CN113253432A - 光学镜头 - Google Patents

光学镜头 Download PDF

Info

Publication number
CN113253432A
CN113253432A CN202110723536.6A CN202110723536A CN113253432A CN 113253432 A CN113253432 A CN 113253432A CN 202110723536 A CN202110723536 A CN 202110723536A CN 113253432 A CN113253432 A CN 113253432A
Authority
CN
China
Prior art keywords
lens
optical
image
concave
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110723536.6A
Other languages
English (en)
Other versions
CN113253432B (zh
Inventor
王义龙
周晶晶
曾昊杰
曾吉勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Lianyi Optics Co Ltd
Original Assignee
Jiangxi Lianyi Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Lianyi Optics Co Ltd filed Critical Jiangxi Lianyi Optics Co Ltd
Priority to CN202110723536.6A priority Critical patent/CN113253432B/zh
Publication of CN113253432A publication Critical patent/CN113253432A/zh
Application granted granted Critical
Publication of CN113253432B publication Critical patent/CN113253432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供一种光学镜头,沿光轴从物侧到成像面依次包括:光阑;具有正光焦度的第一透镜,其物侧面为凸面;具有负光焦度的第二透镜,其物侧面为凹面;具有正光焦度的第三透镜,其物侧面在近光轴处为凸面;具有负光焦度的第四透镜,其像侧面为凸面;具有正光焦度的第五透镜,其物侧面在近光轴处为凹面;具有负光焦度的第六透镜,其物侧面在近光轴处为凹面;光学镜头满足:1.85<f/EPD<2.0、1.35<TTL/ImgH<1.5;其中,f、EPD及ImgH分别是光学镜头的总有效焦距、入瞳直径、成像面上有效像素区域对角线长的一半,TTL是第一透镜的物侧至成像面在光轴上的距离,以使其具备大光圈、超高像素、超薄化功能。

Description

光学镜头
技术领域
本发明涉及透镜成像的技术领域,特别涉及一种光学镜头。
背景技术
目前,随着便携式电子设备(如智能手机、平板、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为电子设备的标配,摄像镜头甚至已经成为消费者购买电子设备时首要考虑的指标。
随着移动信息技术的不断发展,手机等便携式电子设备也在朝着超薄化、超高清、日夜具备相同画质的方向发展;特别是,人像特写、静物写真、微距拍摄、星空拍摄都需具备大光圈特性才能发挥镜头的作用,大光圈特性是买手机时的关注点。而轻薄化、高像素更是手机商更新换代的主要卖点。然而,现有光学镜头的结构设计较难同时满足大光圈、超高像素、轻薄化功能的所需。
发明内容
基于此,本发明的一个目的在于提供一种光学镜头,其同时具备大光圈、超高像素、超薄化的功能特点。
本发明提供了一种光学镜头,其沿光轴从物侧到成像面依次包括:
光阑;
具有正光焦度的第一透镜,物侧面为凸面,像侧面为凹面;
具有负光焦度的第二透镜,物侧面为凹面,像侧面为凹面;
具有正光焦度的第三透镜,物侧面在近光轴处为凸面;
具有负光焦度的第四透镜,像侧面为凸面,物侧面为凹面;
具有正光焦度的第五透镜,物侧面在近光轴处为凹面,像侧面在近光轴处为凸面;
具有负光焦度的第六透镜,物侧面在近光轴处为凹面,像侧面在近光轴处为凹面;
光学镜头满足以下条件式:1.85<f/EPD<2.0;1.35<TTL/ImgH<1.5;
其中,f是所述光学镜头的总有效焦距,EPD是所述光学镜头的入瞳直径;ImgH是所述光学镜头的成像面上有效像素区域的对角线长的一半,TTL是所述第一透镜的物侧面至所述成像面在光轴上的距离。
在一些实施例中,所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123与所述光学镜头的总有效焦距f满足以下条件式:0.9<f123/f<1.3。
在一些实施例中,所述第三透镜的物侧面的曲率半径R31与所述第三透镜像侧面的曲率半径R32满足以下条件式:-3.6<(R31+R32)/(R31-R32)<0。
在一些实施例中,所述第四透镜的物侧面的曲率半径R41与所述第四透镜的像侧面的曲率半径R42满足以下条件式:1.5<(R41+R42)/(R41-R42)<21。
在一些实施例中,所述第五透镜的像侧面的光学有效径DML52与所述第六透镜的像侧面的光学有效径DML62满足以下条件式:0.45<DML52/DML62<0.55。
在一些实施例中,所述第五透镜的像侧面的矢高SAG52与所述第五透镜的像侧面的光学有效径DML52满足以下条件式:-0.5<SAG52/DML52<-0.1。
在一些实施例中,所述第五透镜的物侧面的曲率半径R51与所述第五透镜像侧面的曲率半径R52满足以下条件式:0<(R51+R52)/(R51-R52)<5.5。
在一些实施例中,所述第一透镜和所述第五透镜在光轴上的间隔距离CT15与所述第一透镜的物侧面至所述成像面在光轴上的距离TTL满足以下条件式:0.5<CT15/TTL<1。
在一些实施例中,所述第五透镜和所述第六透镜在光轴上的间隔距离CT56与所述第一透镜的物侧面至所述成像面在光轴上的距离TTL满足以下条件式:0<CT56/TTL<0.5。
在一些实施例中,所述第一透镜的物侧面的曲率半径R11与所述第一透镜的边缘厚度ET1满足以下条件式:7<R11/ET1<10。
在一些实施例中,所述第三透镜的物侧面为凸面或凹面,所述第三透镜的物侧面的曲率半径R32与所述第三透镜的有效焦距f3满足以下条件式:-65<R32/f3<2。
在一些实施例中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜均为塑胶非球面透镜。
相较于现有技术,本发明提供的光学镜头采用六片具有特定屈折力的镜片,并且采用特定的表面形状搭配和合理的光焦度分配,在满足高像素的同时结构更加紧凑轻薄化,从而较好地实现了镜头微型化和高像素的均衡,同时可以拍摄到更大面积的景物,具备大光圈功能特点,对后期的裁切带来了巨大便利。另外,本发明的光学镜头增强了成像物体更多的细节,即使画面放大也不会模糊,因此具有更好的成像质量。
附图说明
本发明的上述与/或附加的方面与优点从结合下面附图对实施例的描述中将变得明显与容易理解,其中:
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的场曲曲线图;
图3为本发明第一实施例中的光学镜头的畸变曲线图;
图4为本发明第一实施例中的光学镜头的轴向色差曲线图;
图5为本发明第一实施例中的光学镜头的垂轴色差曲线图;
图6为本发明第二实施例中的光学镜头的结构示意图;
图7为本发明第二实施例中的光学镜头的场曲曲线图;
图8为本发明第二实施例中的光学镜头的畸变曲线图;
图9为本发明第二实施例中的光学镜头的轴向色差曲线图;
图10为本发明第二实施例中的光学镜头的垂轴色差曲线图;
图11为本发明第三实施例中的光学镜头的结构示意图;
图12为本发明第三实施例中的光学镜头的场曲曲线图;
图13为本发明第三实施例中的光学镜头的畸变曲线图;
图14为本发明第三实施例中的光学镜头的轴向色差曲线图;
图15为本发明第三实施例中的光学镜头的垂轴色差曲线图;
图16为本发明第四实施例中的光学镜头的结构示意图;
图17为本发明第四实施例中的光学镜头的场曲曲线图;
图18为本发明第四实施例中的光学镜头的畸变曲线图;
图19为本发明第四实施例中的光学镜头的轴向色差曲线图;
图20为本发明第四实施例中的光学镜头的垂轴色差曲线图;
附图标记说明:
Figure 808874DEST_PATH_IMAGE001
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供了一种光学镜头,其沿光轴从物侧到成像面依次包括:光阑;具有正光焦度的第一透镜,物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜,物侧面为凹面,像侧面为凹面;具有正光焦度的第三透镜,物侧面在近光轴处为凸面;具有负光焦度的第四透镜,像侧面为凸面,物侧面为凹面;具有正光焦度的第五透镜,物侧面在近光轴处为凹面,像侧面在近光轴处为凸面;具有负光焦度的第六透镜,物侧面在近光轴处为凹面,像侧面在近光轴处为凹面。
在一些实施例中,光学镜头的总有效焦距f与光学镜头的入瞳直径EPD满足以下条件式:1.85<f/EPD<2.0;第一透镜的物侧面至成像面在光轴上的距离TTL与光学镜头的成像面上有效像素区域的对角线长的一半ImgH满足以下条件式:1.35<TTL/ImgH<1.5。通过合理地控制光学镜头的各个透镜的光焦度的正负分配和透镜面型曲率半径,使光学镜头具有大孔径、大像面的特性,并且通过控制光学镜头的光学总长和像高,有利于使光学镜头具备超薄化和高像素的特点。
在一些实施例中,第一透镜、第二透镜和第三透镜的组合焦距f123与光学镜头的总有效焦距f满足以下条件式:0.9<f123/f<1.3。可以较好地分配光学镜头的光焦度,矫正光学镜头的色差,防止产品拍摄产生紫边现象,进而可以提高光学镜头的解像力。
在一些实施例中,第三透镜的物侧面的曲率半径R31与第三透镜的像侧面的曲率半径R32满足以下条件式-3.6<(R31+R32)/(R31-R32)<0。可以有效地控制第三透镜的形状,使成像光线在第三透镜处的入射角在期望的范围内,进而使光学镜头与成像芯片更好地匹配。
在一些实施例中,第四透镜的物侧面的曲率半径R41与第四透镜的像侧面的曲率半径R42满足以下条件式:1.5<(R41+R42)/(R41-R42)<21。可以有效地控制第四透镜的形状,使成像光线在第四透镜处的入射角在期望的范围内,进而使光学镜头与成像芯片更好地匹配。
在一些实施例中,第五透镜的像侧面的光学有效径DML52与第六透镜的像侧面的光学有效径DML62满足以下条件式:0.45<DML52/DML62<0.55。可以有效地控制第五透镜和第六透镜的形状,使光学镜头的头部体积减小,有利于实现全面屏的设计。
在一些实施例中,第五透镜的像侧面的矢高SAG52与第五透镜的像侧面的光学有效径DML52满足以下条件式:-0.5<SAG52/DML52<-0.1。可以控制第五透镜的形状,以保证第五透镜的加工性,并降低第五透镜的敏感度和减小轴外视场的彗差,提升轴外视场的成像品质。
在一些实施例中,第五透镜的物侧面的曲率半径R51与第五透镜的像侧面的曲率半径R52满足以下条件式:0<(R51+R52)/(R51-R52)<5.5。可以有效地控制第五透镜的形状,使成像光线在第五透镜处的入射角在期望的范围内,进而使光学镜头与成像芯片更好地匹配。
在一些实施例中,第一透镜和第五透镜在光轴上的间隔距离CT15与第一透镜的物侧面至成像面在光轴上的距离TTL满足以下条件式:0.5<CT15/TTL<1。可以较好地分配光学镜头在光轴上的间隔距离,有助于控制光学总长,并较好地维持光学镜头的小型化和超薄化。
在一些实施例中,第五透镜和第六透镜在光轴上的间隔距离CT56与第一透镜的物侧面至成像面在光轴上的距离TTL满足以下条件式:0<CT56/TTL<0.5。可以较好地分配光学镜头在光轴上的间隔距离,有助于控制光学总长,并较好地维持光学镜头的小型化和超薄化。
在一些实施例中,第一透镜的物侧面的曲率半径R11与第一透镜的边缘厚度ET1满足以下条件式::7<R11/ET1<10。可以很好地控制第一透镜的形状,以保证第一透镜的加工性,并降低第一透镜的敏感度,使光学镜头具有更好的成像质量。
在一些实施例中,第三透镜的物侧面为凸面或凹面,第三透镜的物侧面的曲率半径R32与第三透镜的有效焦距f3满足以下条件式:-65<R32/f3<2。可以控制边缘视场的成像光线在第三透镜处的偏折角度,进而有效降低光学镜头的敏感性。
上述实施例中的光学镜头采用六片具有特定屈折力的镜片,并且采用特定的表面形状搭配和合理的光焦度分配,在满足高像素的同时结构更加紧凑轻薄化,从而较好地实现了镜头小型化和高像素的均衡,同时可以拍摄到更大面积的景物,具备大光圈功能特点,对后期的裁切带来了巨大便利,另外本发明的光学镜头增强了成像画面的纵深感和空间感,具有更好的成像质量。
在一些实施例中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜均为塑胶非球面透镜。各透镜均采用非球面镜片,采用非球面镜片至少具有以下三个优点:
1.镜头具有更好的成像质量;
2.镜头的结构更为紧凑;
3.镜头的光学总长更短。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure 810328DEST_PATH_IMAGE002
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数,A2i为第2i阶的非球面面型系数。
在以下各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
本发明第一实施例提供的光学镜头100结构示意图请参阅图1,该光学镜头沿光轴从物侧到成像面依次包括:光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及红外滤光片G1。
第一透镜L1为具有正光焦度塑胶非球面透镜,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2为具有负光焦度塑胶非球面透镜,第二透镜的物侧面S3为凹面,第二透镜的像侧面S4为凹面;
第三透镜L3为具有正光焦度塑胶非球面透镜,第三透镜的物侧面S5在近光轴处为凸面,第三透镜的像侧面S6为凸面;
第四透镜L4为具有负光焦度塑胶非球面透镜,第四透镜的物侧面S7为凸面,第四透镜的像侧面S8为凹面;
第五透镜L5为具有正光焦度塑胶非球面透镜,第五透镜的物侧面S9在近光轴处为凹面,第五透镜的像侧面S10在近光轴处为凸面;
第六透镜L6为具有负光焦度塑胶非球面透镜,第六透镜的物侧面S11在近光轴处为凹面,第六透镜的像侧面S12在近光轴处为凹面;
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6均为塑胶非球面透镜。
本实施例提供的光学镜头中各个镜片的相关参数如表1所示,其中R代表曲率半径,d代表光学表面间距,nd代表材料的d线折射率,Vd代表材料的阿贝数。
本实施例提供光学镜头中各个镜片的相关参数如表1所示。
Figure 540387DEST_PATH_IMAGE003
表 1
本实施例中的光学镜头的各非球面的面型系数如表2所示。
Figure 881369DEST_PATH_IMAGE004
表 2
在本实施例中,光学镜头的场曲、畸变、轴向色差和垂轴色差的曲线图分别如图2、图3、图4和图5所示。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度,横轴表示偏移量(单位:毫米),纵轴表示视场角(单位:度);从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.3毫米以内,说明光学镜头的场曲得到较好的矫正。
图3的畸变曲线表示成像面上不同像高处的f-tanθ畸变,横轴表示f-tanθ畸变,纵轴表示视场角(单位:度);从图3中可以看出,成像面上不同像高处的光学畸变控制在±3%以内,说明光学镜头的畸变得到良好的矫正。
图4的轴向色差曲线表示成像面处光轴上的像差,横轴表示轴向色差值(单位:毫米),纵轴表示归一化光瞳半径。从图4中可以看出,轴向色差的偏移量控制在±0.06毫米以内,说明光学镜头能够有效地矫正轴向色差;
图5的垂轴色差表示各波长相对于中心波长(0.55μm)在成像面上不同像高处的色差,横轴表示各波长相对中心波长的垂轴色差值(单位:微米),纵轴表示归一化视场角;从图5中可以看出,最长波长和最短波长的垂轴色差控制在±2微米以内,说明该光学镜头能够有效矫正边缘视场的像差以及整个像面的二级光谱。
第二实施例
本发明第二实施例提供的光学镜头200结构示意图请参阅图6,该光学镜头沿光轴从物侧到成像面依次包括:光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及红外滤光片G1。
第一透镜L1为具有正光焦度塑胶非球面透镜,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2为具有负光焦度塑胶非球面透镜,第二透镜的物侧面S3为凹面,第二透镜的像侧面S4为凹面;
第三透镜L3为具有正光焦度塑胶非球面透镜,第三透镜的物侧面S5在近光轴处为凸面,第三透镜的像侧面S6为凸面;
第四透镜L4为具有负光焦度塑胶非球面透镜,第四透镜的物侧面S7为凸面,第四透镜的像侧面S8为凹面;
第五透镜L5为具有正光焦度塑胶非球面透镜,第五透镜的物侧面S9在近光轴处为凹面,第五透镜的像侧面S10在近光轴处为凸面;
第六透镜L6为具有负光焦度塑胶非球面透镜,第六透镜的物侧面S11在近光轴处为凹面,第六透镜的像侧面S12在近光轴处为凹面;
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6均为塑胶非球面透镜。
本实施例提供的光学镜头中各个镜片的相关参数如表3所示,其中R代表曲率半径,d代表光学表面间距,nd代表材料的d线折射率,Vd代表材料的阿贝数。
本实施例提供的光学镜头中各个镜片的相关参数如表3所示。
Figure 609154DEST_PATH_IMAGE005
表 3
本实施例中的光学镜头的各非球面的面型系数如表4所示。
Figure 894642DEST_PATH_IMAGE006
表 4
在本实施例中,光学镜头的场曲、畸变、轴向色差和垂轴色差的曲线图分别如图7、图8、图9和图10所示。
图7表示子午像面和弧矢像面的弯曲程度。从图7中可以看出,子午像面和弧矢像面的场曲控制在±0.4毫米以内,说明光学镜头的场曲得到较好的矫正。
图8表示成像面上不同像高处的f-tanθ畸变。从图8中可以看出,成像面上不同像高处的光学畸变控制在±2.5%以内,说明光学镜头的畸变得到良好的矫正。
图9表示成像面处光轴上的像差。从图9中可以看出,轴向色差的偏移量控制在±0.05毫米以内,说明光学镜头能够有效地矫正轴向色差。
图10表示最长波长与最短波长在成像面上不同像高处的色差。从图10可以看出,最长波长与最短波长的垂轴色差控制在±2微米以内,说明光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
第三实施例
本发明第三实施例提供的光学镜头300结构示意图请参阅图11,该光学镜头沿光轴从物侧到成像面依次包括:光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及红外滤光片G1。
第一透镜L1为具有正光焦度塑胶非球面透镜,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2为具有负光焦度塑胶非球面透镜,第二透镜的物侧面S3为凹面,第二透镜的像侧面S4为凹面;
第三透镜L3为具有正光焦度塑胶非球面透镜,第三透镜的物侧面S5在近光轴处为凸面,第三透镜的像侧面S6为凹面;
第四透镜L4为具有负光焦度塑胶非球面透镜,第四透镜的物侧面S7为凸面,第四透镜的像侧面S8为凹面;
第五透镜L5为具有正光焦度塑胶非球面透镜,第五透镜的物侧面S9在近光轴处为凹面,第五透镜的像侧面S10在近光轴处为凸面;
第六透镜L6为具有负光焦度塑胶非球面透镜,第六透镜的物侧面S11在近光轴处为凹面,第六透镜的像侧面S12在近光轴处为凹面;
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6均为塑胶非球面透镜。
本实施例提供的光学镜头中各个镜片的相关参数如表5所示,其中R代表曲率半径,d代表光学表面间距,nd代表材料的d线折射率,Vd代表材料的阿贝数。
本实施例中的光学镜头中各个镜片的相关参数如表5所示。
Figure 51560DEST_PATH_IMAGE007
表 5
本实施例中的光学镜头的各非球面的面型系数如表6所示。
Figure 106104DEST_PATH_IMAGE008
表 6
在本实施例中,光学镜头的场曲、畸变、轴向色差和垂轴色差的曲线图分别如图12、图13、图14和图15所示。
图12表示子午像面和弧矢像面的弯曲程度;从图12中可以看出,子午像面和弧矢像面的场曲控制在±0.4毫米以内,说明光学镜头的场曲得到较好的矫正。
图13表示成像面上不同像高处的f-tanθ畸变;从图13中可以看出,成像面上不同像高处的光学畸变控制在±2%以内,说明光学镜头的畸变得到良好的矫正。
图14表示成像面处光轴上的像差;从图14中可以看出,轴向色差的偏移量控制在±0.06毫米以内,说明光学镜头能够有效地矫正轴向色差。
图15表示最长波长与最短波长在成像面上不同像高处的色差;从图15可以看出,最长波长与最短波长的垂轴色差控制在±2.5微米以内,说明光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
第四实施例
本发明第四实施例提供的光学镜头400结构示意图请参阅图16,该光学镜头沿光轴从物侧到成像面依次包括:光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及红外滤光片G1。
第一透镜L1为具有正光焦度塑胶非球面透镜,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2为具有负光焦度塑胶非球面透镜,第二透镜的物侧面S3为凹面,第二透镜的像侧面S4为凹面;
第三透镜L3为具有正光焦度塑胶非球面透镜,第三透镜的物侧面S5在近光轴处为凸面,第三透镜的像侧面S6为凹面;
第四透镜L4为具有负光焦度塑胶非球面透镜,第四透镜的物侧面S7为凸面,第四透镜的像侧面S8为凹面;
第五透镜L5为具有正光焦度塑胶非球面透镜,第五透镜的物侧面S9在近光轴处为凹面,第五透镜的像侧面S10在近光轴处为凸面;
第六透镜L6为具有负光焦度塑胶非球面透镜,第六透镜的物侧面S11在近光轴处为凹面,第六透镜的像侧面S12在近光轴处为凹面;
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6均为塑胶非球面透镜。
本实施例提供的光学镜头中各个镜片的相关参数如表7所示,其中R代表曲率半径,d代表光学表面间距,nd代表材料的d线折射率,Vd代表材料的阿贝数。
本实施例中的光学镜头中各个镜片的相关参数如表7所示。
Figure 270369DEST_PATH_IMAGE009
表 7
本实施例中的光学镜头的各非球面的面型系数如表8所示。
Figure 184098DEST_PATH_IMAGE010
表 8
在本实施例中,光学镜头的场曲、畸变、轴向色差和垂轴色差的曲线图分别如图17、图18、图19和图20所示。
图17表示子午像面和弧矢像面的弯曲程度;从图17中可以看出,子午像面和弧矢像面的场曲控制在±1毫米以内,说明光学镜头的场曲得到较好的矫正;
图18表示成像面上不同像高处的f-tanθ畸变;从图18中可以看出,成像面上不同像高处的光学畸变控制在±3.5%以内,说明光学镜头的畸变得到良好的矫正。
图19表示成像面处光轴上的像差;从图19中可以看出,轴向色差的偏移量控制在±0.06毫米以内,说明光学镜头能够有效地矫正轴向色差。
图20表示最长波长与最短波长在成像面上不同像高处的色差;从图20可以看出,最长波长与最短波长的垂轴色差控制在±6微米以内,说明光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
表9是上述四个实施例对应的光学特性,主要包括系统焦距f、光圈数F#、光学总长TTL、视场角FOV等,以及与上述每个条件式对应的数值。
Figure 990380DEST_PATH_IMAGE011
表 9
综上,本实施例提供的光学镜头至少具有以下优点:
(1)采用六片具有特定屈折力的镜片,并且采用特定的表面形状及其搭配,在满足广视角的同时结构更紧凑轻薄化,从而较好地实现了镜头微型化和广视角的均衡。
(2)可以拍摄到更大面积的景物,具备大光圈功能特点,对后期的裁切带来了巨大便利,另外,此设计的光学镜头增强了成像画面的纵深感和空间感,具有更好的成像质量。
上述各实施例中的光学镜头均可运用在手机、平板、相机等终端。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种光学镜头,其特征在于,沿光轴从物侧面到成像面依次包括:
光阑;
具有正光焦度的第一透镜,物侧面为凸面,像侧面为凹面;
具有负光焦度的第二透镜,物侧面为凹面,像侧面为凹面;
具有正光焦度的第三透镜,物侧面在近光轴处为凸面;
具有负光焦度的第四透镜,像侧面为凸面,物侧面为凹面;
具有正光焦度的第五透镜,物侧面在近光轴处为凹面,像侧面在近光轴处为凸面;
具有负光焦度的第六透镜,物侧面在近光轴处为凹面,像侧面在近光轴处为凹面;
所述光学镜头满足以下条件式:
1.85<f/EPD<2.0;
1.35<TTL/ImgH<1.5;
其中,f是所述光学镜头的总有效焦距,EPD是所述光学镜头的入瞳直径;ImgH是所述光学镜头的成像面上有效像素区域的对角线长的一半,TTL是所述第一透镜的物侧面至所述成像面在光轴上的距离。
2.根据权利要求1所述的光学镜头,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123与所述光学镜头的总有效焦距f满足以下条件式:0.9<f123/f<1.3。
3.根据权利要求1所述的光学镜头,其特征在于,所述第三透镜的物侧面的曲率半径R31与所述第三透镜的像侧面的曲率半径R32满足以下条件式:-3.6<(R31+R32)/(R31-R32)<0。
4.根据权利要求1所述的光学镜头,其特征在于,所述第四透镜的物侧面的曲率半径R41与所述第四透镜的像侧面的曲率半径R42满足以下条件式:1.5<(R41+R42)/(R41-R42)<21。
5.根据权利要求1所述的光学镜头,其特征在于,所述第五透镜的像侧面的光学有效径DML52与所述第六透镜的像侧面的光学有效径DML62满足以下条件式:0.45<DML52/DML62<0.55。
6.根据权利要求1所述的光学镜头,其特征在于,所述第五透镜的像侧面的矢高SAG52与所述第五透镜的像侧面的光学有效径DML52满足以下条件式:-0.5<SAG52/DML52<-0.1。
7.根据权利要求1所述的光学镜头,其特征在于,所述第五透镜的物侧面的曲率半径R51与所述第五透镜的像侧面的曲率半径R52满足以下条件式:0<(R51+R52)/(R51-R52)<5.5。
8.根据权利要求1所述的光学镜头,其特征在于,所述第一透镜和所述第五透镜在光轴上的间隔距离CT15与所述第一透镜的物侧面至所述成像面在光轴上的距离TTL满足以下条件式:0.5<CT15/TTL<1。
9.根据权利要求1所述的光学镜头,其特征在于,所述第五透镜和所述第六透镜在光轴上的间隔距离CT56与所述第一透镜的物侧面至所述成像面在光轴上的距离TTL满足以下条件式:0<CT56/TTL<0.5。
10.根据权利要求1所述的光学镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜均为塑胶非球面透镜。
CN202110723536.6A 2021-06-29 2021-06-29 光学镜头 Active CN113253432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110723536.6A CN113253432B (zh) 2021-06-29 2021-06-29 光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110723536.6A CN113253432B (zh) 2021-06-29 2021-06-29 光学镜头

Publications (2)

Publication Number Publication Date
CN113253432A true CN113253432A (zh) 2021-08-13
CN113253432B CN113253432B (zh) 2021-10-29

Family

ID=77190039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110723536.6A Active CN113253432B (zh) 2021-06-29 2021-06-29 光学镜头

Country Status (1)

Country Link
CN (1) CN113253432B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391435A (zh) * 2021-08-17 2021-09-14 江西联益光学有限公司 光学镜头
CN113589495A (zh) * 2021-09-30 2021-11-02 江西联益光学有限公司 外置镜头
CN113625433A (zh) * 2021-09-18 2021-11-09 浙江舜宇光学有限公司 光学成像镜头
CN114647065A (zh) * 2022-04-20 2022-06-21 浙江舜宇光学有限公司 光学成像镜头
CN116594154A (zh) * 2023-07-13 2023-08-15 江西联益光学有限公司 光学镜头
CN116819733A (zh) * 2023-08-31 2023-09-29 江西联益光学有限公司 光学镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238820A1 (en) * 2015-02-12 2016-08-18 Newmax Technology Co., Ltd. Six-piece optical lens system
WO2019228064A1 (zh) * 2018-06-01 2019-12-05 浙江舜宇光学有限公司 成像镜头
CN211653280U (zh) * 2020-01-06 2020-10-09 浙江舜宇光学有限公司 光学成像镜头
CN112987262A (zh) * 2021-04-20 2021-06-18 江西联益光学有限公司 光学镜头及成像设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238820A1 (en) * 2015-02-12 2016-08-18 Newmax Technology Co., Ltd. Six-piece optical lens system
WO2019228064A1 (zh) * 2018-06-01 2019-12-05 浙江舜宇光学有限公司 成像镜头
CN211653280U (zh) * 2020-01-06 2020-10-09 浙江舜宇光学有限公司 光学成像镜头
CN112987262A (zh) * 2021-04-20 2021-06-18 江西联益光学有限公司 光学镜头及成像设备

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391435A (zh) * 2021-08-17 2021-09-14 江西联益光学有限公司 光学镜头
CN113391435B (zh) * 2021-08-17 2022-02-11 江西联益光学有限公司 光学镜头
CN113625433A (zh) * 2021-09-18 2021-11-09 浙江舜宇光学有限公司 光学成像镜头
CN113625433B (zh) * 2021-09-18 2023-10-31 浙江舜宇光学有限公司 光学成像镜头
CN113589495A (zh) * 2021-09-30 2021-11-02 江西联益光学有限公司 外置镜头
CN114647065A (zh) * 2022-04-20 2022-06-21 浙江舜宇光学有限公司 光学成像镜头
CN114647065B (zh) * 2022-04-20 2023-11-28 浙江舜宇光学有限公司 光学成像镜头
CN116594154A (zh) * 2023-07-13 2023-08-15 江西联益光学有限公司 光学镜头
CN116594154B (zh) * 2023-07-13 2023-10-27 江西联益光学有限公司 光学镜头
CN116819733A (zh) * 2023-08-31 2023-09-29 江西联益光学有限公司 光学镜头
CN116819733B (zh) * 2023-08-31 2023-12-05 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN113253432B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN113253432B (zh) 光学镜头
CN116125630A (zh) 光学摄影镜头组
CN113917667A (zh) 摄像镜头
CN114545599B (zh) 光学取像系统、取像装置及电子装置
CN110646924B (zh) 光学镜头
CN114924382B (zh) 光学成像系统、取像装置及电子装置
CN113204099B (zh) 光学成像镜头
CN113946038B (zh) 光学镜头、摄像模组及电子设备
CN112526730B (zh) 光学镜头及成像设备
CN115390227B (zh) 光学镜头
CN114578512B (zh) 光学系统、摄像模组及电子设备
CN112965222B (zh) 一种光学镜头
CN114935812B (zh) 光学系统、取像模组及电子设备
CN111158116A (zh) 光学成像镜头
CN113253437B (zh) 光学镜头
CN113589495B (zh) 外置镜头
CN113960759B (zh) 光学镜头、摄像模组及电子设备
CN114415343B (zh) 光学系统、摄像模组及电子设备
CN113484985B (zh) 光学镜头、摄像模组及电子设备
CN211528803U (zh) 光学系统、摄像模组及电子装置
CN113933966A (zh) 光学镜头、摄像模组及电子设备
CN113933969A (zh) 光学镜头、摄像模组及电子设备
CN113075782A (zh) 光学系统、摄像模组及电子装置
CN113093374B (zh) 光学镜头
CN114755810B (zh) 成像透镜组、摄像模组及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant