CN113265452A - 一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法 - Google Patents

一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法 Download PDF

Info

Publication number
CN113265452A
CN113265452A CN202110526236.9A CN202110526236A CN113265452A CN 113265452 A CN113265452 A CN 113265452A CN 202110526236 A CN202110526236 A CN 202110526236A CN 113265452 A CN113265452 A CN 113265452A
Authority
CN
China
Prior art keywords
genome
sample
species
detected
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110526236.9A
Other languages
English (en)
Inventor
王辉
陈宏斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Peking University Peoples Hospital
Original Assignee
Peking University Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Peoples Hospital filed Critical Peking University Peoples Hospital
Priority to CN202110526236.9A priority Critical patent/CN113265452A/zh
Publication of CN113265452A publication Critical patent/CN113265452A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于Nanopore宏基因组RNA‑seq的生物信息学检测病原体的方法。本发明将宏基因组测序和Nanopore单分子实时测序有机结合,应用于临床标本的病原体高通量检测。Nanopore单分子实时测序所需起始RNA量大,临床标本提取的RNA的量不能满足其建库要求,本发明采用随机引物扩增将RNA极大的富集,使其能够应用于临床。本发明开发了基于Nanopore宏基因组RNA‑seq的生物信息学分析方法,能够迅速、准确的检测临床样本中的病原体,为临床疑难感染性疾病的病原学诊断提供依据,使疑难感染患者的治疗有的放矢,大大改善疑难感染患者的诊治,使患者受益。本发明具有重要的应用价值。

Description

一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原 体的方法
技术领域
本发明属于生物信息学领域,具体涉及一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法。
背景技术
多种病原体(如细菌、真菌、病毒、非典型病原体、寄生虫)可引起人器官感染。临床微生物实验室鉴定病原体的主要方法是培养,但病毒、非典型病原体和寄生虫无法常规鉴定。PCR虽然可以鉴定多种病原体,但仍会忽略一些未知的病原体。宏基因组测序(mNGS)可高通量鉴定样本中的细菌、真菌、病毒、非典型病原体、寄生虫以及新型病原体,弥补了传统微生物检测方法的局限性。
RNA测序比DNA测序更有益。一方面,如果仅提取DNA,则RNA病毒无法检测到。另一方面,进行总RNA提取/测序可捕获DNA和RNA的表达,并且mRNA序列可翻译成蛋白质。氨基酸序列比核苷酸序列更保守,因此可产生更明确的分类信息。
Nanopore单分子实时测序技术也被称为第三代纳米孔测序技术。作为一个新型的测序平台,它具有低成本、高通量、非标记和测序长度长等优势。不同于其他测序技术,Nanopore单分子实时测序技术不需要将基因组提前打断成数百万个几百个碱基长的片段,便能够快速、经济地生产出长达上万个碱基的读长数据。Nanopore单分子实时测序技术读长长、一致性准确度高、单分子实时检测能够突破二代测序技术读长短,存在GC bias等局限。
发明内容
本发明的目的是检测临床样本含有的病原体种类、丰度和/或基因组覆盖度。
本发明首先保护一种高通量检测若干待测样本含有的病原体种类、丰度和/或基因组覆盖度的方法,依次包括如下步骤:
(1)分别获得待测样本的cDNA;
(2)将各个待测样本的cDNA进行高通量测序,得到高通量测序结果;
(3)生物信息学分析,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度;
所述步骤(2)中,将各个待测样本的cDNA进行高通量测序的方法包括(2-1)—(2-5):
(2-1)分别取待测样本的cDNA,进行PCR扩增,得到PCR扩增产物;
(2-2)分别取PCR扩增产物,纯化,得到纯化产物;
(2-3)分别取纯化产物,进行末端修复,得到末段修饰后的cDNA;
(2-4)分别取末段修饰后的cDNA,连接barcode,得到连接barcode的样品;
(2-5)将各个连接barcode的样品混合,高通量测序;
所述步骤(3)中,生物信息学分析,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度的方法包括(3-1)—(3-5):
(3-1)Basecalling;
(3-2)拆分;
(3-3)质控;
(3-4)去宿主;
(3-5)物种比对;
(3-6)与参考基因组比对,确定病原体,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度。
所述步骤(1)中,获得待测样本的cDNA的方法可为:将待测样本的RNA进行退火,得到退火产物;之后进行逆转录和二链合成。
所述进行退火时的引物(即引物KN8)的核苷酸序列如SEQ ID NO:1所示。
所述待测样本的RNA可为采用qiagenAllPrepPowerViral DNA/RNA Kit(Catalogno.28000-50)提取待测样本获得。
所述退火反应体系可为13μl,包括1μl浓度为10μM的引物KN8溶液、1μl dNTP(浓度为10mM)和11μl待测样本的RNA。
所述退火程序具体可为:65℃5min;冰上急冷>1min;热盖105℃。
所述逆转录反应体系可为20μl,包括13μl退火产物、4μl super IVase buffer(Thermo Fisher)、1μl 100mM DDT、1μl RNase 007inhibitor和1μl super IVase(ThermoFisher)。
所述逆转录程序可为:42℃50min;70℃10min;4℃∞。
所述二链合成可为向逆转录产物中加入1μl lemon酶,之后混匀,进行二链合成,得到cDNA。
所述二链合成的反应程序可为:37℃3min;75℃15min;4℃保存。
所述(2-1)中,进行PCR扩增的引物(即primer K)的核苷酸序列可如SEQ ID NO:2所示。
所述(2-1)中,进行PCR扩增的反应体系可为50μl,包括5μl cDNA、25μl 2×mix(Q5溶液)、2μl primer K和18μl无核酸水。所述进行PCR扩增的反应程序可为:98℃30s;98℃10s,55℃15s,72℃1min,35cycles;72℃10min。
所述(2-2)中,纯化可采用TakaRaMiniBEST DNA Fragment Purification kit(cat#9761lot#AH70942A)进行。
所述(2-3)中,进行末端修复的反应体系可为15μl,包括Xμl纯化产物(含50ngDNA)、(12.5-X)μl无核酸水、1.75μl ultraⅡEnd-prep reaction buffer和0.75μl ultraⅡEnd-prep enzyme mix。进行末端修复的程序可为:20℃3min;65℃5min。
所述(2-4)中,连接barcode的方法可为:(1)制备反应体系。反应体系为20μl,包括4μl无核酸水、3μl末段修饰后的cDNA、2.5μl barcode、10μl Master mix和0.5μl Enhancer(目的为将barcode加在DNA末端)。(2)取所述反应体系,反应,得到连接barcode的样品。反应程序为:20℃20min;65℃10min。
所述(2-5)中,将各个连接barcode的样品混合后、高通量测序前,还可包括纯化的步骤。其中混合和纯化的步骤具体可为:
(1)将所有连接barcode的样品放入一个1.5ml的LoBind tube中,然后加入磁珠(总cDNA体积:磁珠体积=1:0.4),充分混合;
(2)室温孵育10min后,放到磁力架上,直至澄清;
(3)去除上清;
(4)加入500μl 80%乙醇水溶液洗涤,旋转EP管;
(5)去除上清,80%乙醇水溶液再洗一次;去除上清,瞬离,再吸干净,开盖放置30s,晾干;
(6)加入35μl无核酸水,室温放置5min,洗脱DNA;
(7)将LoBind tube管重新放回磁力架上,液体澄清后,将上清转移至新的LoBindtube管中,得到纯化后cDNA样品(已加接头);
(8)制备反应体系。反应体系为50μl,包括Xμl纯化后cDNA样品(含30-50ngcDNA)(已加接头)、(30-X)μl无核酸水、5μl AMⅡ、10μl 5×NEB Quick Ligation buffer和5μlT4 DNA ligase。
(9)取所述反应体系,21℃20min(开热盖)。
(10)纯化
(10-1)向完成步骤(9)的反应体系汇总加入20μl磁珠,室温孵育10min(10min内反复颠倒混匀);
(10-2)移到磁力架上,直至澄清,弃上清;
(10-3)加入125μl的SFB到磁珠中,悬浮磁珠,放回磁力架,直至澄清,弃上清;
(10-4)加入125μl的SFB再洗一次,去除上清,瞬离,再吸干净;
(10-5)用15μl的EB悬浮磁珠,放回磁力架,直至澄清,将上清转移至新的LoBindtube管中(不要碰到磁珠),得到cDNA文库。
所述高通量测序的步骤具体可为:
(1)配制priming mix(测序mix):30μl FLT直接加到1管FB中。
(2)将1000μl加样枪调到780μl,1μl慢慢的往上调排气泡,枪尖里有液体即可(大约调到800μl)。
(3)用1000μl的加样枪吸取800μl的priming mix,缓慢注入flow cell里,避免气泡,放置5min。
(4)配制文库。文库为75μl,包括37.5μl SQB、25.5μl LB(用前冲打混匀)和12μlcDNA文库。
(5)轻轻的打开SpotON sample port的盖,用1000μl的加样枪吸取200μl的priming mix,从priming port缓慢注入flow cell里,避免气泡。
(6)用200μl的加样枪吸取75μl文库一滴一滴加入到SpotON sample port里。
(7)盖上盖上机。
放10min左右loading后上机。
所述步骤(3)中,生物信息学分析,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度的方法可包括(3-1)—(3-5):
(3-1)Basecalling;
(3-2)拆分;
(3-3)质控;
(3-4)去宿主;
(3-5)物种比对;
(3-6)与参考基因组比对,确定病原体,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度。
所述步骤(3)中,Basecalling可为采用如下命令生成fastq文件:guppy_basecaller-i./-s output/--config/raw/chb/lung_tissue_nanopore/ont-guppy-cpu/data/dna_r9.4.1_450bps_hac.cfg-r--num_callers 24--cpu_threads_per_caller 2。拆分可为采用如下命令拆分fastq文件:guppy_barcoder-i./-s barcoder_20200806_1--barcode_kits SQK-RPB004-t 12。质控可为采用nano_pp脚本去除低于500bp的短reads,同时统计reads数、reads长度和分布。去宿主可为采用nano_rm_host脚本去除人宿主序列。物种比对可为采用nano_classify脚本与数据库进行物种比对,得出物种名称、特异性reads数。与参考基因组比对可为采用nano_realign脚本将比对上的reads和参考基因组进行比对。确定病原体可为采用nano_remove_neg脚本将待测样本测得的reads数标化后确定。基因组覆盖度可为采用nano_stats脚本计算每个物种测到的reads覆盖参考基因组的覆盖度,同时以图形显示测得reads覆盖参考基因组情况。采用nano_realign脚本将比对上的reads重新和参考基因组进行直接的比对进一步确定鉴定物种的准确性,得出物种名称、特异性reads数、丰度。采用nano_stats脚本计算每个物种测到的reads覆盖参考基因组的覆盖度,同时以图形显示测得reads覆盖参考基因组情况。采用nano_remove_neg脚本将待测样本测得的reads数标化,同时和阴性对照相比,RPM比率=RPM(样品)/RPM(阴性对照)大于10的物种为病原体。
所述数据库的构建方法如下:从已有基因组数据中下载细菌基因组库、古菌基因组库、真菌基因组库、病毒基因组库、非脊椎动物基因组库、原生生物基因组库和人全基因组数据,根据物种信息,每个物种选择一个代表序列,构建代表序列数据库;然后使用mummer将同一个物种的基因组进行比对去冗余,得到这个物种的pan-genome序列;去除冗余后的所有数据,使用centrifuge-build构建数据库。
所述已有基因组数据可为NCBI数据库收录的基因组数据。
在本发明的一个实施例中,数据库中共包含细菌5208个、古菌274个、真菌322个、病毒12947个、原生生物91个和非脊椎动物216个。
上述任一所述的方法在检测待测样本含有的病原体种类、丰度和/或基因组覆盖度中的应用也属于本发明的保护范围。
上述任一所述待测样本可为临床样本。所述临床样本可为脑脊液、肺泡灌洗液、穿刺液、血浆、宫颈分泌物或肺组织。
所述临床样本可置于DNA/RNA Shield稳定剂(Zymo,Catalog Code:R1100-50)中保存。临床样本为组织样本时,可先剪成小块再处理。临床样本为痰样本时,可先用痰消化液处理。
本发明将宏基因组测序和Nanopore单分子实时测序有机结合,应用于临床标本的病原体高通量检测。Nanopore单分子实时测序所需起始RNA量大,临床标本提取的RNA的量不能满足其建库要求,本发明采用随机引物扩增将RNA极大的富集,使其能够应用于临床。再次,本发明开发了基于Nanopore宏基因组RNA-seq的生物信息学分析方法,能够迅速、准确的检测临床样本中的病原体,为临床疑难感染性疾病的病原学诊断提供依据,使疑难感染患者的治疗有的放矢,大大改善疑难感染患者的诊治,使患者受益。本发明具有重要的应用价值。
具体实施方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法的建立
一、临床样本的获得
取临床样本,置于DNA/RNA Shield稳定剂(Zymo,Catalog Code:R1100-50)中保存。
注:临床样本为组织样本时,需先剪成小块再处理。临床样本为痰样本时,需先用痰消化液处理。
二、RNA提取
采用qiagenAllPrepPowerViral DNA/RNA Kit(Catalog no.28000-50)提取临床样本的RNA。具体步骤依次如下:
1、向Glass PowerBead Tube中加入200μL临床样本;
2、加入600μL PM1/β-ME;
3、置于Qiagen匀浆器,最大转速震荡10min;
4、室温、13000g离心1min,收集上清并转移至收集管中;
5、向收集管中加入150μL IRS液体涡旋混匀,4℃孵育5min;
6、13000g离心1min,收集上清并转移至收集管中;
7、加入600μL PM3液体和600μL PM4液体,涡旋混匀,得到混合液体;
8、向MB Spin Column柱子中转移625μL混合液体,13000g离心1min;
9、向MB Spin Column柱子中加入600μL PM5液体,13000g离心1min;
10、去除流出液,加入600μL PM4液体,13000g离心1min;
11、去除流出液,13000g离心2min;
12、将MB Spin Column放到一新的收集管中;
13、加入50μL RNase-free水,孵育3min;
14、13000g离心1min,收集液体即为临床样本的RNA,-70℃保存。
PM1/β-ME、IRS液体、PM4液体、PM3液体和PM5液体均为qiagenAllPrepPowerViralDNA/RNA Kit中的组件。
三、RNA测序
1、退火
(1)制备退火反应体系。退火反应体系为13μl,包括1μl浓度为10μM的引物KN8溶液、1μl dNTP(浓度为10mM)和11μl临床样本的RNA。
KN8引物:5’-GACCATCTAGCGACCTCCACNNNNNNNN-3’(SEQ ID NO:1)。(N为A、T、G和C中的任一种)
(2)取所述退火反应体系,进行退火,得到退火产物。
退火程序为:65℃5min;冰上急冷>1min;热盖105℃。
2、逆转录
(1)制备逆转录反应体系。逆转录反应体系为20μl,包括13μl退火产物、4μl superIVase(Thermo Fisher)、1μl 100mM DDT、1μl RNase 007inhibitor和1μl super IVase(Thermo Fisher)。
(2)取所述逆转录反应体系,进行逆转录,得到逆转录产物。
逆转录程序为:42℃50min;70℃10min;4℃∞。
3、cDNA的获得
向逆转录产物中加入1μl lemon酶,之后混匀,进行二链合成,得到cDNA。
反应程序为:37℃3min;75℃15min;4℃保存。
4、PCR扩增
(1)制备PCR反应体系。PCR反应体系为50μl,包括5μl cDNA、25μl 2×mix(Q5溶液)、2μl primer K和18μl无核酸水。
primer K:5’-GACCATCTAGCGACCTCCAC-3’(SEQ ID NO:2)。
(2)取所述PCR反应体系,进行PCR扩增,得到PCR扩增产物。
PCR反应程序为:98℃30s;98℃10s,55℃15s,72℃1min,35cycles;72℃10min。
5、取PCR扩增产物,采用TakaRaMiniBEST DNA Fragment Purification kit(cat#9761lot#AH70942A)进行DNA纯化(目的为去除小片段),得到纯化产物。
6、末端修复
(1)制备反应体系。反应体系为15μl,包括Xμl纯化产物(含50ng DNA)、(12.5-X)μl无核酸水、1.75μl ultraⅡEnd-prep reaction buffer和0.75μl ultraⅡEnd-prepenzyme mix。
(2)取所述反应体系,进行末端修复,得到末段修饰后的cDNA。
末端修复的程序为:20℃3min;65℃5min。
7、加建库接头即barcode
试剂盒EXP-NBD104:barcode 1-12;试剂盒EXP-NBD114:barcode 13-24。
(1)制备反应体系。反应体系为20μl,包括4μl无核酸水、3μl末段修饰后的cDNA、2.5μl barcode、10μl Master mix和0.5μl Enhancer(目的为将barcode加在DNA末端)。
(2)取所述反应体系,反应,得到连接了barcode的样品。
反应程序为:20℃20min;65℃10min。
8、混样纯化
(1)将所有连接了barcode的样品放入一个1.5ml的LoBind tube中,然后加入磁珠(总cDNA体积:磁珠体积=1:0.4),充分混合;
(2)室温孵育10min后,放到磁力架上,直至澄清;
(3)去除上清(留一点)(在磁力架上操作);
(4)加入500μl 80%乙醇水溶液洗涤,旋转EP管;
(5)去除上清,80%乙醇水溶液再洗一次;去除上清,瞬离,再吸干净,开盖放置30s,晾干;
(6)加入35μl无核酸水,室温放置5min,洗脱DNA;
(7)将LoBind tube管重新放回磁力架上,液体澄清后,将上清转移至新的LoBindtube管中(不要碰到磁珠),得到纯化后cDNA样品(已加接头);
(8)Qubit定量浓度(198μl qubit工作液+2μl纯化后cDNA样品(已加接头)),并记录。
9、接头连接和清洗
(1)制备反应体系。反应体系为50μl,包括Xμl纯化后cDNA样品(含30-50ng cDNA)(已加接头)、(30-X)μl无核酸水、5μl AMⅡ、10μl 5×NEB Quick Ligation buffer和5μlT4 DNA ligase。
(2)取所述反应体系,21℃20min(开热盖)。
(3)纯化
(3-1)向完成步骤(2)的反应体系汇总加入20μl磁珠,室温孵育10min(10min内反复颠倒混匀);
(3-2)移到磁力架上,直至澄清,弃上清;
(3-3)加入125μl的SFB到磁珠中,悬浮磁珠,放回磁力架,直至澄清,弃上清;
(3-4)加入125μl的SFB再洗一次,去除上清,瞬离,再吸干净;
(3-5)用15μl的EB悬浮磁珠,放回磁力架,直至澄清,将上清转移至新的LoBindtube管中(不要碰到磁珠),得到cDNA文库;
(3-6)Qubit定量浓度(198μl qubit工作液+2μlcDNA文库),并记录。
10、混样测序
(1)配制priming mix(测序mix):30μl FLT直接加到1管FB中。
(2)将1000μl加样枪调到780μl,1μl慢慢的往上调排气泡,枪尖里有液体即可(大约调到800μl)。
(3)用1000μl的加样枪吸取800μl的priming mix,缓慢注入flow cell里,避免气泡,放置5min。
(4)配制文库。文库为75μl,包括37.5μl SQB、25.5μl LB(用前冲打混匀)和12μlcDNA文库。
(5)轻轻的打开SpotON sample port的盖,用1000μl的加样枪吸取200μl的priming mix,从priming port缓慢注入flow cell里,避免气泡。
(6)用200μl的加样枪吸取75μl文库一滴一滴加入到SpotON sample port里。
(7)盖上盖上机。
放10min左右loading后上机。
11、MinKnow操作
(1)Experiment:输入实验名
(2)Kit:选择对应的建库kit
(3)Basecalling:Fast basecalling(电脑性能不够好时用此模式)
Basecalling and barcoding处于“ON”状态
(4)Run options:
Time:72h Bias voltage(mV):-180Active channel selection:“ON”
1.5h扫描1次
Start Run。
四、生物信息学分析
1、Basecalling
采用如下命令生成fastq文件:
guppy_basecaller-i./-s output/--config/raw/chb/lung_tissue_nanopore/ont-guppy-cpu/data/dna_r9.4.1_450bps_hac.cfg-r--num_callers 24--cpu_threads_per_caller 2
2、拆分
采用如下命令拆分fastq文件:
guppy_barcoder-i./-s barcoder_20200806_1--barcode_kits SQK-RPB004-t12
3、质控
采用nano_pp脚本去除低于500bp的短reads,同时统计reads数、reads长度和分布。
4、去宿主
采用nano_rm_host脚本去除人宿主序列。
5、物种比对
采用nano_classify脚本与数据库进行物种比对,得出物种名称、特异性reads数。
数据库构建的方法如下:数据库全部采用NCBI数据库收录的基因组数据,选择其中的细菌基因组库、古菌基因组库、真菌基因组库、病毒基因组库、非脊椎动物基因组库和原生生物基因组库,此外数据库还包含了人的全基因组数据。基因组数据按照分类下载后,根据物种信息,每个物种选择一个代表序列,构建代表序列数据库。然后使用mummer将同一个物种的基因组进行比对去冗余,得到这个物种的pan-genome序列。去除冗余后的所有数据,使用centrifuge-build构建比对数据库。
最终数据库中共包含细菌5208个,古菌274个,真菌322个,病毒12947个,原生生物91个,非脊椎动物216个。
6、重新比对
采用nano_realign脚本将比对上的reads重新和参考基因组进行直接的比对进一步确定鉴定物种的准确性,得出物种名称、特异性reads数、丰度。
7、基因组覆盖度
采用nano_stats脚本计算每个物种测到的reads覆盖参考基因组的覆盖度,同时以图形显示测得reads覆盖参考基因组情况。
8、报告
采用nano_remove_neg脚本将待测样本测得的reads数标化,同时和阴性对照相比,RPM比率=RPM(样品)/RPM(阴性对照)大于10的物种为病原体。
实施例2、实施例建立的方法的有效性检测
28份临床样本均由北京大学人民医院检验科微生物实验室提供,且临床样本的提供者均知情同意。
28份临床样本的样本号、临床诊断结果和标准类型见表1中第1-3列。
1、采用常规微生物培养方法分别检测28份临床样本的病原体感染情况。
检测结果见表1中第4列。
2、采用实施例1提供的方法高通量检测28份临床样本的病原体感染情况。
检测结果见表1中第5列。
表1
Figure BDA0003065894950000101
Figure BDA0003065894950000111
结果表明,与常规微生物培养方法相比,实施例1提供的方法的敏感性为83.3%,特异性为90.9%,阳性预测值为71.4%,阴性预测值为95.2%,符合率为89.3%,诊断比值比(OR)为49.7。
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。
<110> 北京大学人民医院
<120> 一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法
<160>2
<170> PatentIn version 3.5
<210>1
<211>28
<212> DNA
<213> Artificial sequence
<400>1
gaccatctag cgacctccac nnnnnnnn 28
<210>2
<211>20
<212> DNA
<213> Artificial sequence
<400>2
gaccatctag cgacctccac 20

Claims (10)

1.一种高通量检测若干待测样本含有的病原体种类、丰度和/或基因组覆盖度的方法,依次包括如下步骤:
(1)分别获得待测样本的cDNA;
(2)将各个待测样本的cDNA进行高通量测序,得到高通量测序结果;
(3)生物信息学分析,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度;
所述步骤(2)中,将各个待测样本的cDNA进行高通量测序的方法包括(2-1)—(2-5):
(2-1)分别取待测样本的cDNA,进行PCR扩增,得到PCR扩增产物;
(2-2)分别取PCR扩增产物,纯化,得到纯化产物;
(2-3)分别取纯化产物,进行末端修复,得到末段修饰后的cDNA;
(2-4)分别取末段修饰后的cDNA,连接barcode,得到连接barcode的样品;
(2-5)将各个连接barcode的样品混合,高通量测序;
所述步骤(3)中,生物信息学分析,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度的方法包括(3-1)—(3-5):
(3-1)Basecalling;
(3-2)拆分;
(3-3)质控;
(3-4)去宿主;
(3-5)物种比对;
(3-6)与参考基因组比对,确定病原体,获得若干待测样本含有的病原体种类、丰度和/或基因组覆盖度。
2.如权利要求1所述的方法,其特征在于:所述步骤(1)中,获得待测样本的cDNA的方法为:将待测样本的RNA进行退火,得到退火产物;之后进行逆转录和二链合成。
3.如权利要求2所述的方法,其特征在于:进行退火时的引物的核苷酸序列如SEQ IDNO:1所示。
4.如权利要求1所述的方法,其特征在于:所述(2-1)中,进行PCR扩增的引物的核苷酸序列如SEQ ID NO:2所示。
5.如权利要求1所述的方法,其特征在于:所述步骤(3)中,
质控为采用nano_pp脚本去除低于500bp的短reads,同时统计reads数、reads长度和分布;
去宿主为采用nano_rm_host脚本去除人宿主序列;
物种比对为采用nano_classify脚本与数据库进行物种比对,得出物种名称、特异性reads数;
与参考基因组比对为采用nano_realign脚本将比对上的reads和参考基因组进行比对;
确定病原体为采用nano_remove_neg脚本将待测样本测得的reads数标化后确定。
基因组覆盖度为采用nano_stats脚本计算每个物种测到的reads覆盖参考基因组的覆盖度,同时以图形显示测得reads覆盖参考基因组情况。
6.如权利要求5所述的方法,其特征在于:所述数据库的构建方法如下:从已有基因组数据中下载细菌基因组库、古菌基因组库、真菌基因组库、病毒基因组库、非脊椎动物基因组库、原生生物基因组库和人全基因组数据,根据物种信息,每个物种选择一个代表序列,构建代表序列数据库;然后使用mummer将同一个物种的基因组进行比对去冗余,得到这个物种的pan-genome序列;去除冗余后的所有数据,使用centrifuge-build构建数据库。
7.如权利要求6所述的方法,其特征在于:所述已有基因组数据为NCBI数据库收录的基因组数据。
8.权利要求1至7任一所述的方法在检测待测样本含有的病原体种类、丰度和/或基因组覆盖度中的应用。
9.如权利要求1所述的方法或权利要求8所述的应用,其特征在于:所述待测样本为临床样本。
10.如权利要求9所述的方法或权利要求9所述的应用,其特征在于:所述临床样本为脑脊液、肺泡灌洗液、穿刺液、血浆、宫颈分泌物或肺组织。
CN202110526236.9A 2021-05-14 2021-05-14 一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法 Pending CN113265452A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110526236.9A CN113265452A (zh) 2021-05-14 2021-05-14 一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110526236.9A CN113265452A (zh) 2021-05-14 2021-05-14 一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法

Publications (1)

Publication Number Publication Date
CN113265452A true CN113265452A (zh) 2021-08-17

Family

ID=77230868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110526236.9A Pending CN113265452A (zh) 2021-05-14 2021-05-14 一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法

Country Status (1)

Country Link
CN (1) CN113265452A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277092A (zh) * 2021-12-02 2022-04-05 江苏先声医疗器械有限公司 基于纳米孔测序平台的rna病毒宏转录组建库方法及应用
CN115985400A (zh) * 2022-12-02 2023-04-18 江苏先声医疗器械有限公司 一种宏基因组多重比对序列重分配的方法及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011412A2 (en) * 2004-11-05 2007-01-25 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Diagnosis and prognosis of infectious diesease clinical phenotypes and other physiologic states using host gene expresion biomarkers in blood
WO2014076286A1 (en) * 2012-11-16 2014-05-22 ALERE TECHNOLOGIES GmbH Nucleic acid assay for diagnosing or monitoring a pathogen infection in a bodily fluid from a subject treated with an anti-pathogenic agent
CN105112569A (zh) * 2015-09-14 2015-12-02 中国医学科学院病原生物学研究所 基于宏基因组学的病毒感染检测及鉴定方法
CN105838827A (zh) * 2016-05-24 2016-08-10 北京市疾病预防控制中心 一种病毒基因组引物及用该引物检测病毒基因组的方法
CN110349630A (zh) * 2019-06-21 2019-10-18 天津华大医学检验所有限公司 血液宏基因组测序数据的分析方法、装置及其应用
CN111455031A (zh) * 2019-01-18 2020-07-28 中国科学院微生物研究所 基于Nanopore测序技术的多组学测序及分析方法
WO2020178575A1 (en) * 2019-03-04 2020-09-10 St George's Hospital Medical School Detection and antibiotic resistance profiling of microorganisms
CN112226488A (zh) * 2020-10-13 2021-01-15 上海宝藤生物医药科技股份有限公司 一种基于总核酸和宏基因组学构建病原微生物测序文库的方法及试剂盒
CN112542214A (zh) * 2020-12-18 2021-03-23 昆明金域医学检验所有限公司 基于病原微生物宏基因组的多种菌群间Granger因果分析方法
CN112646868A (zh) * 2020-12-23 2021-04-13 赣南医学院 一种基于纳米孔测序的病原分子检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011412A2 (en) * 2004-11-05 2007-01-25 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Diagnosis and prognosis of infectious diesease clinical phenotypes and other physiologic states using host gene expresion biomarkers in blood
WO2014076286A1 (en) * 2012-11-16 2014-05-22 ALERE TECHNOLOGIES GmbH Nucleic acid assay for diagnosing or monitoring a pathogen infection in a bodily fluid from a subject treated with an anti-pathogenic agent
CN105112569A (zh) * 2015-09-14 2015-12-02 中国医学科学院病原生物学研究所 基于宏基因组学的病毒感染检测及鉴定方法
CN105838827A (zh) * 2016-05-24 2016-08-10 北京市疾病预防控制中心 一种病毒基因组引物及用该引物检测病毒基因组的方法
CN111455031A (zh) * 2019-01-18 2020-07-28 中国科学院微生物研究所 基于Nanopore测序技术的多组学测序及分析方法
WO2020178575A1 (en) * 2019-03-04 2020-09-10 St George's Hospital Medical School Detection and antibiotic resistance profiling of microorganisms
CN110349630A (zh) * 2019-06-21 2019-10-18 天津华大医学检验所有限公司 血液宏基因组测序数据的分析方法、装置及其应用
CN112226488A (zh) * 2020-10-13 2021-01-15 上海宝藤生物医药科技股份有限公司 一种基于总核酸和宏基因组学构建病原微生物测序文库的方法及试剂盒
CN112542214A (zh) * 2020-12-18 2021-03-23 昆明金域医学检验所有限公司 基于病原微生物宏基因组的多种菌群间Granger因果分析方法
CN112646868A (zh) * 2020-12-23 2021-04-13 赣南医学院 一种基于纳米孔测序的病原分子检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.E.LEBONAH等: "DNA Barcoding on Bacteria:A Review.", 《HINDAWI PUBLISHING CORPORATION ADVANCES BIOLOGY》 *
YIFEI XU等: "Detection of Viral Pathogens with Multiplex Nanopore MinION Sequencing:Be careful with cross-talk.", 《FRONTIERS IN MICROBIOLOGY》 *
王伟: "宏基因组学技术在病原体检测中的应用", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
邓浩辉等: "纳米孔三代测序在HIV/AIDS合并肺部感染者快速病原学鉴定的应用价值探讨", 《转化医学杂志》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277092A (zh) * 2021-12-02 2022-04-05 江苏先声医疗器械有限公司 基于纳米孔测序平台的rna病毒宏转录组建库方法及应用
CN114277092B (zh) * 2021-12-02 2023-03-24 江苏先声医疗器械有限公司 基于纳米孔测序平台的rna病毒宏转录组建库方法及应用
CN115985400A (zh) * 2022-12-02 2023-04-18 江苏先声医疗器械有限公司 一种宏基因组多重比对序列重分配的方法及应用
CN115985400B (zh) * 2022-12-02 2024-03-15 江苏先声医疗器械有限公司 一种宏基因组多重比对序列重分配的方法及应用

Similar Documents

Publication Publication Date Title
CN111235316B (zh) 鉴定新型冠状病毒的引物探针及在三重荧光rpa的应用
CN111440896B (zh) 一种新型β冠状病毒变异检测方法、探针和试剂盒
CN111349719B (zh) 一种用于新型冠状病毒检测的特异引物及应用
CN111394486A (zh) 基于宏基因组测序的儿童感染性疾病病原检测及鉴定方法
CN111269995A (zh) 用于检测病原体的引物组、试剂盒和检测方法
CN113265452A (zh) 一种基于Nanopore宏基因组RNA-seq的生物信息学检测病原体的方法
CN106191311B (zh) 一种快速检测豚鼠LCMV、SV、PVM、Reo-3病毒的多重液相基因芯片方法及试剂
CN110964840A (zh) 用于检测5种血流感染病原体的引物组、试剂盒及建库方法
CN112739833A (zh) 利用巢式RPA技术检测SARS-CoV-2的引物对、探针、试剂盒及其应用
CN113025761A (zh) 病原微生物鉴定的多重扩增配合高通量测序方法及试剂盒
CN111304285B (zh) 基于纳米孔测序平台的泌尿宏基因组样本建库和检测方法
CN105603081B (zh) 一种非诊断目的的肠道微生物定性与定量的检测方法
CN112410465A (zh) 新型冠状病毒SARS-CoV-2 ORF1ab和N基因恒温扩增引物组及试剂盒
CN114277092B (zh) 基于纳米孔测序平台的rna病毒宏转录组建库方法及应用
CN112626215B (zh) Aml预后相关基因表达检测试剂盒
CN115948607A (zh) 同时检测多种病原体基因的方法和试剂盒
CN113718053A (zh) 用于检测耶氏肺孢子菌探针及引物对及检测方法和应用
CN114107454A (zh) 基于宏基因/宏转录组测序的呼吸道感染病原检测方法
CN113549709A (zh) 利用巢式RPA技术检测SARS-CoV-2的引物对、探针、试剂盒及其应用
CN114107325B (zh) 宏基因组内参及其制备方法和应用以及宏基因组血流病原体检测方法
CN110669873A (zh) 一种快速检测六种牛呼吸道综合症多重pcr体系的检测方法
CN111850099A (zh) 一种用于检测鼠痘病毒的rpa试剂盒、引物、探针及方法
TWI797593B (zh) 基於總體基因體定序之定序文庫的建構方法、病原檢測方法及其病原檢測系統(一)
CN113981059B (zh) 一种地中海贫血症突变基因检测引物组合物及其试剂
Deleye et al. Genome-wide copy number alteration detection in preimplantation genetic diagnosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination