CN113289649A - 一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用 - Google Patents

一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用 Download PDF

Info

Publication number
CN113289649A
CN113289649A CN202110639123.XA CN202110639123A CN113289649A CN 113289649 A CN113289649 A CN 113289649A CN 202110639123 A CN202110639123 A CN 202110639123A CN 113289649 A CN113289649 A CN 113289649A
Authority
CN
China
Prior art keywords
solution
moo
doped
photocatalytic material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110639123.XA
Other languages
English (en)
Inventor
王秋芹
韩林松
葛金龙
严回
李秋
尚微微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bengbu College
Original Assignee
Bengbu College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bengbu College filed Critical Bengbu College
Priority to CN202110639123.XA priority Critical patent/CN113289649A/zh
Publication of CN113289649A publication Critical patent/CN113289649A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,包括以下步骤:S1:配制0.2mmol/mL硝酸铋溶液;S2:配制0.1mmol/mL钼酸钠溶液,再缓慢加入硝酸铋溶液,搅拌均匀,形成溶液A;S3:将氟化铵、硝酸铁、溴化铵溶于无水乙醇中,磁力搅拌下10‑15min,形成溶液B;S4:在磁力搅拌下,将溶液B缓慢滴加于溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于150‑200℃溶剂热反应20‑36h后,离心弃上清,将所得产物洗涤、干燥,研磨成粉体。本发明首次一步溶剂法将F、Fe、Br掺杂于Bi2MoO6层间结构中,在纳米Bi2MoO6带隙能级中引入缺陷能级,减少禁带宽度,降低价带电子跃迁所需的能量,拓宽其对可见光的光谱响应范围,并实现光生电子及空穴的高效分离,进而提高光催化性能。

Description

一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用
技术领域
本发明属于光催化材料领域,具体涉及一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用。
背景技术
金属钼酸盐作为催化材料具有多活性点、高比表面、高表面能以及高选择性等优势,已被应用于催化烃类的选择氧化反应,还表现出优良的光电性能、电化学性能及光催化性能。钼酸铋作为典型的Aurivillius相层状结构的复合氧化物,其禁带宽度为2.63eV,吸收带边在510nm附近,对可见光具有良好的吸收能力,具有可见光光催化性能。
钼酸铋晶相结构中的MoO6八面体层和(Bi2O2)2+层交替排列,相比于其他半导体光催化剂,由于其独特的层状结构,在加速光生载流子在层间的传输的同时,也使得光生电子和空穴更容易复合,进而降低光量子效率和光催化效率,且钼酸铋对可见光的光谱响应范围较窄。此外,现有技术制备出的钼酸铋光催化材料都是在250-500W的氙灯光源下模拟对有机染料的降解性能,功率高、耗能大,由于氙灯的制备技术含量高,成本也更高,不适宜企业更低成本处理废水的需求;如申请号为CN201510396551.9的发明专利,公开一种聚噻吩/钼酸铋复合光催化剂及其制备方法,采用500W的氙灯作为光源进行光解罗丹明;如申请号为CN201710508676.5的发明专利,公开一种石墨烯基双金属硫化物纳米复合光催化剂的制备方法,采用300W的氙灯作为光源进行光解制氢。
因此,如何提高Bi2MoO6的光催化性能及实现其在低功率日光灯光照下的高效率催化降解具有重要意义。
发明内容
针对现有技术的不足之处,本发明的目的在于提供一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用。
本发明的技术方案概述如下:
一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,包括以下步骤:
S1:将一定量的五水合硝酸铋加入乙二醇中,磁力搅拌10-15min,配制成0.2mmol/mL硝酸铋溶液;
S2:将一定量的二水合钼酸钠加入乙二醇中,磁力搅拌10-15min,配制成0.1mmol/mL钼酸钠溶液,再缓慢加入硝酸铋溶液,搅拌均匀,形成溶液A;
S3:将氟化铵、硝酸铁、溴化铵溶于无水乙醇中,磁力搅拌下10-15min,形成溶液B;
S4:在磁力搅拌下,将溶液B缓慢滴加于溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于150-200℃溶剂热反应20-36h后,离心弃上清,将所得产物洗涤、干燥,研磨成粉体,得F、Fe、Br掺杂Bi2MoO6复合光催化材料。
优选的是,所述五水合硝酸铋、二水合钼酸钠、氟化铵、硝酸铁、溴化铵、无水乙醇的用量比例为2mmol:1mmol:(0.1-0.4)mmol:(0.1-0.4)mmol:(0.1-0.4)mmol:40mL。
优选的是,所述洗涤方法为:先用蒸馏水洗涤所得产物3次,再用无水乙醇洗涤3次。
优选的是,所述干燥温度为80℃。
所述F、Fe、Br掺杂Bi2MoO6复合光催化材料应用于LED光照下的染料废水的催化降解。
本发明的有益效果:
1.本发明首次一步溶剂法将F、Fe、Br掺杂于Bi2MoO6层间结构中,Fe元素取代Bi2MoO6晶格中的部分Bi元素,在纳米Bi2MoO6带隙能级中引入缺陷能级,减少禁带宽度,降低纳米Bi2MoO6价带电子跃迁所需的能量,拓宽其对可见光的光谱响应范围及提高光吸收利用率,同时,Bi元素缺陷位置还能快速捕捉光生空穴,实现光生电子和光生空穴的高效分离,提高光催化量子效率;F、Br元素取代Bi2MoO6晶格中的部分O元素,形成氧缺陷位置,进一步降低纳米Bi2MoO6的禁带宽度,拓宽光谱响应范围,同时,氧缺陷位置还能快速捕捉光生电子,抑制光生电子-空穴对的形成,提高光催化量子效率,进一步提高纳米Bi2MoO6的光催化性能。
2.由于氟元素的掺杂使纳米Bi2MoO6具有更低的表面能,抑制Bi2MoO6纳米粒子间的团聚,提高催化剂比表面积,暴露更多活性位点,缩短光生电荷到达Bi2MoO6晶体表面的距离,提高光催化活力和效率。
附图说明
图1为本发明F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法流程图;
图2为实施例1制出的F、Fe、Br掺杂钼酸铋的SEM图谱;
图3为实施例2制出的F、Fe、Br掺杂钼酸铋的SEM图谱;
图4为实施例3制出的F、Fe、Br掺杂钼酸铋的SEM图谱;
图5为对比例制出的钼酸铋纯品SEM图谱;
图6为实施例1制出的F、Fe、Br掺杂钼酸铋的XRD图谱;
图7为实施例2制出的F、Fe、Br掺杂钼酸铋的XRD图谱;
图8为实施例3制出的F、Fe、Br掺杂钼酸铋的XRD图谱;
图9为对比例制出的钼酸铋纯品XRD图谱;
图10为实施例1-3制出的F、Fe、Br掺杂钼酸铋在不同时间的LED光照下对罗丹明B的降解率图;
图11为对比例制出的钼酸铋纯品在不同时间的LED光照下对罗丹明B的降解率图。
具体实施方式
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供一实施例的F、Fe、Br掺杂Bi2MoO6复合光催化材料的一步溶剂法制备方法,所述F、Fe、Br掺杂Bi2MoO6复合光催化材料应用于LED光照下的染料废水的催化降解;包括以下步骤:
S1:将一定量的五水合硝酸铋加入乙二醇中,磁力搅拌10-15min,配制成0.2mmol/mL硝酸铋溶液;
S2:将一定量的二水合钼酸钠加入乙二醇中,磁力搅拌10-15min,配制成0.1mmol/mL钼酸钠溶液,再缓慢加入硝酸铋溶液,搅拌均匀,形成溶液A;
S3:将氟化铵、硝酸铁、溴化铵溶于无水乙醇中,磁力搅拌下10-15min,形成溶液B;
所述五水合硝酸铋、二水合钼酸钠、氟化铵、硝酸铁、溴化铵、无水乙醇的用量比例为2mmol:1mmol:(0.1-0.4)mmol:(0.1-0.4)mmol:(0.1-0.4)mmol:40mL;
S4:在磁力搅拌下,将溶液B缓慢滴加于溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于150-200℃溶剂热反应20-36h后,离心弃上清,将所得产物先用蒸馏水洗涤所得产物3次,再用无水乙醇洗涤3次后,于80℃条件下干燥,研磨成粉体,得F、Fe、Br掺杂Bi2MoO6复合光催化材料。
实施例1 F、Fe、Br、Mo的摩尔比为0.4:0.1:0.1:1
一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,包括以下步骤:
S1:将2mmol五水合硝酸铋加入10mL乙二醇中,磁力搅拌10min,配制成0.2mmol/mL硝酸铋溶液;
S2:将1mmol二水合钼酸钠加入10mL乙二醇中,磁力搅拌10min,配制成0.1mmol/mL钼酸钠溶液,再缓慢加入S1所得硝酸铋溶液,搅拌均匀,形成溶液A;
S3:将0.4mmol氟化铵、0.1mmol硝酸铁、0.1mmol溴化铵溶于40mL无水乙醇中,磁力搅拌下10min,形成溶液B;
S4:在磁力搅拌下,将S3所得溶液B缓慢滴加于S2所得溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于160℃溶剂热反应24h后,离心弃上清,将所得产物先用蒸馏水洗涤所得产物3次,再用无水乙醇洗涤3次后,于80℃条件下干燥,研磨成粉体,得F、Fe、Br掺杂Bi2MoO6复合光催化材料。
实施例2 F、Fe、Br、Mo的摩尔比为0.1:0.25:0.1:1
一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,包括以下步骤:
S1:将2mmol五水合硝酸铋加入10mL乙二醇中,磁力搅拌10min,配制成0.2mmol/mL硝酸铋溶液;
S2:将1mmol二水合钼酸钠加入10mL乙二醇中,磁力搅拌10min,配制成0.1mmol/mL钼酸钠溶液,再缓慢加入S1所得硝酸铋溶液,搅拌均匀,形成溶液A;
S3:将0.1mmol氟化铵、0.25mmol硝酸铁、0.1mmol溴化铵溶于40mL无水乙醇中,磁力搅拌下10min,形成溶液B;
S4:在磁力搅拌下,将S3所得溶液B缓慢滴加于S2所得溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于160℃溶剂热反应24h后,离心弃上清,将所得产物先用蒸馏水洗涤所得产物3次,再用无水乙醇洗涤3次后,于80℃条件下干燥,研磨成粉体,得F、Fe、Br掺杂Bi2MoO6复合光催化材料。
实施例3 F、Fe、Br、Mo的摩尔比为0.1:0.1:0.25:1
一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,包括以下步骤:
S1:将2mmol五水合硝酸铋加入10mL乙二醇中,磁力搅拌10min,配制成0.2mmol/mL硝酸铋溶液;
S2:将1mmol二水合钼酸钠加入10mL乙二醇中,磁力搅拌10min,配制成0.1mmol/mL钼酸钠溶液,再缓慢加入S1所得硝酸铋溶液,搅拌均匀,形成溶液A;
S3:将0.1mmol氟化铵、0.1mmol硝酸铁、0.25mmol溴化铵溶于40mL无水乙醇中,磁力搅拌下10min,形成溶液B;
S4:在磁力搅拌下,将S3所得溶液B缓慢滴加于S2所得溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于160℃溶剂热反应24h后,离心弃上清,将所得产物先用蒸馏水洗涤所得产物3次,再用无水乙醇洗涤3次后,于80℃条件下干燥,研磨成粉体,得F、Fe、Br掺杂Bi2MoO6复合光催化材料。
对比例
一种Bi2MoO6光催化材料制备方法,包括以下步骤:
S1:将2mmol五水合硝酸铋加入10mL乙二醇中,磁力搅拌10min,配制成0.2mmol/mL硝酸铋溶液;
S2:将1mmol二水合钼酸钠加入10mL乙二醇中,磁力搅拌10min,配制成0.1mmol/mL钼酸钠溶液,再缓慢加入S1所得硝酸铋溶液,搅拌均匀,形成溶液A;
S3:在磁力搅拌下,将40mL无水乙醇缓慢滴加于S2所得溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于160℃溶剂热反应24h后,离心弃上清,将所得产物先用蒸馏水洗涤所得产物3次,再用无水乙醇洗涤3次后,于80℃条件下干燥,研磨成粉体,得Bi2MoO6纯品光催化材料。
对实施例1-3及对比例制出的光催化材料进行光催化性能测试:
试验方法:先在黑暗条件下,将实施例1-3及对比例制出的光催化材料分别加入4组100ml的20mg/L罗丹明B溶液中,搅拌均匀后,打开9W的LED日光灯光源,照射到反应体系中,并在第15min、30min、45min、60min、75min、90min进行取样分析,测定降解过程中亚甲基蓝的浓度C,并计算光降解率,光降解率公式为100%×(1-C/C0),C0为50mg/L,试验结果如表1及图10-11所示:
表1为实施例1-3制出的F、Fe、Br掺杂钼酸铋在不同时间的LED光照下对罗丹明B的降解率图
表1:
Figure BDA0003106992510000051
Figure BDA0003106992510000061
由表1及图10-11可知,相比于无掺杂的对比例钼酸铋纯品,实施例1-3中F、Fe、Br掺杂钼酸铋对于罗丹明B的光催化降解性能得到显著的提升,在第60min时,实施例1-3对罗丹明B的降解率即达到93.32%以上,而对比例在第60min时对罗丹明B的降解率仅约58%,此外,实施例1表现出最优的催化性能,在第30min时,对罗丹明B的降解率就达到了92.85%,可能由于实施例1中F元素的掺杂量均高于实施例2中Fe元素、实施例3中Br元素,说明掺杂量对于钼酸铋的催化性能具有重要影响。
实施例1-3首次一步溶剂法将F、Fe、Br掺杂于Bi2MoO6层间结构中,Fe元素取代Bi2MoO6晶格中的部分Bi元素,在纳米Bi2MoO6带隙能级中引入缺陷能级,减少禁带宽度,降低纳米Bi2MoO6价带电子跃迁所需的能量,拓宽其对可见光的光谱响应范围及提高光吸收利用率,同时,Bi元素缺陷位置还能快速捕捉光生空穴,实现光生电子和光生空穴的高效分离,提高光催化量子效率;F、Br元素取代Bi2MoO6晶格中的部分O元素,形成氧缺陷位置,进一步降低纳米Bi2MoO6的禁带宽度,拓宽光谱响应范围,同时,氧缺陷位置还能快速捕捉光生电子,抑制光生电子-空穴对的形成,提高光催化量子效率,进一步提高纳米Bi2MoO6的光催化性能。
实施例1-3由于氟元素的掺杂使纳米Bi2MoO6具有更低的表面能,抑制Bi2MoO6纳米粒子间的团聚,提高催化剂比表面积,暴露更多活性位点,缩短光生电荷到达Bi2MoO6晶体表面的距离,提高光催化活力和效率。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (5)

1.一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,其特征在于,包括以下步骤:
S1:将一定量的五水合硝酸铋加入乙二醇中,磁力搅拌10-15min,配制成0.2mmol/mL硝酸铋溶液;
S2:将一定量的二水合钼酸钠加入乙二醇中,磁力搅拌10-15min,配制成0.1mmol/mL钼酸钠溶液,再缓慢加入硝酸铋溶液,搅拌均匀,形成溶液A;
S3:将氟化铵、硝酸铁、溴化铵溶于无水乙醇中,磁力搅拌下10-15min,形成溶液B;
S4:在磁力搅拌下,将溶液B缓慢滴加于溶液A中形成均匀溶液后,再将所得溶液转移到反应釜中,于150-200℃溶剂热反应20-36h后,离心弃上清,将所得产物洗涤、干燥,研磨成粉体,得F、Fe、Br掺杂Bi2MoO6复合光催化材料。
2.根据权利要求1所述一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,其特征在于,所述五水合硝酸铋、二水合钼酸钠、氟化铵、硝酸铁、溴化铵、无水乙醇的用量比例为2mmol:1mmol:(0.1-0.4)mmol:(0.1-0.4)mmol:(0.1-0.4)mmol:40mL。
3.根据权利要求1所述一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,其特征在于,所述洗涤方法为:先用蒸馏水洗涤所得产物3次,再用无水乙醇洗涤3次。
4.根据权利要求1所述一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法,其特征在于,所述干燥温度为80℃。
5.如权利要求1-4任一项所述的制备方法制出的所述F、Fe、Br掺杂Bi2MoO6复合光催化材料应用于LED光照下的染料废水的催化降解。
CN202110639123.XA 2021-06-08 2021-06-08 一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用 Pending CN113289649A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110639123.XA CN113289649A (zh) 2021-06-08 2021-06-08 一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110639123.XA CN113289649A (zh) 2021-06-08 2021-06-08 一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113289649A true CN113289649A (zh) 2021-08-24

Family

ID=77327619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110639123.XA Pending CN113289649A (zh) 2021-06-08 2021-06-08 一种F、Fe、Br掺杂Bi2MoO6复合光催化材料制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113289649A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155606A (zh) * 2022-06-21 2022-10-11 蚌埠学院 一种Bi2MO6/NiTiO3异质结光催化薄膜材料的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091991A (ja) * 2010-09-30 2012-05-17 Ohara Inc ガラスセラミックス、その製造方法、それを含む光触媒、スラリー状混合物、光触媒部材、浄化装置、フィルタ、焼結体及びガラスセラミックス複合体
CN105251517A (zh) * 2015-10-30 2016-01-20 武汉工程大学 一种Fe掺杂卤氧铋纳米材料的制备方法
CN109794293A (zh) * 2019-01-24 2019-05-24 杭州师范大学 一种铁基光催化剂及其降解罗丹明b的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091991A (ja) * 2010-09-30 2012-05-17 Ohara Inc ガラスセラミックス、その製造方法、それを含む光触媒、スラリー状混合物、光触媒部材、浄化装置、フィルタ、焼結体及びガラスセラミックス複合体
CN105251517A (zh) * 2015-10-30 2016-01-20 武汉工程大学 一种Fe掺杂卤氧铋纳米材料的制备方法
CN109794293A (zh) * 2019-01-24 2019-05-24 杭州师范大学 一种铁基光催化剂及其降解罗丹明b的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LU YANG ET AL.: "Improved photocatalytic properties of Fe(III) ion doped Bi2MoO6 for the oxidation of organic pollutants", 《CERAMICS INTERNATIONAL》 *
ZEYNAB KHAZAEE ET AL.: "Template-confined growth of X-Bi2MoO6 (X: F, Cl, Br, I) nanoplates with open surfaces for photocatalytic oxidation; experimental and DFT insights of the halogen doping", 《SOLAR ENERGY》 *
张小平: "掺杂可见光催化剂Bi_2WO_6的制备及降解效果研究", 《贵阳学院学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155606A (zh) * 2022-06-21 2022-10-11 蚌埠学院 一种Bi2MO6/NiTiO3异质结光催化薄膜材料的制备方法及其应用
CN115155606B (zh) * 2022-06-21 2023-07-04 蚌埠学院 一种Bi2MoO6/NiTiO3异质结光催化薄膜材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
Jiang et al. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Wang et al. Optimizing Pd and Au-Pd decorated Bi2WO6 ultrathin nanosheets for photocatalytic selective oxidation of aromatic alcohols
Zou et al. Lanthanum orthovanadate/bismuth oxybromide heterojunction for enhanced photocatalytic air purification and mechanism exploration
Zhou et al. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst
Yu et al. Visible-light photocatalytic degradation of bisphenol A using cobalt-to-oxygen doped graphitic carbon nitride with nitrogen vacancies via metal-to-ligand charge transfer
Li et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution
Fan et al. Single-site nickel-grafted anatase TiO2 for hydrogen production: Toward understanding the nature of visible-light photocatalysis
Zhong et al. In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U (VI) photocatalytic reduction
Ahmad et al. Facile and inexpensive synthesis of Ag doped ZnO/CNTs composite: Study on the efficient photocatalytic activity and photocatalytic mechanism
Xu et al. Doping metal ions only onto the catalyst surface
Chang et al. Facile construction of Z-scheme AgCl/Ag-doped-ZIF-8 heterojunction with narrow band gaps for efficient visible-light photocatalysis
Yang et al. One step solvothermal synthesis of Bi/BiPO4/Bi2WO6 heterostructure with oxygen vacancies for enhanced photocatalytic performance
CN108993604B (zh) 高可见光活性AgIn5S8/UIO-66-NH2复合材料及其制备方法和应用
Zheng et al. Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity
Song et al. Enhanced photocatalytic decomposition of an organic dye under visible light with a stable LaFeO3/AgBr heterostructured photocatalyst
Huang et al. Facile in situ synthesis of Ag and Bi co-decorated BiOCl heterojunction with high photocatalytic performance over the full solar spectrum
Li et al. Modifying g-C3N4 with oxidized Ti3C2 MXene for boosting photocatalytic U (VI) reduction performance
Nsib et al. Effect of some operational parameters on the hydrogen generation efficiency of Ni-ZnO/PANI composite under visible-light irradiation
Kong et al. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance
Yang et al. Efficient H 2 evolution on Co 3 S 4/Zn 0.5 Cd 0.5 S nanocomposites by photocatalytic synergistic reaction
Yu et al. Low-temperature strategy for vapor phase hydrothermal synthesis of C\N\S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
Huang et al. Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2
Zhu et al. Novel Cu-Fe/LDH@ BiOI1. 5 photocatalyst effectively degrades tetracycline under visible light irradiation
Lu et al. Microwave-assisted synthesis and characterization of BiOI/BiF 3 p–n heterojunctions and its enhanced photocatalytic properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210824

RJ01 Rejection of invention patent application after publication