CN113337112A - 一种高过面热导率的树脂组合物及其制备方法和应用 - Google Patents

一种高过面热导率的树脂组合物及其制备方法和应用 Download PDF

Info

Publication number
CN113337112A
CN113337112A CN202110624139.3A CN202110624139A CN113337112A CN 113337112 A CN113337112 A CN 113337112A CN 202110624139 A CN202110624139 A CN 202110624139A CN 113337112 A CN113337112 A CN 113337112A
Authority
CN
China
Prior art keywords
thermal conductivity
resin composition
heat
parts
high over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110624139.3A
Other languages
English (en)
Other versions
CN113337112B (zh
Inventor
胡建建
周霆
辛敏琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Kumho Sunny Plastics Co Ltd
Original Assignee
Shanghai Kumho Sunny Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Kumho Sunny Plastics Co Ltd filed Critical Shanghai Kumho Sunny Plastics Co Ltd
Priority to CN202110624139.3A priority Critical patent/CN113337112B/zh
Publication of CN113337112A publication Critical patent/CN113337112A/zh
Application granted granted Critical
Publication of CN113337112B publication Critical patent/CN113337112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种高过面热导率的树脂组合物及其制备方法,包括以下重量份的组分:热塑性树脂30‑70份,片状或针状电绝缘导热填料20‑50份,导热协效填料5‑20份,增强纤维5‑15份,抗氧剂0.1‑1份,润滑剂0.5‑2份。将除增强纤维以外的其余原料按配方混合搅拌,混合均匀后喂入双螺杆挤出机的主喂料口,增强纤维按照比例喂入双螺杆挤出机侧喂料口,控制双螺杆挤出机的温度为230~300℃,在螺杆的输送、剪切和混炼下,将物料熔化、充分混合,然后经口模挤出、牵条、冷却、干燥、切粒,即可得到具有超高热导率的树脂组合物。与现有技术相比,本发明树脂组合物可高效提升过面热导率,降低成本。

Description

一种高过面热导率的树脂组合物及其制备方法和应用
技术领域
本发明涉及高分子技术领域,尤其是涉及一种高过面热导率的树脂组合物及其制备方法和应用。
背景技术
不论是汽车行业、消费电子行业,还是电子电器行业,其中的电子元器件、逻辑电路越来越趋于集成化、小型化,元器件的功率密度越来越高。在元器件工作过程中,有相当一部分的能量转为热量,热量的聚集会不但会对元器件的工作效率产生不良影响,而且会大幅降低其使用寿命。因此,如何选择散热材料、如何进行散热结构设计将这些热量快速导出就成为了关键问题。需要散热的常见器件包括照明LED灯、汽车LED车灯、汽车芯片、智能穿戴设备芯片、换热器、断路器底座等等。
通常,金属材料作为热的良导体,其导热系数通常在200-1000W/(m*K)范围,是电子元器件热量导出最普遍使用的封装材料之一。然而金属材料具有比重大、易腐蚀、复杂结构不易成型等缺点,使得具有导热特性的热塑性树脂复合材料的使用越来越广泛。相比金属,导热树脂用于元器件的壳、罩类封装材料,可以提供平衡的热导率、易于模塑的设计自由度、更加优异的耐腐蚀性以及成本经济性。
树脂材料的导热改性通常是将具有高导热系数的填料与热塑性树脂基材通过熔融共混进行加工而来。按照导热树脂是否具备导电特性,又可以分为绝缘导热塑料和导电导热塑料。绝缘导热塑料一般是通过添加具有高热导率的陶瓷类填料制备而来,常见的有氧化铝、氧化镁、氧化锌、氮化硼、氮化铝、碳化硅等;而导电导热类树脂材料则通常通过添加金属类或碳系类填料获得,常见的金属填料包括铝、铜、镍、银等,碳系填料包括炭黑、石墨、石墨烯、碳纳米纤维、碳纳米管等。
对于电子电器领域的散热应用,导热材料的选择往往不能以牺牲电绝缘性、电击穿强度为代价,否则散热零件将引起安全隐患,因此绝缘导热塑料通常作为此类应用的材料选择。
元件器散热材料的散热性能,不仅与材料的导热系数密切相关,还与散热材料的厚度、对流介质类型、热源的距离、散热器的结构设计等因素有关。通常散热材料的导热系数越大、零件厚度越薄、对流介质的比热容越高、距离热源越近,所达到的散热效果越好。然而对于散热零件的结构设计,通常会设计成“翅片形”结构,这种结构除了增大了换热面积之外,更重要的是充分利用了导热塑料的导热系数的各向异性。因为导热塑料中的导热填料通常在尺度上具有各向异性(片状、针状),且模塑过程中导热填料容易沿着流动方向进行取向,使得垂直流动方向比平行流动方向产生更大的界面热阻,也就是所谓的“过面热导率”和“面内热导率”。面内热导率通常是过面热导率的几倍到十几倍不等,“翅片形”的散热结构利用的导热塑料较高的面内热导率进行散热而回避了较低的过面热导率。然而对于高度集成的芯片、或是断路器底壳,其散热零件通常不足以有充足的空间进行这样结构设计,导热塑料较低的过面热导率成为散热性能的一大障碍,因此如何解决导热塑料过低的过面热导率成为一大技术难题。
专利号为CN108701555A的发明专利公布了一种用于塑壳断路器底座的导热塑料,其技术方案中采用了氮化硼和炭黑作为导热填料,组合物材料的面内导热系数为2.1W/(m*K),过面热导率为0.9W/(m*K),过面热导率只有面内热导率的42.9%。由于氮化硼为各向异性较大的片状结构,复合炭黑可以一定程度减小热导率的各向异性,但过面热导率与面内热导率仍然存在较大的差异。专利号为CN103965616A的发明专利公布了一种导热树脂组合物及其制备方法,其技术方案采用碳化硼粒子复合氮化硼纤维作为导热填料制备高热导率的树脂组合物。显而易见,具有二维结构的氮化硼纤维的加入必然增大热导率的各向异性。专利号为CN101568599A的发明专利公布了一种导热树脂组合物,其技术方案以高长高比的石墨为导热填料,相比于球形导热填料,虽然高的长高比具有更大的比表面积,但会不可避免的增大热导率的各向异性。专利号为CN109790025A的发明专利公布了一种球形氮化硼颗粒的制备方法,这种球形氮化硼虽然可以有效降低了热导率的各向异性,但会导致材料成本的大幅上升。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种高过面热导率的树脂组合物及其制备方法和应用。
本发明的目的可以通过以下技术方案来实现:一种高过面热导率的树脂组合物及其制备方法,该树脂组合物包括以下重量分的组分:热塑性树脂30-70份,片状或针状电绝缘导热填料20-50份,导热协效填料5-20份,增强纤维5-15份,抗氧剂0.1-1份,润滑剂0.5-2份。
进一步地,本发明高过面热导率的树脂组合物,更优选的重量份为:热塑性树脂50-60份,片状或针状电绝缘导热填料25-40份,导热协效填料5-10份,增强纤维5-10份,抗氧剂0.1-1份,润滑剂0.5-2份。
进一步地,所述的热塑性树脂为尼龙6、尼龙66、聚苯硫醚(PPS)、ABS树脂、聚碳酸酯(PC)、聚对苯二甲醇乙二醇酯(PET)、聚对苯二甲酸丁二醇(PBT)、聚乙烯、聚苯醚、聚醚醚酮、聚酰亚胺、聚芳酯、聚砜中的一种或几种,但不限于以上树脂。更优选的热塑性树脂为尼龙6、尼龙66、聚苯硫醚、PBT、PET、聚苯醚、聚醚醚酮和聚酰亚胺。
进一步地,所述的片状或针状电绝缘导热填料包括氮化硼、氮化铝、硅铝酸盐、氧化铝、氧化锌、氧化镁、氧化铍、二氧化硅、氧化镍、氧化钙中的一种过几种,其径厚比大于5:1,更优选的径厚比大于10:1。
进一步地,所述的导热协效填料为具有三维针状结构的金属氧化物,包括氧化锌、氧化铝、氧化镁、氧化钙中的一种或多种。导热协效填料的第一特性为三维针状结构。
进一步地,所述的增强纤维为短切纤维,包括但不限于玻纤纤维、玄武岩纤维、碳纤维及其复合纤维,增强纤维直径优选的为8-25μm,更优选的在10-15μm范围。经过共混改性后增强纤维在树脂中的保留长度优选的在50-500μm范围分布。
进一步地,所述的抗氧剂包括抗氧剂1010、抗氧剂1076、抗氧剂1098、抗氧剂B900或抗氧剂168的一种或几种。
进一步地,所述的润滑剂选自硅油、白矿油、脂肪酸酰胺、硬脂酸钡、硬脂酸镁、PETS、石蜡、聚乙烯蜡、乙撑双硬脂酸酰胺、乙烯-醋酸乙烯共聚物或乙烯-丙烯酸共聚物中的一种或几种。
本发明还提供一种高过面热导率的树脂组合物及其制备方法,该方法具体包括以下步骤:
(1)按以下重量份对各组分备料:
Figure BDA0003101423260000041
(2)将步骤(1)中除增强纤维以外,将上述其余原料按配方置于低速或高速混合机内搅拌,混合均匀后经过失重式计量装置喂入双螺杆挤出机的主喂料口,增强纤维采用失重式计量装置按照比例喂入挤出机侧喂料口,控制双螺杆挤出机的温度为230~300℃,在螺杆的输送、剪切和混炼下,将物料熔化、充分混合,然后经口模挤出、牵条、冷却、干燥、切粒等步骤,即可得到具有超高热导率的树脂组合物。
进一步地,步骤(2)中所述双螺杆挤出机长径比为36:1~48:1,侧喂料口优选位于第5~第8节筒体。
进一步地,步骤(2)中增强纤维必须采用侧喂的喂料方式,其余原料的喂料采用主喂加入挤出机。
进一步地,步骤(2)中,双螺杆挤出机的螺杆转速控制在200-600RPM,优选的控制在200-400RPM。
进一步地,步骤(2)中所述牵条、冷却装置可选用水槽冷却牵条,更优选的采用带喷淋冷却系统的传送带牵条设备。
本发明还提供一种高过面热导率的树脂组合物的应用,将所述树脂组合物作为散热材料,制成散热元器件,如照明LED灯、汽车LED车灯、汽车芯片、智能穿戴设备芯片、换热器、断路器底座等等。
与现有技术相比,本发明具有以下有益效果:
(1)本发明所提供的高过面热导率的树脂组合物及其制备方法。具有电绝缘特性的高导热填料通常为氮化硼、氮化铝,是热导率要求较高的绝缘导热树脂常用填料,然而这类导热填料结构多为片层状结构,存在较大的各向异性,虽然可以获得较高的面内热导率,但很难兼顾过面热导率,难以获得具有高的综合热导率的树脂材料。本发明创新性的引入具有三维针状结构的导热协效剂作为辅助填料,一方面可以利用其三维针状结构在片层导热填料的层与层之间形成搭接效应,降低过面传导热阻,从而高效提升过面热导率,另一方面也可有效降低氮化硼、氮化铝等导热填料的成本,更有助于材料在下游零件中的广泛使用。例如,以氮化硼为填料,导热塑料的过面热导率仅为面内热导率的15%-20%;以一维结构的导热纤维或球状导热粒子作为氮化硼的协效剂时,制备的导热塑料的过面热导率可以达到面内热导率的30%-50%;而以具有三维针状结构的导热填料作为氮化硼的协效剂时,所得到的树脂组合物的过面热导率可达到面内热导率的50%-60%。
(2)本发明采用增强纤维作为增强树脂性能的配料,增强纤维为短切纤维,包括但不限于玻纤纤维、玄武岩纤维、碳纤维及其复合纤维,纤维直径优选的为8-25μm,更优选的在10-15μm范围。经过共混改性后纤维在树脂中的保留长度优选的在50-500μm范围分布。
(3)本发明所提供的高过面热导率的树脂组合物除具有高的过面热导率之外,还可以保持机械强度不产生明显降低。
(4)本发明树脂组合物的制备采用失重式计量装置,可使组合物的导热和机械性能更加稳定;增强纤维采用侧喂的喂料方式以及较低的螺杆转速,可以最大化地保留增强纤维在组合物中的长径比,从而获得更加优异的机械性能。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
如没有特殊说明,本发明选用的原材料均为市售产品。
实施例1~8及对比例1-3:
一种高过面热导率的树脂组合物及其制备方法,该方法包括以下步骤:
将表1中除玻璃纤维以外的各组分,按配方比例计量并置于高速混合机内搅拌,混合均匀后经过失重式计量装置喂入双螺杆挤出机的主喂料口,增强纤维采用失重式计量装置按照比例喂入挤出机侧喂料口,所述双螺杆挤出机长径比为40:1,侧喂料口位于第6节筒体,控制双螺杆挤出机的转速为200-600rpm,温度为230~300℃,在螺杆的输送、剪切和混炼下,将物料熔化、充分混合,然后经口模挤出、牵条、冷却、干燥、切粒等步骤,即得到具有超高热导率的树脂组合物。
其中,表1的材料组成如下:
树脂PA66,为神马股份的ERP24,特性粘度为2.45;
树脂PPS,为新和成的1150C,熔融指数为450g/10min(316℃*5Kg);
导热填料BN,为3M生产的CFP012,D50为8–14μm;
导热填料AlN,为百图生产的TA-1,D50为1.7μm;
导热协效填料ZnO(1),为市售的三维针状氧化锌,拥有多个针状分支结构,D50为4-6μm;
导热协效填料MgO,为市售的三维针状氧化镁,拥有多个针状分支结构,D50为4-6μm;
导热协效填料ZnO(2),为市售的球形氧化锌,D50为4-5μm;
玻璃纤维,为巨石的短切玻璃纤维568H,纤维直径为11-13μm,长度4.5mm;
碳纤维为三菱化学的TR06NL,纤维直径5-7μm,长度6mm,以聚酰胺为集束剂。
抗氧剂,为Ciba精化的Irganox 1076;Irganox 168、Irganox 1010
润滑剂,为市售的PETS,熔点Tm为60~65℃。
上述双螺杆挤出机长径比可以为36:1~48:1,侧喂料口可以位于第5~第8节筒体的任一节,在此条件范围内生产的组合物均可实现本发明的效果。
表1各实施例和对比例配方组成
Figure BDA0003101423260000061
Figure BDA0003101423260000071
表2为性能测试结果,具体项目如下:
拉伸强度和拉伸模量:按照ISO 527标准测试,拉伸强度测试条件为5mm/min,拉伸模量测试条件为1mm/min;
Charpy缺口冲击强度:按照ISO 179-1标准测试,摆锤能量4.0KJ;
热导率测试:将各实施例和对比例所制备的导热树脂通过注塑机注塑为直径50mm,厚6mm的圆片用于热性能测试,测试设备为HOT DISK。
表2各实施例和对比例的性能对比
Figure BDA0003101423260000081
实施例1~2仅采用的三维针状导热协效剂种类不同,可以两者均具有良好的力学性能和导热性能;将实施例1与对比例3进行比较,区别在于对比例3采用的导热协效剂为球形氧化锌,两者的力学性能差别不大,但是实施例1所得产品的导热性能远远优于对比例3,证明:三维针状导热协效填料具有提升导热塑料过面热导率的作用;
实施例3~4与实施例1~2相比,降低了导热填料的用量,增加了导热协效填料的用量,可以看出:三维针状导热协效剂的添加量增加,有利于提高过面热导率/面内热导率;
实施例5~6与实施例1~2相比,改变了树脂体系,可以看出:三维针状导热协效剂在其他树脂体系中仍然有效。
实施例7~8为本发明组合物中各原料用量在极限条件下时,所得产品的过面热导率/面内热导率与对比例相比仍有提高。
由表2可以得出以下结论:
a、仅以片层结构的氮化硼为导热填料时,导热塑料的导热系数存在非常大的各项异性,过面热导率仅为面内热导率的10-12%;
b、添加各向同性的导热协效填料作为协效剂可以有效降低导热塑料的各向异性,若以球形的氧化锌作为协效剂,制备的导热塑料的过面热导率显著提高,可达到其面内热导率的30-35%;
c、若具有三维针状结构的导热协效填料作为协效剂时,制备的导热塑料的过面热导率大幅提高,可达到其面内热导率的50-55%,这是因为三维针状结构更有利于氮化硼层间结构的搭接,降低过面的界面热阻;
d、以具有三维针状结构的导热协效填料作为层状氮化硼的协效剂,在各种不同树脂基材中均可体现显著效果,大幅提高过面热导率。
将实施例1-8所得树脂组合物作为散热材料,制成散热元器件,如照明LED灯、汽车LED车灯、汽车芯片、智能穿戴设备芯片、换热器、断路器底座等等,具有良好的散热效果,可以提高其使用寿命。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。

Claims (10)

1.一种高过面热导率的树脂组合物,其特征在于,包括以下重量份的组分:热塑性树脂30-70份,片状或针状电绝缘导热填料20-50份,导热协效填料5-20份,增强纤维5-15份,抗氧剂0.1-1份,润滑剂0.5-2份。
2.根据权利要求1所述的一种高过面热导率的树脂组合物,其特征在于,所述的热塑性树脂为尼龙6、尼龙66、聚苯硫醚、ABS树脂、聚碳酸酯、聚对苯二甲醇乙二醇酯、聚对苯二甲酸丁二醇、聚乙烯、聚苯醚、聚醚醚酮、聚酰亚胺、聚芳酯、聚砜中的一种或几种。
3.根据权利要求1所述的一种高过面热导率的树脂组合物,其特征在于,所述的片状或针状电绝缘导热填料包括氮化硼、氮化铝、硅铝酸盐、氧化铝、氧化锌、氧化镁、氧化铍、二氧化硅、氧化镍、氧化钙中的一种过几种,其径厚比大于5:1。
4.根据权利要求1所述的一种高过面热导率的树脂组合物,其特征在于,所述的导热协效填料为具有三维针状结构的金属氧化物,包括氧化锌、氧化铝、氧化镁、氧化钙中的一种或多种。
5.根据权利要求1所述的一种高过面热导率的树脂组合物,其特征在于,所述的增强纤维为短切纤维,包括玻纤纤维、玄武岩纤维、碳纤维或其复合纤维。
6.根据权利要求1所述的一种高过面热导率的树脂组合物,其特征在于,所述的抗氧剂包括抗氧剂1010、抗氧剂1076、抗氧剂1098、抗氧剂B900或抗氧剂168的一种或几种。
7.根据权利要求1所述的一种高过面热导率的树脂组合物,其特征在于,所述的润滑剂选自硅油、白矿油、脂肪酸酰胺、硬脂酸钡、硬脂酸镁、PETS、石蜡、聚乙烯蜡、乙撑双硬脂酸酰胺、乙烯-醋酸乙烯共聚物或乙烯-丙烯酸共聚物中的一种或几种。
8.一种如权利要求1-7中任一所述的高过面热导率的树脂组合物的制备方法,其特征在于,具体包括以下步骤:
(1)按以下重量份对各组分备料:
Figure FDA0003101423250000011
Figure FDA0003101423250000021
(2)将步骤(1)中除增强纤维以外的其余原料按配方混合搅拌,混合均匀后喂入双螺杆挤出机的主喂料口,增强纤维按照比例喂入双螺杆挤出机侧喂料口,控制双螺杆挤出机的温度为230~300℃,在螺杆的输送、剪切和混炼下,将物料熔化、充分混合,然后经口模挤出、牵条、冷却、干燥、切粒,即可得到具有超高热导率的树脂组合物。
9.一种如权利要求1-7中任一所述的高过面热导率的树脂组合物的应用,其特征在于,将所述树脂组合物作为散热材料,制成散热元器件。
10.根据权利要求9所述的高过面热导率的树脂组合物的应用,其特征在于,所述散热元器件包括照明LED灯、汽车LED车灯、汽车芯片、智能穿戴设备芯片、换热器或断路器底座。
CN202110624139.3A 2021-06-04 2021-06-04 一种高过面热导率的树脂组合物及其制备方法和应用 Active CN113337112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110624139.3A CN113337112B (zh) 2021-06-04 2021-06-04 一种高过面热导率的树脂组合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110624139.3A CN113337112B (zh) 2021-06-04 2021-06-04 一种高过面热导率的树脂组合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113337112A true CN113337112A (zh) 2021-09-03
CN113337112B CN113337112B (zh) 2023-04-07

Family

ID=77473890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110624139.3A Active CN113337112B (zh) 2021-06-04 2021-06-04 一种高过面热导率的树脂组合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113337112B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719099A (zh) * 2012-06-08 2012-10-10 金发科技股份有限公司 一种导热模塑组合物及其制备方法
JP2013028661A (ja) * 2011-07-27 2013-02-07 Unitika Ltd 樹脂組成物およびそれからなる成形体
CN104151825A (zh) * 2014-08-06 2014-11-19 西南科技大学 一种导热绝缘聚砜复合材料及其制备方法
US20200377728A1 (en) * 2019-05-31 2020-12-03 National Institute Of Advanced Industrial Science And Technology Composite resin granules and method for producing the same, and thermally conductive resin molded body using composite resin granules and method for producing thermally conductive resin molded body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028661A (ja) * 2011-07-27 2013-02-07 Unitika Ltd 樹脂組成物およびそれからなる成形体
CN102719099A (zh) * 2012-06-08 2012-10-10 金发科技股份有限公司 一种导热模塑组合物及其制备方法
CN104151825A (zh) * 2014-08-06 2014-11-19 西南科技大学 一种导热绝缘聚砜复合材料及其制备方法
US20200377728A1 (en) * 2019-05-31 2020-12-03 National Institute Of Advanced Industrial Science And Technology Composite resin granules and method for producing the same, and thermally conductive resin molded body using composite resin granules and method for producing thermally conductive resin molded body

Also Published As

Publication number Publication date
CN113337112B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US10385250B2 (en) Thermally conductive composites and method of preparing same
CN102719099B (zh) 一种导热模塑组合物及其制备方法
CN101225231B (zh) 一种绝缘导热玻纤增强的pps复合材料及其制备方法
CN102079864A (zh) 一种绝缘导热树脂组合物及其塑胶制品
CN106519659B (zh) 一种高性能导热尼龙复合材料及其制备方法和应用
KR101457016B1 (ko) 내습성 및 열전도성이 우수한 열가소성 수지 조성물 및 성형품
KR101139412B1 (ko) 열전도성 절연 수지 조성물 및 플라스틱 성형품
CN105462246B (zh) 一种石墨烯/金属粉复合改性的超高导热尼龙及其制备方法
CN113025039A (zh) 一种聚苯硫醚复合材料及其制备方法
CN104559145A (zh) 一种高韧性高导热高分子材料及其制备方法
US20100063192A1 (en) Polyarylene sulfide resin composition and a molded article formed therefrom
CN102070899A (zh) 一种绝缘导热聚酰胺复合材料及制备方法
CN101775213A (zh) 一种高导热复合材料及其制备方法
CN102617927A (zh) 一种用于降低led结温的新型材料及其制备方法
CN106675008B (zh) 高导热尼龙6复合材料及其制备方法
CN113105732A (zh) 一种高导热率的树脂基复合材料及其制备方法
CN112708270B (zh) 一种高导热尼龙基复合材料及其制备方法
CN104341772A (zh) 用于led散热器应用的导热聚酰胺组合物
KR20100050249A (ko) 전기절연성 고열전도성 수지 조성물
KR101257693B1 (ko) 전기절연성 고열전도성 수지 조성물
CN103059536B (zh) 一种聚碳酸酯/聚乙烯合金导热复合材料及其制备方法
KR100885653B1 (ko) 고방열성 하이브리드 충진재 타입 복합수지 조성물
CN113337112B (zh) 一种高过面热导率的树脂组合物及其制备方法和应用
KR101657338B1 (ko) 고분자 수지 조성물과 제조 방법, 및 플라스틱 사출 성형품
CN113462152A (zh) Led灯杯、绝缘导热复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant