制备季铵盐插层蒙脱土改性菜籽油阻燃型纳米复合加脂剂的方法
CN103145140A (zh) * 2013-01-29 2013-06-12 北京化工大学 一种改性有机膨润土的制备方法
US20150355158A1 (en) * 2014-06-05 2015-12-10 Geocosm, LLC Predicting sediment and sedimentary rock properties
CN106145442A (zh) * 2016-07-31 2016-11-23 武汉理工大学 一种防止蒙脱石在水溶液中剥离的方法
CN110793926A (zh) * 2019-10-30 2020-02-14 刘圣梅 一种蒙脱石吸附力测定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李剑波 等: ""Li、Na、K基蒙脱石的基因特性与其水化膨胀特性的关系"", 《金属矿山》 *
白英生 等: ""高岭石水化作用和离子吸附的微量热研究"", 《南京大学学报(自然科学)》 *
陈平: ""烷基铵在蒙脱石层间的吸附及其对蒙脱石/烷基铵结构和凝胶性能的影响"", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Zhu et al. Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus
Deng et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system
Dai et al. Enhancement of Uranyl Adsorption Capacity and Selectivity on Silica Sol− Gel Glasses via Molecular Imprinting
CN102765737B (zh) 一种模板剂导向制备介孔球形氧化铝及其制备方法
Tong et al. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application
Li et al. Green synthesis of monolithic column incorporated with graphene oxide using room temperature ionic liquid and eutectic solvents for capillary electrochromatography
Gurtova et al. Potentiometric propranolol-selective sensor based on molecularly imprinted polymer
Zhai et al. Preparation of monodispersed uniform silica spheres with large pore size for fast adsorption of proteins
CN101234339A (zh) 硅胶基质化学键合相填料
Carroll et al. Aerogels as platforms for chemical sensors
Liu et al. Visual detection of trace lead (II) using a forward osmosis-driven device loaded with ion-responsive nanogels
Xin et al. A highly sensitive plastic optic-fiber with a molecularly imprinted polymer coating for selective detection of 4-chlorophenol in water
Chormey et al. Nanoflower synthesis, characterization and analytical applications: a review
Demirbas et al. Equilibrium, kinetics, and thermodynamic of adsorption of enzymes on diatomite clay materials
CN113340939A (zh) 一种水溶液中蒙脱石-有机物之间偶极相互作用的测量方法
Bosacka et al. Physicochemical and adsorption characteristics of divinylbenzene-co-triethoxyvinylsilane microspheres as materials for the removal of organic compounds
Grzegorzewski et al. In situ fabrication of multi-walled carbon nanotubes/silica hybrid colloidosomes by pickering emulsion templating using trialkoxysilanes of opposite polarity
Yang et al. Preparation of porous uranium oxide hollow nanospheres with peroxidase mimicking activity: application to the colorimetric determination of tin (II)
Li et al. Functional composite membranes based on mesoporous silica spheres in a hierarchically porous matrix
Islam et al. BPB dye confined growth of surfactant-assisted mesostructured silica matrix fiber optic sensing tracers
CN108992419B (zh) 一种介孔-大孔纳米马达及其制备方法和应用
Du et al. Study on the adsorption properties of graphene oxide/Laponite RD/chitosan composites
Li et al. Fabrication of ZnO-SnO2 heterojunction inverse opal photonic balls for chemiresistive acetone sensing
Saoud et al. Diatom biosilica: Source, physical‐chemical characterization, modification, and application
Zhao et al. Selective enrichment of clenbuterol onto molecularly imprinted polymer microspheres with tailor-made structure and oxygen functionalities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210903