CN113265609B - 一种快速制备316l不锈钢铝化物阻氚涂层表面氧化铝的方法 - Google Patents

一种快速制备316l不锈钢铝化物阻氚涂层表面氧化铝的方法 Download PDF

Info

Publication number
CN113265609B
CN113265609B CN202110486098.6A CN202110486098A CN113265609B CN 113265609 B CN113265609 B CN 113265609B CN 202110486098 A CN202110486098 A CN 202110486098A CN 113265609 B CN113265609 B CN 113265609B
Authority
CN
China
Prior art keywords
stainless steel
tritium
aluminide
resistant coating
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110486098.6A
Other languages
English (en)
Other versions
CN113265609A (zh
Inventor
张新房
黄孝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110486098.6A priority Critical patent/CN113265609B/zh
Publication of CN113265609A publication Critical patent/CN113265609A/zh
Application granted granted Critical
Publication of CN113265609B publication Critical patent/CN113265609B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • C23C2/385Tubes of specific length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Abstract

一种快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,属于涂层技术领域。该方法是将具有铝化物阻氚涂层316L不锈钢用导线连接脉冲电源,持续施加脉冲电流直至相应时间,根据样品阻氚涂层类型及脉冲处理样品尺寸来选择合适的脉冲电流处理参数范围:频率500Hz~33000Hz,脉宽1μs~100ms,电流密度2A/mm2~50A/mm2,作用时间1min~8h,电脉冲引起的焦耳热温升为300‑1200℃。本发明与现有的利用传统的高温热氧化铝化物阻氚涂层制备阻氚氧化层的方法相比,可在较低的处理温度条件下实现涂层表面氧化层的生成,并且处理所需的时间较短,能够满足多种尺寸和形态的工件处理,操作工艺简单,能量消耗较低,符合当前工业绿色发展规划的要求。

Description

一种快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法
技术领域
本发明属于涂层技术领域,具体涉及一种快速制备316L不锈钢铝化物阻氚涂层表面Al2O3的方法。
背景技术
在核反应堆环境中,氢及其同位素是聚变反应的主要燃料,其中氚具有一定的放射性和活性,对结构材料的渗透能力强,容易发生泄漏造成燃料损失。并且,氚的渗透将会发生结构材料脆化和放射性污染等问题。在钢结构材料(如:316L不锈钢、P91钢、低活化铁素体/马氏体钢等)的表面制备阻氚涂层是减少氢及其同位素渗透的最有效方法之一。
Al2O3因氚渗透降低因子(PRF)远大于其他材料,且具有耐高温、电绝缘性以及与Li-Pb相容性好等优点而成为目前阻氚性能最好的涂层材料之一。然而,氧化物陶瓷与金属基体间的热膨胀系数差异较大,热失配明显,导致涂层极易脱落。主流的解决方法是在基体和涂层之间形成具有梯度功能的过渡层,因具有PRF高、热失配小、冶金结合性能、相容性好及自修复性能等优势,以FeAl合金为过渡层的FeAl/Al2O3涂层体系成为国际热核聚变实验堆计划(ITER)各参与国优先发展的阻氚涂层之一。
FeAl/Al2O3阻氚涂层的制备通常包括铝化和氧化两个步骤:铝化是指将铝源中铝原子与钢基体中铁原子的相互扩散,从而在钢表面形成FeAl金属间化合物过渡层的过程;氧化是指依据选择性氧化原理,使过渡层表面选择性氧化形成一层Al2O3薄膜的过程。FeAl/Al2O3阻氢涂层在气体环境中的PRF可以达到103,甚至上万,这其中既有FeAl合金过渡层的贡献,又有Al2O3薄膜的贡献。但是,氢及其同位素在FeAl合金中更易扩散,这意味着Al2O3薄膜是决定FeAl/Al2O3阻氚涂层最终服役性能的关键。氧化铝具有多种相结构,如a-Al2O3、θ-Al2O3、γ-Al2O3等。亚稳态θ-Al2O3和γ-Al2O3为针状,形成的氧化膜比较稀疏;稳态α-Al2O3为脊状,形成的氧化膜较致密,可有效阻止氚渗透。研究表明,α-Al2O3的PRF在103以上,而γ-Al2O3的仅为40~70。因此,FeAl/Al2O3阻氚涂层最期望形成α-Al2O3薄膜。
在FeAl合金过渡层表面制备Al2O3薄膜的方法主要包括热氧化法、热喷涂法、气相沉积法和微弧氧化法等。其中:热喷涂法制备的Al2O3薄膜与基体的结合强度低,力学性能较差;采用化学气相沉积(CVD)和物理气相沉积(PVD)等方法得到的Al2O3薄膜的结合强度和热失配性能也有待提高;微弧氧化法可在室温下制备得到α-Al2O3氧化层,α-Al2O3由亚稳态Al2O3在局部高温作用下向稳态转变而获得,但薄膜中还存在亚稳态γ-Al2O3以及非晶相。并且,上述方法所需的设备操作工艺复杂,制备氧化层成本较高,效率低等缺点。热氧化法通过对FeAl合金过渡层进行高温氧化获得Al2O3,其应用范围较广。但是,热氧化法处理形成α-Al2O3的温度高达1200℃且处理时间较长。长时间的暴露高温氧化处理对基体组织造成损伤和机械性能大幅度降低。因此,如何在低温下制备高质量的α-Al2O3是目前阻氢涂层制备技术中亟需解决的问题。
发明内容
本发明的目的在于提供一种非传统的外场处理手段即通过脉冲电流处理实现快速制备316L不锈钢铝化物阻氚涂层表面Al2O3的方法,可在较低的处理温度条件下实现涂层表面氧化层的生成,提高铝化物抗氚渗透性,并且处理所需的时间较短,操作工艺简单,能量消耗较低,可满足多种尺寸和形态的工件处理。
本发明是将具有铝化物阻氚涂层的316L不锈钢进行脉冲处理,所述脉冲处理的参数范围为频率500Hz~33000Hz,脉宽1μs~100ms,电流密度2A/mm2~50A/mm2,作用时间1min~8h,电脉冲引起的焦耳热温升为300-1200℃,在316L不锈钢铝化物阻氚涂层表面形成Al2O3薄膜。
所述具有铝化物阻氚涂层的316L不锈钢是采用热浸铝化(HDA)技术或包埋渗铝(PC)技术,对316L不锈钢进行镀铝处理,使其形成铝化物阻氚涂层,获得浸铝涂层316L不锈钢或渗铝涂层316L不锈钢。
所述热浸铝化(HDA)技术是将不锈钢基体浸入670~780℃的熔融浸镀铝液中,保持0.5-15min;所述包埋渗铝(PC)技术是将不锈钢基体埋入Fe-Al铝源中,在720~850℃温度的真空环境下保持1-8h。
所述脉冲处理所采用的设备均为脉冲电源。
所述对铝化物阻氚涂层材料进行脉冲氧化处理均在室温条件下进行。
进一步地,脉冲处理的作用时间对浸铝涂层316L不锈钢为1min~3h。
进一步地,脉冲处理的作用时间对渗铝涂层316L不锈钢为0.5h~8h。
本发明与现有的利用高温热氧化法制备阻氚氧化层的方法相比,脉冲处理借助多元化的效应耦合作用,不局限于焦耳热或温度影响,可在低温、短时的条件下对不锈钢铝化物涂层表面进行改性处理,形成具有提高氚渗透降低因子的氧化层。同时,因具有处理温度低、时间短的特点,脉冲电流可有效克服因传统的需长时间高温处理的热氧化法制备涂层氧化层,而致使基体性能大幅度降低的难题。并且,可直接通过外接电源,精确控制脉冲电流处理参数实现316L不锈钢铝化物阻氚涂层表面Al2O3的快速制备,操作简单、能量消耗较低、效率高,可满足多种尺寸和形态的工件处理,符合当前工业绿色发展规划的要求。
附图说明
图1为实施例1、2中浸铝涂层316L不锈钢经脉冲电流处理前后涂层表面物相的变化。
图2为实施例1中浸铝涂层316L不锈钢经脉冲电流处理前后涂层表面EDS成分的变化。
图3为实施例3中渗铝涂层316L不锈钢经脉冲电流处理前后涂层表面物相的变化。
具体实施方式
采用包埋渗铝技术和热浸铝化技术对316L不锈钢制备铝化物阻氚涂层,获得了研究材料渗铝涂层316L不锈钢和浸铝涂层316L不锈钢。由于阻氚涂层的制备工艺不同,获得的铝化物涂层的结构和成分分布具有差异性,对应的脉冲处理参数有一定的差别。为了验证可满足不同尺寸工件的处理要求,对不同尺寸的材料进行了脉冲电流处理。
实施例1:
本实施例对条状浸铝涂层316L不锈钢进行脉冲电流处理。具体步骤如下:
第一步:制备脉冲处理样品。取样品尺寸30mm×10mm×2.2mm的浸铝涂层316L不锈钢样品(浸入680℃的熔融浸镀铝液中,保持10min),采用超声波设备将样品放在酒精内清洗30min,以确保样品洁净,可与脉冲电极接触良好。
第二步:确定脉冲处理参数及进行脉冲处理。对脉冲电流的参数范围进行设定,确定脉冲电流参数为31000Hz,3.5μs,12.7A/mm2,作用时间为5min,电脉冲引起的焦耳热温升约为950℃。将样品用夹具固定在脉冲电源输出端,在室温条件下对其进行脉冲电流处理。
第三步:对脉冲处理后样品涂层表面进行X射线衍射技术(XRD)检测,对比脉冲电流处理前后样品涂层表面物相的变化,发现涂层表面有a-Al2O3物相生成,结果如图1所示。对脉冲处理后样品涂层表面采用扫描电镜(SEM)的能谱仪(EDS)进行面扫描分析,对比脉冲电流处理前后样品涂层表面成分的变化,发现涂层表面的氧含量大幅度提升,结果如图2所示。
实施例2:
本实施例对管状浸铝涂层316L不锈钢进行脉冲电流处理。具体步骤如下:
第一步:制备脉冲处理样品。取尺寸内径为16.8mm,外径为20.6mm,长为40mm的浸铝涂层316L不锈钢样品(浸入750℃的熔融浸镀铝液中,保持8min),采用超声波设备将样品放在酒精内清洗30min,以确保样品洁净,可与脉冲电极接触良好。
第二步:确定脉冲处理参数及进行脉冲处理。对脉冲电流的参数范围进行设定,确定脉冲电流参数为31000Hz,3.5μs,14A/mm2,作用时间为5min,电脉冲引起的焦耳热温升约为1100℃。将样品用夹具固定在脉冲电源输出端,在室温条件下对其进行脉冲电流处理。
第三步:对脉冲处理后样品涂层表面进行XRD检测,对比脉冲电流处理前后样品涂层表面物相的变化,发现涂层表面有a-Al2O3物相生成,结果如图1所示。对脉冲处理后样品涂层表面采用扫描电镜(SEM)的能谱仪(EDS)进行面扫描分析,对比脉冲电流处理前后样品涂层表面成分的变化。
实施例3:
本实施例对管状渗铝涂层316L不锈钢进行脉冲电流处理。具体步骤如下:
第一步:制备脉冲处理样品。取尺寸内径为16.8mm,外径为20.6mm,长为40mm的渗铝涂层316L不锈钢样品,采用超声波设备将样品放在酒精内清洗30min,以确保样品洁净,可与脉冲电极接触良好。
第二步:确定脉冲处理参数及进行脉冲处理。对脉冲电流的参数范围进行设定,确定脉冲电流参数为32000Hz,3.5μs,10.5A/mm2,作用时间为60min,电脉冲引起的焦耳热温升约为900℃。将样品用夹具固定在脉冲电源输出端,在室温条件下对其进行脉冲电流处理。
第三步:对脉冲处理后管状样品内部涂层表面进行XRD检测,对比脉冲电流处理前后样品涂层表面物相的变化,发现涂层表面有Al2O3物相生成,结果如图3所示。
以上所述,仅为本发明对316L不锈钢铝化物阻氚涂层的最佳具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构想加以等同替换相近材料、设备或调整相关技术参数,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,其特征在于,将具有铝化物阻氚涂层的316L不锈钢进行脉冲电流处理,所述脉冲电流处理的参数范围为频率500Hz~33000Hz,脉宽1μs~100ms,电流密度2A/mm2~50A/mm2,作用时间1min~8h,电脉冲引起的焦耳热温升为300-1200oC,在316L不锈钢铝化物阻氚涂层表面形成α-Al2O3薄膜。
2.如权利要求1所述的快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,其特征在于,所述具有铝化物阻氚涂层的316L不锈钢是采用热浸铝化HDA技术或包埋渗铝PC技术,对316L不锈钢进行镀铝处理,使其形成铝化物阻氚涂层,获得浸铝涂层316L不锈钢或渗铝涂层316L不锈钢。
3.如权利要求2所述的快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,其特征在于,所述热浸铝化HDA技术是将不锈钢基体浸入670~780℃的熔融浸镀铝液中,保持0.5-15min;所述包埋渗铝PC技术是将不锈钢基体埋入Fe-Al铝源中,在720~850℃温度的真空环境下保持1-8h。
4.如权利要求1所述的快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,其特征在于,所述脉冲电流处理所采用的设备均为脉冲电源。
5.如权利要求1所述的快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,其特征在于,所述脉冲电流处理均在室温条件下进行。
6.如权利要求1或2所述的快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,其特征在于,所述脉冲电流处理的作用时间对浸铝涂层316L不锈钢为1min~3h。
7.如权利要求1或2所述的快速制备316L不锈钢铝化物阻氚涂层表面氧化铝的方法,其特征在于,所述脉冲电流处理的作用时间对渗铝涂层316L不锈钢为0.5h~8h。
CN202110486098.6A 2021-04-30 2021-04-30 一种快速制备316l不锈钢铝化物阻氚涂层表面氧化铝的方法 Active CN113265609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110486098.6A CN113265609B (zh) 2021-04-30 2021-04-30 一种快速制备316l不锈钢铝化物阻氚涂层表面氧化铝的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110486098.6A CN113265609B (zh) 2021-04-30 2021-04-30 一种快速制备316l不锈钢铝化物阻氚涂层表面氧化铝的方法

Publications (2)

Publication Number Publication Date
CN113265609A CN113265609A (zh) 2021-08-17
CN113265609B true CN113265609B (zh) 2022-04-19

Family

ID=77229909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110486098.6A Active CN113265609B (zh) 2021-04-30 2021-04-30 一种快速制备316l不锈钢铝化物阻氚涂层表面氧化铝的方法

Country Status (1)

Country Link
CN (1) CN113265609B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525563B (zh) * 2022-02-28 2023-11-10 北京科技大学 一种制备管/板材表面致密的α-Al2O3涂层的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229853A (ja) * 1990-02-02 1991-10-11 Japan Atom Energy Res Inst ステンレス鋼表面のトリチウム汚染抑制法
CN101280416A (zh) * 2008-05-08 2008-10-08 南京航空航天大学 在钢/铝复合管材表面制备α-Al2O3涂层的等离子氧化装置
CN105154775A (zh) * 2015-07-24 2015-12-16 中国科学院等离子体物理研究所 一种聚变堆用可低温生成α-Al2O3阻氢渗透层的钢基结构材料
CN106609353A (zh) * 2016-12-22 2017-05-03 四川大学 气体脉冲反应溅射法制备Al2O3阻氚涂层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229853A (ja) * 1990-02-02 1991-10-11 Japan Atom Energy Res Inst ステンレス鋼表面のトリチウム汚染抑制法
CN101280416A (zh) * 2008-05-08 2008-10-08 南京航空航天大学 在钢/铝复合管材表面制备α-Al2O3涂层的等离子氧化装置
CN105154775A (zh) * 2015-07-24 2015-12-16 中国科学院等离子体物理研究所 一种聚变堆用可低温生成α-Al2O3阻氢渗透层的钢基结构材料
CN106609353A (zh) * 2016-12-22 2017-05-03 四川大学 气体脉冲反应溅射法制备Al2O3阻氚涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FeAl/Al2O3复合阻氚涂层制备技术的研究进展;向鑫等;《稀有金属材料与工程》;20160229;第45卷(第02期);第524页2.3 热浸铝化及2.4 包埋渗铝 *

Also Published As

Publication number Publication date
CN113265609A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Han et al. An interesting oxidation phenomenon of Cr coatings on Zry-4 substrates in high temperature steam environment
Wang et al. Oxidation resistance improvement of Zr-4 alloy in 1000° C steam environment using ZrO2/FeCrAl bilayer coating
Yan et al. Fabrication of reactive element oxide coatings on porous ferritic stainless steel for use in metal-supported solid oxide fuel cells
Utili et al. Development of anti-permeation and corrosion barrier coatings for the WCLL breeding blanket of the European DEMO
CA2925498A1 (en) Fuel cell separator and manufacturing method of fuel cell separator
Li et al. Oxidation behavior and Cr-Zr diffusion of Cr coatings prepared by atmospheric plasma spraying on zircaloy-4 cladding in steam at 1300° C
Wang et al. Hydrogen permeation properties of CrxCy@ Cr2O3/Al2O3 composite coating derived from selective oxidation of a CrC alloy and atomic layer deposition
Luo et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors
CN113265609B (zh) 一种快速制备316l不锈钢铝化物阻氚涂层表面氧化铝的方法
US20090312186A1 (en) Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites
Kruk et al. Effect of Co deposition on oxidation behavior and electrical properties of ferritic steel for solid oxide fuel cell interconnects
Kim et al. Production of Ni65Cr15P16B4 metallic glass-coated bipolar plate for fuel cell by high velocity oxy-fuel (HVOF) spray coating method
CN103114267B (zh) 一种钢基体表面氧化铝涂层的制备方法
Zhao et al. Improved thermal shock and corrosion resistance of α-Al2O3/AlPO4 coating with PAA addition
CN110106467A (zh) 一种核反应堆用高效结合包覆层及其制备方法
Song et al. Growth behavior and insulation property of the oxide layer during micro-arc oxidation of aluminium in “soft” regime condition
CN112657815A (zh) 一种316L不锈钢管内壁Al2O3/SiO2复合阻氚涂层的制备方法
Yu et al. High-performance amorphous carbon films on titanium foils: Toward industrial preparation of coated metallic bipolar plates for proton exchange membrane fuel cells
Wang et al. Hydrogen interaction characteristics of a Cr2O3Y2O3 coating formed on stainless steel in an ultra-low oxygen environment
CN108677164A (zh) 一种钢基材表面Al2O3涂层的原子层沉积制备方法
Liu et al. Preparation and properties of Al2O3/SiO2 composite tritium permeation barrier and its effects on the inner walls of pipelines
Wang et al. Microstructure and deuterium resistance of Al 2 O 3/Y 2 O 3 composite coating with different annealing atmospheres
CN106757216B (zh) 一种钒合金表面阻氚渗透电绝缘涂层的制备方法及其制备的产品
Wang et al. Study on the influence of introducing Al transition layer on deuterium resistance of Al2O3 coating
CN112930018A (zh) 一种基于多主元设计的含镁中子靶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant