CN113258835A - 一种车辆发动机散热风扇的直流无刷电机控制方法及系统 - Google Patents

一种车辆发动机散热风扇的直流无刷电机控制方法及系统 Download PDF

Info

Publication number
CN113258835A
CN113258835A CN202110423842.8A CN202110423842A CN113258835A CN 113258835 A CN113258835 A CN 113258835A CN 202110423842 A CN202110423842 A CN 202110423842A CN 113258835 A CN113258835 A CN 113258835A
Authority
CN
China
Prior art keywords
phase change
motor
commutation
time
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110423842.8A
Other languages
English (en)
Other versions
CN113258835B (zh
Inventor
程勇
王璐
孙嘉泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202110423842.8A priority Critical patent/CN113258835B/zh
Publication of CN113258835A publication Critical patent/CN113258835A/zh
Application granted granted Critical
Publication of CN113258835B publication Critical patent/CN113258835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

本发明公开了一种车辆发动机散热风扇的直流无刷电机控制方法及系统,包括:利用端电压法确定直流电机换相时刻的范围;利用线反电动势法推导出下一次换相的时刻;当线反电动势法推导出的换相时刻不属于端电压法确定的直流电机换相时刻范围时,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,作为直流电机下一次的换相时刻。本发明利用端电压法推导出一个换相时刻的范围,用于对线反电动势法的推导的换相时刻结果进行范围限定;采用最小二乘估计方法,根据历史电流、历史换相间隔变化等参数推导理想的换相时刻,在线反电动势法与端电压法两算法结果冲突时,保证电机正常运行。

Description

一种车辆发动机散热风扇的直流无刷电机控制方法及系统
技术领域
本发明涉及车辆发动机散热风扇直流无刷电机控制技术领域,尤其涉及一种车辆发动机散热风扇的直流无刷电机控制方法及系统。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
永磁无刷直流电机具有低噪声、低电磁干扰,高效率、高转矩密度等优势,因此,常选择永磁无刷直流电机作为车辆发动机散热风扇的驱动电机。传统的永磁无刷直流电机一般采用霍尔磁敏式、电磁式或光电式等位置传感器进行检测。但位置传感器又增大了电机的体积和成本,不能适应高温、高湿等恶劣的工作环境;又由于传感器连线较多,容易受到外界信号的干扰,降低了电机运行的可靠性;此外,传感器的安装精度也会影响到电机的运行性能。因此,取消位置传感器,采用电机端容易获得的定子端电压、反电动势、电流以及电机参数等信息来间接获得转子位置信号,从而实现无刷直流电机的无位置传感器控制具有重要的现实意义和应用前景。
永磁无刷直流电机的无位置传感器控制理论包括多种转子位置检测理论和实现方法,本质是通过检测电机运行过程中的电压、电流、反电动势等物理量及在线检测电机参数来对电机相关信息进行辨识,并通过辨识结果指导电机控制。具体方法主要包括反电动势法、续流二极管法、电感法、磁链观测法、状态观测器法以及其它一些特殊的方法。反电动势法是目前技术最成熟、应用最为广泛的一种转子位置检测方法。这种方法是建立在忽略电机电枢反应的前提下,通过检测不导通相的反电动势过零点,再延迟30°电角度来依次得到转子的六个关键位置信号。
无刷直流电机的反电动势一般难于直接测量,因此通常采用间接方法来获得反电动势过零信号。传统反电动势检测方法中,一般需要通过构建直流母线电压或星形连接的三组电阻重构电机中点,并对相应信号进行硬件处理,用以获得能直接进行比较的参考信号,其中构建的虚拟中点与电机真实中点电位并不总是相等,而硬件处理通常会对信号引入相位延迟的同时增加控制系统的复杂性。
另外传统算法在推导过零点后,需要基于过零点继续推导延迟30°或90°电角度的换相点,这个延迟的算法也会引入误差。
发明内容
为了解决上述问题,本发明提出了一种车辆发动机散热风扇的直流无刷电机控制方法及系统,采用端电压法推导得到换相时刻范围,用于对线反电动势法的推导结果进行范围限定;采用最小二乘法,在保证母线电压、环境温度等参数不发生明显变化时,根据历史电流、历史换相间隔变化等参数推导理想的换相时刻,以在线反电动势法与端电压法两算法结果冲突时,保证电机正常运行。
在一些实施方式中,采用如下技术方案:
一种车辆发动机散热风扇的直流无刷电机控制方法,包括:
利用端电压法确定直流电机换相时刻的范围;
利用线反电动势法推导出下一次换相的时刻;
当线反电动势法推导出的换相时刻不属于端电压法确定的直流电机换相时刻范围时,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,作为直流电机下一次的换相时刻。
进一步地,利用端电压法确定直流电机换相时刻的范围,具体过程包括:在直流电机两相同时导通或同时关闭时,通过悬空相电压判断悬空相反电动势,当判断到悬空相反电动势过零点且不是干扰后,对过零点时刻进行设定电角度的延时,得到根据端电压法推导的换相范围。
进一步地,利用线反电动势法推导出下一次换相的时刻,具体包括:
各线反电动势的过零点直接对应电机换相点,电机正传时,三相线反电动势的表达式简化为:
Figure BDA0003029021850000031
其中,R为三相对称下各相的线圈电阻,ia、ib、ic分别为各相相电流,eab、ebc、eca分别是三相线反电动势,uab、ubc、uca分别是基于电机三相绕组的端电压计算得到的运算结果;
在直流电机导通的两相对应的开关管同时打开或关闭时,将三相线反电动势的过零近似时刻,作为下一次换相的时刻。
进一步地,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,具体包括:
基于电机的机械运动方程变换得到当前换相与前一次换相过程中的平均角速度差的计算方程;
基于前n-1次换相的平均角速度的实测值,推导出所述平均角速度差的计算方程中的参数值;
基于所述参数值,计算得到当前换相与前一次换相过程中的平均角速度差;
基于所述平均角速度差、前一次换相完成时的平均角速度以及前一次换相的间隔时间,得到当前换相所需的时间间隔,从而预测当前换相时刻。
进一步地,基于电机的机械运动方程变换得到当前换相与前一次换相过程中的平均角速度差的计算方程,具体包括:
电机的机械运动方程为:
Figure BDA0003029021850000041
将所述电机的机械运动方程转换为:Ad-Bw2=wΔw;
近似取w=w1,得到:
Figure BDA0003029021850000042
其中,Te为电磁转矩,TL为负载转矩,f为摩擦系数,w为电气角速度,J为转动惯量,w为电气角速度;A、B分别为需要计算的参数值,d为当前换相间的平均占空比,Δw为当前换相与前一次换相过程中的平均角速度差,w1为上一次换相完成时的平均角速度。
进一步地,基于前n-1次换相的平均角速度的实测值,推导出所述平均角速度差的计算方程中的参数值,具体包括:
令:
Figure BDA0003029021850000043
对Q取A、B的偏导,并令偏导为0,分别求得参数A、B关于换相参数Δwmea-i、wn及dn-1的表达式;
通过设定次数的换相数值带入,求得参数A、B的值。
进一步地,基于所述平均角速度差、前一次换相完成时的平均角速度以及前一次换相的间隔时间,得到当前换相所需的时间间隔,具体包括:
Figure BDA0003029021850000044
其中,t0为当前次换相所需的时间,t1为上一次换相的间隔时间,Δw为当前换相与前一次换相过程中的平均角速度差,w1为上一次换相完成时的平均角速度。
在另一些实施方式中,采用如下技术方案:
一种车辆发动机散热风扇的直流无刷电机控制系统,包括:
用于利用端电压法确定直流电机换相时刻的范围的模块;
用于利用线反电动势法推导出下一次换相的时刻的模块;
用于当线反电动势法推导出的换相时刻不属于端电压法确定的直流电机换相时刻范围时,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,作为直流电机下一次的换相时刻的模块。
在另一些实施方式中,采用如下技术方案:
一种终端设备,其包括处理器和存储器,处理器用于实现各指令;存储器用于存储多条指令,所述指令适于由处理器加载并执行上述的车辆发动机散热风扇的直流无刷电机控制方法。
一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行上述的车辆发动机散热风扇的直流无刷电机控制方法。
与现有技术相比,本发明的有益效果是:
本发明利用端电压法推导出一个换相时刻的范围,用于对线反电动势法的推导的换相时刻结果进行范围限定;同时,采用最小二乘估计方法,结合风扇特有的螺旋桨特性,在保证母线电压、环境温度等参数不发生明显变化时,根据历史电流、历史换相间隔变化等参数推导理想的换相时刻,在线反电动势法与端电压法两算法结果冲突时,保证电机正常运行。
本发明的其他特征和附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本方面的实践了解到。
附图说明
图1是直流无刷电机反电动势与转子位置关系示意图;
图2是直流无刷电机线反电动势与转子位置关系示意图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一
为保证散热风扇的正常运行,本实施例采用端电压法及数值分析方法辅助线反电动势法的控制策略。其中端电压法的推导结果在本文中不是一个换相时刻点,而是一个范围,用于对线反电动势法的推导结果进行范围限定;同时,本实施例采用最小二乘法,结合风扇特有的螺旋桨特性,在保证母线电压、环境温度等参数不发生明显变化时,根据历史电流、历史换相间隔变化等参数推导理想的换相时刻,在线反电动势法与端电压法两算法结果冲突时,保证电机正常运行。
本实施例公开了一种车辆发动机散热风扇的直流无刷电机控制方法,包括以下步骤:
(1)利用端电压法确定直流电机换相时刻的范围;
(2)利用线反电动势法推导出下一次换相的时刻;
具体地,以反电动势波形为120°平顶宽度、定子绕组星型连接的梯形波无刷直流电机为例,说明端电压法及线反电动势法的原理。对应的反电动势波形与转子位置关系如图1所示,Z1-Z6分别为一个电周期内三相反电动势的六个过零点,再分别延迟30°电角度得到的S1-S6时刻即为六个换相点,在各点处根据具体控制方法使开关管依次导通,驱动电机正常运行。
电机三相绕组的端电压方程如下:
Figure BDA0003029021850000071
式中,ux为相对于地的各相端电压(V),uN为电机中点电压,LMx为定子绕组各相的等效电感(H),具体值为该相自感与互感的差,ix为各相相电流(A),ex为各相反电动势(V),Rx为各相电阻(Ω)。
当a相与母线正端相连(母线正端Vdc),b相与母线负端相连(母线负端0),c相悬空,且无电流续流时,ia+ib=0,忽略开关管及各二极管压降,认为该电机三相完全对称,(1)式可转换为:
Figure BDA0003029021850000072
则有2uN=Vdc-(ea+eb)及uc=ec+uN,在只考虑基波,忽略谐波干扰时,根据电机三相平衡性有ea+eb+ec=0,
则有:
Figure BDA0003029021850000081
同理,当a相、b相均与母线负端相连时,有:
Figure BDA0003029021850000082
综上所述,在电机两相同时导通或同时关闭时,可以通过悬空相电压来判断悬空相反电动势,当判断到悬空相反电动势过零点且不是干扰后,对过零点时刻进行25°及35°电角度延时,得到根据端电压法推导的换相范围。
对(1)式各项两两相减,假设电机三相完全对称性则有
Figure BDA0003029021850000083
令三相线反电动势的表达式为:
Figure BDA0003029021850000084
则有:
Figure BDA0003029021850000085
根据可画出直流无刷电机线反电动势与转子位置关系示意图,参见图2。
可以看出,各线反电动势的过零点直接对应电机换相点,根据悬空相在测量过程中电流基本为0,且在换相前,各电流基本趋于稳定,在电机正转时式(7)可简化为:
Figure BDA0003029021850000086
因电机驱动的是冷却风扇,可不考虑电机反转的状态,通过在运行过程中以较小步长,在导通两相对应的开关管同时打开或关闭时,监测(8)式中各值的过零近似时刻,作为下一次换相的时刻,结合端电压法推导的换相范围进行判断,获得较理想的下一次换相时刻。
(3)当线反电动势法推导出的换相时刻不属于端电压法确定的直流电机换相时刻范围时,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,作为直流电机下一次的换相时刻。
具体地当线反电动势法换相点判断结果不属于端反电动势法推导范围时,认为信号有干扰。此时,在保证母线电压、环境温度等参数不发生明显变化的前提下,利用历史电流、历史换相间隔变化等参数推导理想换相时刻。
基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,具体包括以下过程:
(1)基于电机的机械运动方程变换得到当前换相与前一次换相过程中的平均角速度差的计算方程;
电机的机械运动方程为:
Figure BDA0003029021850000091
其中:Te为电磁转矩,可用转矩系数与平均电流的乘积表示,而相电流与控制系统开关管占空比相关;TL为负载转矩,电机负载主要是冷却风扇,根据螺旋桨特性,电机风扇阻力与转速的二次方成正比;f为摩擦系数,由于在正常风扇旋转过程中,电机阻力远小于风扇阻力,这里忽略;J为转动惯量,w为电气角速度。
则(9)式可转换为:
Figure BDA0003029021850000092
其中转动惯量J折合进系数A,B中,d为当前换相间的平均占空比,Δw为当前换相与前一次换相过程中的平均角速度差。由于风扇负载的存在,转速变化较小,为方便计算,这里近似取w=w1,w1为上一次换相完成时的平均角速度。
则(10)式可转换为:
Figure BDA0003029021850000101
(2)基于前n-1次换相的平均角速度的实测值,推导出所述平均角速度差的计算方程中的参数值;
令:
Figure BDA0003029021850000102
其中Δwcal-i为第n次前的平均角速度差计算值,Δwmea-i为第n次前的平均角速度差实测值,wn为第n-1次换相与第n次换相间的平均角速度,dn为第n-1次换相与第n次换相间的平均占空比。
对Q取A、B的偏导,并令偏导为0,分别得到参数A、B关于换相数值Δwmea-i、wn及dn-1的表达式。
通过前12次(半转)换相的相关数值推导A、B。
(3)基于所述参数值,计算得到当前换相与前一次换相过程中的平均角速度差;
将推导得到的A、B带入式(11),得到Δw;
(4)基于所述平均角速度差、前一次换相完成时的平均角速度以及前一次换相的间隔时间,得到当前换相所需的时间间隔,从而预测当前换相时刻。
根据:
Figure BDA0003029021850000103
得到推导的下次换相间隔t0时间,其中t1为上一次换相间隔时间。
实施例二
根据本发明的实施例,公开了一种车辆发动机散热风扇的直流无刷电机控制系统,包括:
用于利用端电压法确定直流电机换相时刻的范围的模块;
用于利用线反电动势法推导出下一次换相的时刻的模块;
用于当线反电动势法推导出的换相时刻不属于端电压法确定的直流电机换相时刻范围时,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,作为直流电机下一次的换相时刻的模块。
需要说明的是,上述各模块的具体实现方法已经在实施例一中进行了说明,此处不再赘述。
实施例三
在一个或多个实施方式中,公开了一种终端设备,包括服务器,所述服务器包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现实施例一中的车辆发动机散热风扇的直流无刷电机控制方法。为了简洁,在此不再赘述。
应理解,本实施例中,处理器可以是中央处理单元CPU,处理器还可以是其他通用处理器、数字信号处理器DSP、专用集成电路ASIC,现成可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据、存储器的一部分还可以包括非易失性随机存储器。例如,存储器还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。
实施例一中的车辆发动机散热风扇的直流无刷电机控制方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本实施例描述的各示例的单元即算法步骤,能够以电子硬件或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
实施例四
在一个或多个实施方式中,公开了一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行实施例一中所述的车辆发动机散热风扇的直流无刷电机控制方法。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种车辆发动机散热风扇的直流无刷电机控制方法,其特征在于,包括:
利用端电压法确定直流电机换相时刻的范围;
利用线反电动势法推导出下一次换相的时刻;
当线反电动势法推导出的换相时刻不属于端电压法确定的直流电机换相时刻范围时,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,作为直流电机下一次的换相时刻。
2.如权利要求1所述的一种车辆发动机散热风扇的直流无刷电机控制方法,其特征在于,利用端电压法确定直流电机换相时刻的范围,具体过程包括:在直流电机两相同时导通或同时关闭时,通过悬空相电压判断悬空相反电动势,当判断到悬空相反电动势过零点且不是干扰后,对过零点时刻进行设定电角度的延时,得到根据端电压法推导的换相范围。
3.如权利要求1所述的一种车辆发动机散热风扇的直流无刷电机控制方法,其特征在于,利用线反电动势法推导出下一次换相的时刻,具体包括:
各线反电动势的过零点直接对应电机换相点,电机正传时,三相线反电动势的表达式简化为:
Figure FDA0003029021840000011
其中,R为三相对称下各相的线圈电阻,ia、ib、ic分别为各相相电流,eab、ebc、eca分别是三相线反电动势,uab、ubc、uca分别是基于电机三相绕组的端电压计算得到的运算结果;
在直流电机导通的两相对应的开关管同时打开或关闭时,将三相线反电动势的过零近似时刻,作为下一次换相的时刻。
4.如权利要求1所述的一种车辆发动机散热风扇的直流无刷电机控制方法,其特征在于,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,具体包括:
基于电机的机械运动方程变换得到当前换相与前一次换相过程中的平均角速度差的计算方程;
基于前n-1次换相的平均角速度的实测值,推导出所述平均角速度差的计算方程中的参数值;
基于所述参数值,计算得到当前换相与前一次换相过程中的平均角速度差;
基于所述平均角速度差、前一次换相完成时的平均角速度以及前一次换相的间隔时间,得到当前换相所需的时间间隔,从而预测当前换相时刻。
5.如权利要求1所述的一种车辆发动机散热风扇的直流无刷电机控制方法,其特征在于,基于电机的机械运动方程变换得到当前换相与前一次换相过程中的平均角速度差的计算方程,具体包括:
电机的机械运动方程为:
Figure FDA0003029021840000021
将所述电机的机械运动方程转换为:Ad-Bw2=wΔw;
近似取w=w1,得到:
Figure FDA0003029021840000022
其中,Te为电磁转矩,TL为负载转矩,f为摩擦系数,w为电气角速度,J为转动惯量,w为电气角速度;A、B分别为需要计算的参数值,d为当前换相间的平均占空比,Δw为当前换相与前一次换相过程中的平均角速度差,w1为上一次换相完成时的平均角速度。
6.如权利要求1所述的一种车辆发动机散热风扇的直流无刷电机控制方法,其特征在于,基于前n-1次换相的平均角速度的实测值,推导出所述平均角速度差的计算方程中的参数值,具体包括:
令:
Figure FDA0003029021840000031
对Q取A、B的偏导,并令偏导为0,分别求得参数A、B关于换相参数Δwmea-i、wn及dn-1的表达式;
通过设定次数的换相数值带入,求得参数A、B的值。
7.如权利要求1所述的一种车辆发动机散热风扇的直流无刷电机控制方法,其特征在于,基于所述平均角速度差、前一次换相完成时的平均角速度以及前一次换相的间隔时间,得到当前换相所需的时间间隔,具体包括:
Figure FDA0003029021840000032
其中,t0为当前次换相所需的时间,t1为上一次换相的间隔时间,Δw为当前换相与前一次换相过程中的平均角速度差,w1为上一次换相完成时的平均角速度。
8.一种车辆发动机散热风扇的直流无刷电机控制系统,其特征在于,包括:
用于利用端电压法确定直流电机换相时刻的范围的模块;
用于利用线反电动势法推导出下一次换相的时刻的模块;
用于当线反电动势法推导出的换相时刻不属于端电压法确定的直流电机换相时刻范围时,基于最小二乘估计方法,利用历史电流、历史换相间隔变化参数推导出理想的换相时刻,作为直流电机下一次的换相时刻的模块。
9.一种终端设备,其包括处理器和存储器,处理器用于实现各指令;存储器用于存储多条指令,其特征在于,所述指令适于由处理器加载并执行权利要求1-7任一项所述的车辆发动机散热风扇的直流无刷电机控制方法。
10.一种计算机可读存储介质,其中存储有多条指令,其特征在于,所述指令适于由终端设备的处理器加载并执行权利要求1-7任一项所述的车辆发动机散热风扇的直流无刷电机控制方法。
CN202110423842.8A 2021-04-20 2021-04-20 一种车辆发动机散热风扇的直流无刷电机控制方法及系统 Active CN113258835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110423842.8A CN113258835B (zh) 2021-04-20 2021-04-20 一种车辆发动机散热风扇的直流无刷电机控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110423842.8A CN113258835B (zh) 2021-04-20 2021-04-20 一种车辆发动机散热风扇的直流无刷电机控制方法及系统

Publications (2)

Publication Number Publication Date
CN113258835A true CN113258835A (zh) 2021-08-13
CN113258835B CN113258835B (zh) 2022-09-09

Family

ID=77221164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110423842.8A Active CN113258835B (zh) 2021-04-20 2021-04-20 一种车辆发动机散热风扇的直流无刷电机控制方法及系统

Country Status (1)

Country Link
CN (1) CN113258835B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242154A (zh) * 2008-03-14 2008-08-13 重庆大学 一种无位置传感器的内嵌式永磁无刷直流电机控制系统
CN104767434A (zh) * 2015-04-22 2015-07-08 华中科技大学 一种无刷直流电动机转子换相位置检测及换相控制方法
CN108183639A (zh) * 2018-01-15 2018-06-19 福州大学 一种无刷直流电机最小二乘分类调速方法
CN110829904A (zh) * 2019-11-13 2020-02-21 大连交通大学 一种基于灰狼优化的无刷直流电机控制器的参数优化方法
US20200186060A1 (en) * 2018-12-10 2020-06-11 Agave Semiconductor, Llc Position corrected commutation of brushless direct current motors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242154A (zh) * 2008-03-14 2008-08-13 重庆大学 一种无位置传感器的内嵌式永磁无刷直流电机控制系统
CN104767434A (zh) * 2015-04-22 2015-07-08 华中科技大学 一种无刷直流电动机转子换相位置检测及换相控制方法
CN108183639A (zh) * 2018-01-15 2018-06-19 福州大学 一种无刷直流电机最小二乘分类调速方法
US20200186060A1 (en) * 2018-12-10 2020-06-11 Agave Semiconductor, Llc Position corrected commutation of brushless direct current motors
CN110829904A (zh) * 2019-11-13 2020-02-21 大连交通大学 一种基于灰狼优化的无刷直流电机控制器的参数优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘春恒等: "基于最小二乘滤波起始的机动目标被动跟踪方法", 《系统工程与电子技术》 *
马跃: "永磁无刷直流电机驱动的电动压缩机控制研究", 《中国优秀博硕士学位论文全文数据库(硕士)》 *

Also Published As

Publication number Publication date
CN113258835B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Wu et al. Speed control of BLDC motors using hall effect sensors based on DSP
JP4379702B2 (ja) ブラシレスモータ制御装置
CN109526244A (zh) 马达模块、马达控制装置、温度估计装置以及温度估计方法
WO2015027558A1 (zh) 一种应用单个霍尔传感器的三相直流无刷电机的控制方法
CN110199467A (zh) 相位换相中的霍尔效应传感器信号偏移校正
CN111293932A (zh) 控制永磁体同步电机的方法以及电机电路
Nakazawa et al. Position sensorless control of switched reluctance motor using state observer
CN113258835B (zh) 一种车辆发动机散热风扇的直流无刷电机控制方法及系统
CN109818537A (zh) 一种开关磁阻电机无位置传感器启动初始导通相识别方法
CN112083349B (zh) 一种永磁同步电机定子绕组匝间短路故障诊断方法
Sarr et al. Sensorless control of switched reluctance machine
CN108809187A (zh) 离散空间矢量调制的开关磁阻电机转矩预测控制系统及方法
CN113258836B (zh) 基于卡尔曼滤波估计的车用散热风扇电机控制方法及系统
CN105322860B (zh) 无传感器永磁直驱电机转子初始角度检测装置及方法
JP2019033582A (ja) 制御装置及び制御方法
Sreejeth et al. Sensorless control of PMSM Drive with BEMF based MRAC Algorithm
CN113746397B (zh) 一种开关磁阻电机模型预测转矩和径向力控制方法
Wilson et al. Real-time thermal management of permanent magnet synchronous motors by resistance estimation
CN112366989A (zh) 一种基于参数辨识的无刷直流电机控制方法
JP2002034281A (ja) モータ制御装置および空気調和機
JP2001119978A (ja) ブラシレスdcモータ制御方法およびその装置
CN109463038A (zh) 电动工具及其无刷电机的驱动方法
Matwankar et al. Position Sensorless Torque Ripple Control of Switched Reluctance Motor Drive using B-Spline Neural Network
Nakazawa et al. Study on observer gain in position sensorless control of switched reluctance motor using state observer
JP4312993B2 (ja) インバータ制御方法およびその装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant