CN113248610A - Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof - Google Patents

Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof Download PDF

Info

Publication number
CN113248610A
CN113248610A CN202110528965.8A CN202110528965A CN113248610A CN 113248610 A CN113248610 A CN 113248610A CN 202110528965 A CN202110528965 A CN 202110528965A CN 113248610 A CN113248610 A CN 113248610A
Authority
CN
China
Prior art keywords
seq
ser
gly
thr
tyr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110528965.8A
Other languages
Chinese (zh)
Other versions
CN113248610B (en
Inventor
梁耀极
刘杰
陈莹
陈滨滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Baici Biotechnology Co ltd
Original Assignee
Xiamen Baici Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Baici Biotechnology Co ltd filed Critical Xiamen Baici Biotechnology Co ltd
Priority to CN202110528965.8A priority Critical patent/CN113248610B/en
Priority to CN202210864699.0A priority patent/CN116284380A/en
Publication of CN113248610A publication Critical patent/CN113248610A/en
Application granted granted Critical
Publication of CN113248610B publication Critical patent/CN113248610B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/246IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6845Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a cytokine, e.g. growth factors, VEGF, TNF, a lymphokine or an interferon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

The present invention discloses an interleukin 2 binding molecule, which is capable of specifically binding interleukin 2 and comprises at least one immunoglobulin single variable domain comprising a CDR1, a CDR2 and a CDR 3; wherein CDR1 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 1-15, CDR2 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 16-54, and CDR3 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 55-84. The invention also discloses a nucleic acid molecule coded by the polypeptide, an expression vector, a host cell, a production method, an immunoconjugate, a pharmaceutical composition and a kit applying the polypeptide, and application of the polypeptide. The interleukin 2 binding molecule with high specificity, high affinity and high stability is obtained by screening, so that the interleukin 2 binding molecule can be used for treating, preventing and diagnosing IL2 related diseases.

Description

Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof
Technical Field
The invention relates to the technical field of biological medicines, in particular to a single-domain antibody aiming at interleukin 2(IL 2).
Background
Interleukin 2(IL2) has been discovered to date for over 30 years, but remains one of the most interesting and widely studied cytokines. IL2 in humans is a glycoprotein with a molecular weight of 15.5kDa, the mature IL2 molecule consists of 133 amino acid residues left after cutting a signal peptide of 20 amino acid residues at the N-terminus of a 153 amino acid peptide chain, and IL2 has no homology with other cytokines in sequence (T Taniguchi, H Matsui, T Fujita, C Takaoka, N Kashima, R Yoshimoto, J Hamero.Structure and expression of a closed cDNA for human interukin-2. Nature.1983Mar 24-30; 302(5906): 305-10.). In a stable state, IL2 is produced mainly by CD4+ T helper cells in secondary lymphoid organs and in small part by CD8+ T cells, NK cells and NKT cells, and antigen stimulation strongly induces the production of CD4+ and CD8+ T cells, although CD8+ T cells have a weak ability to synthesize IL2, and the responses of these cells often require the help of CD4+ T cells (ref: Thomas R Malek. the biology of Interleukin-2.Annu Rev Immunol.2008; 26: 453-79.).
IL2 was synthesized as a precursor protein of 153 amino acids with the first 20 amino-terminal amino acids as the hydrophobic secretion signal sequence. The protein contains a single disulfide bond (joining position Cys58/105) that is essential for biological activity.
The biological activity of IL2 is mediated by membrane receptors that are expressed almost exclusively on activated T cells, but not on resting T cells. The complete IL 2receptor is composed of 3 type I transmembrane protein subunits: α, β, and γ; the lower affinity functional receptor may consist of only the beta and gamma receptor proteins. Resting B cells and resting mononuclear leukocytes rarely express this receptor. The expression of the IL 2receptor (especially the alpha subunit) is regulated by a number of factors, for example IL5, IL6 and L2R/p55 inducible factors.
Both mouse and human IL2 were able to efficiently proliferate T cells of the same species. Human IL2 also had an effect on mouse cells, but not vice versa. IL2 is a growth factor for all subpopulations of T lymphocytes. It is an antigen-nonspecific proliferation factor for T cells that induces cell cycle progression in resting cells and thereby clonally expands T lymphocytes. IL2 also promotes proliferation and differentiation of activated B cells. As with T cell proliferation, this activity also requires the presence of other factors, such as IL 4.
IL2 exerts its biological activity by acting on IL2R on the cell membrane. IL2R is a complex composed of CD25(IL 2R. alpha. chain, 55Kd), CD122(IL 2R. beta. chain, 75Kd) and CD132(IL 2R. gamma. chain, 64Kd), only cells expressing. alpha. bind to IL2 with low affinity and are unable to undergo intracellular signal transduction, and when the. alpha. chain and the. beta. chain together with the. gamma. chain form a trimeric form of IL2R, the affinity for binding IL2R to IL2 can be increased by 10-100 fold (Kd 10-11), both β and γ belong to the type I cytokine receptor family, and the. gamma. subunit does not bind to IL2 alone but binds to the. beta. subunit to form a low affinity dimeric form of IL2R (Kd 10-9) that together form part of the IL2R signal. Both the beta and gamma subunits carry signal sequences in their cytoplasmic tails, which signal transduction proceeds through a variety of intracellular pathways, such as the tyrosine protein kinase-signal transduction and transcription Factor activation pathway (JAK/STAT), the phosphatidylinositol-3 kinase B pathway (PI3K/Akt), and the mitogen-activated protein kinase pathway (MAPKs) (ref: J X Lin, W J Leonard. signalling from the IL-2receptor to the nucleus. cytokine Growth Factor Rev.1997 Dec; 8(4): 313-32.).
IL-2 has been widely used clinically for over 30 years as part of immunotherapy for malignancies, but its role is limited by toxicity, instability in vivo, and preferential expansion of suppressive Treg cells rather than effector T cells. Mechanistically, IL2 initially binds to IL-2R α, resulting in a conformational change in IL-2, which effectively binds to IL-2R β and IL-2R γ, and then forms a high affinity receptor that activates intracellular signaling pathways. IL2 may also activate intracellular signaling pathways when it interacts with the intermediate affinity receptors, IL-2R β and IL-2R γ dimers. IL-2R alpha has wide expression in Treg cells, but the Treg cells do not have killing effect, so that IL-2 is consumed, and good cell killing effect is not generated.
Single domain antibodies (sdabs) are antibodies that consist of a single monomeric variable antibody domain. Like whole antibodies, it is capable of selectively binding to a specific antigen. Single domain antibodies are much smaller than the common antibodies consisting of two protein heavy chains and two light chains. The first single domain antibody was engineered from the heavy chain antibody found in camelids (references: Hamers-Casterman C, Atarhouch T, Muydermans S, Robinson G, Hamers C, Songa EB, Bendahmann, Hamers R (1993) Naturally ocuring antibodies void of light chains. Nature363(6428): 446-448.). Currently, most studies on single domain antibodies are based on heavy chain variable domains.
Single domain antibodies have many advantages. For example, they generally exhibit high solubility and stability and can also be readily produced in yeast, plant and mammalian cells (references: H a r M e n M, D e H a ard H J (2007) Properties, production, and applications of functional single-domain antibodies fragments. Appl Microbiol Biotechnol 77(1): 13-22.). In addition, they have good thermal stability and good tissue penetration. But they are also cost-effective in production. Although antibodies against IL2 have been developed, there remains a need for improved anti-IL 2 antibodies as therapeutic agents. Furthermore, it is noteworthy that few single domain antibodies are currently directed against IL 2. Therefore, it would be desirable in the art to develop new anti-IL 2 antibodies, in particular single domain antibodies directed against IL 2.
Disclosure of Invention
The invention aims to obtain an interleukin 2 binding molecule with high specificity, high affinity and high stability by screening by utilizing a phage display technology so as to treat, prevent and diagnose IL2 related diseases, and also aims to provide a nucleic acid molecule for coding interleukin 2, an expression vector for expressing anti-interleukin 2 and a host cell for production and convenient clinical application. The invention adopts the following technical scheme:
the present invention discloses an interleukin 2 binding molecule, which is capable of specifically binding interleukin 2 and comprises at least one immunoglobulin single variable domain comprising a CDR1, a CDR2 and a CDR 3; wherein CDR1 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 1-15, CDR2 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 16-54, and CDR3 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 55-84.
Preferably, the at least one immunoglobulin single variable domain comprises a CDR1, CDR2 and CDR3 selected from table 1.
Wherein said immunoglobulin single variable domain is a VHH comprising an amino acid sequence having at least 80% sequence identity to any one of SEQ ID NOs 85-138.
Furthermore, the interleukin 2 binding molecule has a KD value of less than 1 x10 when combined with interleukin 2- 7M。
Wherein, the interleukin 2 binding molecule is a single domain antibody or a chimeric antibody or a humanized antibody. The single domain antibody is a heavy chain single domain antibody. The VHH is from a camelid, such as an alpaca or llama.
Wherein said VHH is fused to another molecule which is an Fc domain of an immunoglobulin (such as IgG), a fluorescent protein or another VHH with a different specificity.
The invention also discloses a nucleic acid molecule which codes the interleukin 2 binding molecule and comprises the nucleic acid sequence shown in any one of SEQ ID NO 139-192.
The invention also discloses an expression vector which comprises the nucleic acid molecule operably connected with the expression regulatory element.
The invention also discloses a host cell which comprises the nucleic acid molecule or the expression vector and can express the interleukin 2 binding molecule, and the host cell is a bacterial cell, a fungal cell or a mammalian cell.
The invention also discloses a production method of the interleukin 2 binding molecule, which comprises the following steps: a) culturing said host cell under conditions which permit the expression of said interleukin 2 binding molecule; b) recovering the interleukin 2 binding molecule expressed by the host cells from the culture from step a); c) further purifying and/or modifying the interleukin 2 binding molecule resulting from step b).
Also disclosed are immunoconjugates comprising the interleukin 2 binding molecules described above conjugated to a therapeutic moiety. Wherein the therapeutic moiety comprises a cytotoxin, a biologically active protein, or a radioisotope.
The invention also discloses a pharmaceutical composition, which comprises the immunoconjugate and a pharmaceutically acceptable carrier.
The invention also discloses: use of an interleukin 2 binding molecule or immunoconjugate, or pharmaceutical composition, in the manufacture of a medicament for the prevention or treatment of a proliferative disorder. Wherein, the medicament for preventing or treating the proliferative diseases is a medicament for preventing or treating cancers or a medicament for treating chronic virus infection.
The invention also discloses application of the interleukin 2 binding molecule in inhibiting or blocking the binding of CD25 and interleukin 2 and related medicaments.
The invention also discloses a kit which comprises a container, wherein the interleukin 2 binding molecule is arranged in the container.
The interleukin 2 binding molecule obtained by the invention is a nano antibody aiming at interleukin 2(IL2), can block the binding of IL2 and IL-2R alpha, does not influence the binding of IL2 with IL-2R beta and IL-2R gamma, and has high specificity, high affinity and high stability. Has important roles in the treatment, prevention and diagnosis of IL 2-related diseases (such as cancer or chronic viral infection).
Drawings
FIG. 1 shows the data of ELISA blocking experiments for antibody strains.
FIG. 2 shows the data of the antibody strain ELISA affinity assay for IL 2.
Detailed Description
In order to make the technical solutions of the present invention better understood by those skilled in the art, the present invention will be described in further detail with reference to the accompanying drawings and specific embodiments.
The meaning of the terms of the present invention will be explained first as follows:
the term "antibody" or "immunoglobulin" is used herein as a general term to include full-length antibodies, individual chains thereof, and all portions, domains or fragments thereof (including but not limited to antigen-binding domains or fragments, such as VHH domains or VH/VL domains, respectively), whether referred to as heavy chain antibodies or conventional 4-chain antibodies.
The term "sequence" (for example in the terms "immunoglobulin sequence", "antibody sequence", "single variable domain sequence", "VHH sequence" or "protein sequence") is to be understood as including both related amino acid sequences and nucleic acid or nucleotide sequences encoding said sequences.
The term "domain" (of a polypeptide or protein) refers to a folded protein structure that is capable of maintaining its tertiary structure independently of the rest of the protein. In general, domains are responsible for individual functional properties of proteins, and in many cases may be added, removed, or transferred to other proteins without loss of function of the rest of the protein and/or domain.
An "immunoglobulin domain" refers to a globular region of an antibody chain (e.g., a chain of a conventional 4-chain antibody or a chain of a heavy chain antibody), or to a polypeptide consisting essentially of such a globular region. The immunoglobulin domain is characterized in that it maintains the immunoglobulin fold characteristics of an antibody molecule, consisting of a 2-layer sandwich of about 7 antiparallel beta sheet strands arranged in two beta sheets, optionally stabilized by conserved disulfide bonds.
The term "immunoglobulin variable domain" refers to an immunoglobulin domain consisting essentially of four "framework regions" referred to in the art and hereinafter as "framework region 1" or "FR 1", "framework region 2" or "FR 2", "framework region 3" or "FR 3", and "framework region 4" or "FR 4", respectively, wherein the framework regions are separated by three "complementarity determining regions" or "CDRs" referred to in the art and hereinafter as "complementarity determining region 1" or "CDR 1", "complementarity determining region 2" or "CDR 2", and "complementarity determining region 3" or "CDR 3", respectively. Thus, the general structure or sequence of an immunoglobulin variable domain can be represented as follows: FR1-CDR1-FR2-CDR2-FR3-CDR3-FR 4. Immunoglobulin variable domains confer specificity for an antigen to an antibody by virtue of having an antigen binding site.
The term "immunoglobulin single variable domain" refers to an immunoglobulin variable domain that is capable of specifically binding an epitope of an antigen without pairing with other immunoglobulin variable domains. An example of an immunoglobulin single variable domain within the meaning of the present invention is a "domain antibody", e.g. immunoglobulin single variable domains VH and VL (VH and VL domains). Another example of an immunoglobulin single variable domain is a camelidae "VHH domain" (or simply "VHH") as defined below.
"VHH domains", also known as heavy chain single domain antibodies, VHHs, VHH domains, VHH antibody fragments and VHH antibodies, are the variable domains of antigen-binding immunoglobulins (Hamers-Casterman C, Atarhouch T, Muydermans S, Robinson G, Hamers C, Songa EB, Bendahmann, Hamers R.: Na tubular monoclonal antibody d infection of light chains);
nature363,446-448 (1993)). The term "VHH domain" is used to distinguish the variable domain from a heavy chain variable domain (which is referred to herein as a "VH domain") present in conventional 4 chain antibodies, and a light chain variable domain (which is referred to herein as a "VL domain") present in conventional 4 chain antibodies. The VHH domain specifically binds to an epitope without the need for an additional antigen binding domain (as opposed to the VH or VL domain in conventional 4 chain antibodies, in which case the epitope is recognized by the VL domain together with the VH domain). The VHH domain is a small, stable and efficient antigen recognition unit formed from a single immunoglobulin domain.
The terms "heavy chain single domain antibody", "VHH domain", "VHH antibody fragment", "VHH antibody" and "domain" ("Nanobody" is a trademark of Ablynx n.v. company, Ghent, Belgium) are used interchangeably.
For example, as shown in FIG. 2 of Riechmann and Muylermans, J.Immunol.methods 231,25-38(1999), the amino acid residues employed for the VHH domains in the family Camelidae are numbered according to the general numbering of the VH domains given by Kabat et al ("Sequence of proteins of immunological interest", US Public Health Services, NIH Bethesda, MD, publication No. 91). According to the numbering process:
FR1 contains the amino acid residues at positions 1-30,
-CDR1 comprises amino acid residues at positions 31-35,
FR2 contains the amino acids at positions 36-49,
-CDR2 comprises amino acid residues at positions 50-65,
FR3 contains the amino acid residues at positions 66-94,
-CDR3 comprises the amino acid residues from position 95 to the penultimate 12, an
FR4 contains the last amino acid residue from the 11 th to the end of the position from the last.
It should be noted, however, that the total number of amino acid residues in each CDR may be different and may not correspond to the total number of amino acid residues indicated by the Kabat numbering, as is well known in the art for VH and VHH domains (i.e., one or more positions according to the Kabat numbering may not be occupied in the actual sequence, or the actual sequence may contain more amino acid residues than allowed by the Kabat numbering). This means that, in general, the numbering according to Kabat may or may not correspond to the actual numbering of the amino acid residues in the actual sequence.
Substitution methods for numbering amino acid residues of VH domains are known in the art and may also be applied analogously to VHH domains. However, in the present specification, claims and drawings, reference will be made to numbering according to Kabat and as appropriate for the VHH domain, as described above, unless otherwise indicated.
The total number of amino acid residues in the VHH domain will generally range from 110 to 120, often between 112 and 115. However, it should be noted that smaller and longer sequences may also be suitable for the purposes described herein.
Other structural and functional properties of VHH domains and polypeptides comprising the same may be summarized as follows:
the VHH domain, which has been naturally "designed" to functionally bind to an antigen in the absence and without interaction with a light chain variable domain, can be used as a single and relatively small functional antigen binding unit, domain or polypeptide. This distinguishes VHH domains from VH and VL domains of conventional 4 chain antibodies, which are themselves generally unsuitable for practical application as single antigen binding proteins or immunoglobulin single variable domains, but need to be combined in some form or another to provide a functional antigen binding unit (e.g. in the form of a conventional antibody fragment such as a Fab fragment; or in the form of a scFv consisting of a VH domain covalently linked to a VL domain).
Because of these unique properties, the use of VHH domains alone or as part of a larger polypeptide offers a number of significant advantages over the use of conventional VH and VL domains, scfvs or conventional antibody fragments (e.g., Fab-or F (ab') 2-fragments):
only a single domain is required to bind antigen with high affinity and high selectivity, so that neither two separate domains need be present, nor is it required to ensure that the two domains are present in the proper spatial conformation and configuration (e.g., scFv's typically require the use of specially designed linkers); the VHH domain may be expressed from a single gene and does not require post-translational folding or modification; VHH domains can be easily engineered into multivalent and multispecific formats (formatting); the VHH domain is highly soluble and has no tendency to aggregate; VHH domains are highly stable to heat, pH, proteases and other denaturants or conditions and therefore can be prepared, stored or transported without the use of refrigeration equipment, thereby achieving cost, time and environmental savings; VHH domains are easy to prepare and relatively inexpensive, even on the scale required for production; the VHH domain is relatively small compared to conventional 4 chain antibodies and antigen binding fragments thereof (about 15kDa or 1/10 of conventional IgG in size), and therefore shows higher tissue permeability and can be administered at higher doses compared to conventional 4 chain antibodies and antigen binding fragments thereof; VHH domains may exhibit so-called cavity-binding properties (especially due to their extended CDR3 loops compared to conventional VH domains) allowing access to targets and epitopes not accessible by conventional 4-chain antibodies and antigen-binding fragments thereof.
Methods for obtaining VHHs that bind to a particular antigen or epitope have been previously disclosed in the following references: van der Linden et al, Journal of Immunological Methods,240(2000) 185-195; li et al, J B i o l C h e m., 287 (2012) 13713-13721; deffatet, African Journal of Biotechnology Vol.8(12), pp.2645-2652,17June,2009 and WO 94/04678.
The term "antibody" or "Ab" generally refers to any form of antibody that exhibits a desired biological or binding activity. It includes, but is not limited to, humanized antibodies, fully human antibodies, chimeric antibodies and single domain antibodies. The antibody may comprise a heavy chain and a light chain. Heavy chains can be divided into μ, δ, γ, α and ε, which define the antibody isotype as IgM, IgD, IgG, IgA and IgE, respectively. Each heavy chain consists of a heavy chain variable region (VH) and a heavy chain constant region (CH). The heavy chain constant region consists of 3 domains (CH1, CH2 and CH 3). Each light chain consists of a light chain variable region (VL) and a light chain constant region (CL). The VH and VL regions can be further divided into hypervariable regions (referred to as Complementarity Determining Regions (CDRs)) separated by relatively conserved regions (referred to as Framework Regions (FRs)). Each VH and VL consists of 3 CDRs and 4 FRs in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4 from N-terminus to C-terminus. The distribution of amino acids in various regions or domains follows either Kabat Sequences of proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987and1991)) or Chothia & Lesk (1987) J.mol.biol.196: 901-917; chothia et al, (1989) Nature 342: 878-883. The antibodies may be of different antibody isotypes, such as IgG (e.g., IgG1, IgG2, IgG3, or IgG4 subtypes), IgA1, IgA2, IgD, IgE, or IgM antibodies.
The term "inhibits binding," "blocks binding," or "competes for the same epitope" refers to the ability of an antibody to inhibit the binding of two molecules (e.g., human PD-1 and an anti-PD-1 antibody) to any detectable degree. In some embodiments, an antibody that blocks binding between two molecules inhibits the binding interaction between the two molecules by at least 50%. In some embodiments, the inhibition may be greater than 60%, greater than 70%, greater than 80%, or greater than 90%.
The term "high affinity" for an IgG antibody means having 1X 10 for the target antigen-7M or less, more preferably 5X 10-8M or less, even more preferably 1X 10-8M or less, even more preferably 5X 10-9M or less, and even more preferably 1X 10-9M or lower KD.
The term "vector" refers to a nucleic acid vehicle into which a polynucleotide may be inserted. When a vector allows the expression of a protein encoded by a polynucleotide inserted therein, the vector is referred to as an expression vector. The vector may be used to express the carried genetic material element in a host cell by transformation, transduction, or transfection into the host cell. Vectors are well known to those skilled in the art and include, but are not limited to, plasmids, phages, cosmids, artificial chromosomes such as Yeast Artificial Chromosomes (YACs), Bacterial Artificial Chromosomes (BACs) or P1-derived artificial chromosomes (PACs); bacteriophages such as lambda bacteriophage or M13 bacteriophage and animal viruses. Animal viruses that may be used as vectors include, but are not limited to, retroviruses (including lentiviruses), adenoviruses, adeno-associated viruses, herpes viruses (e.g., herpes simplex virus), poxviruses, baculoviruses, papilloma viruses, papovaviruses (e.g., SV 40). The vector may contain a number of elements for controlling expression, including but not limited to promoter sequences, transcription initiation sequences, enhancer sequences, selection elements and reporter genes. In addition, the vector may comprise an origin of replication.
The term "host cell" refers to a cell into which a vector can be introduced, including, but not limited to, prokaryotic cells such as e.coli (e.coli) or Bacillus subtilis (Bacillus subtilis), fungal cells such as yeast cells or Aspergillus (Aspergillus), insect cells such as S2 drosophila cells or Sf9, and animal cells such as fibroblasts, CHO cells, COS cells, NSO cells, HeLa cells, BHK cells, HEK293 cells or human cells.
The term "T cell" includes CD4+ T cells, CD8+ T cells, T helper type 1T cells, T helper type 2T cells, T helper type 17T cells and suppressor T cells.
Other terms besides these are the usual meanings known to the person skilled in the art, reference being made, for example, to standard manuals such as Sambrook et al, "Molecular Cloning: Alabortory Manual" (2 nd edition), Vol.1-3, Cold Spring Harbor Laboratory Press (1989); lewis, "Genes IV", Oxford University Press, New York, (1990); and Roitt et al, "Immunology" (2 nd edition), Gower Medical Publishing, London, New York (1989), and the general prior art cited herein; moreover, unless otherwise indicated, all methods, steps, techniques and operations not specifically recited may be and have been performed in a manner known per se to those of skill in the art. Reference is also made, for example, to standard manuals, the general prior art mentioned above and to other references cited therein.
Example one
The present example discloses interleukin 2 binding molecules, which are capable of specifically binding interleukin 2 and comprise at least one immunoglobulin single variable domain comprising CDR1, CDR2, and CDR 3. Wherein CDR1 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 1-15, CDR2 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 16-54, and CDR3 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 55-84. At least one immunoglobulin single variable domain in this embodiment comprises a CDR1, CDR2, and CDR3 selected from those shown in table 1 below.
TABLE 1 CDR1, CDR2 and CDR3 of interleukin 2 binding molecules
Figure BDA0003067359970000081
Figure BDA0003067359970000091
Figure BDA0003067359970000101
Figure BDA0003067359970000111
Figure BDA0003067359970000121
Wherein the immunoglobulin single variable domain is VHH. The VHH comprises the amino acid sequence of any one of SEQ ID NOS 85-138 having at least 80% sequence identity as shown in Table 2 below.
TABLE 2 amino acids of antibody strains
Figure BDA0003067359970000122
Figure BDA0003067359970000131
Example two
This example discloses the screening process of example one, and the 54 strains of antibodies obtained by screening were subjected to nucleotide sequencing to obtain nucleic acid sequences.
1. Preparing materials: commercial materials were prepared as shown in table 3 below.
TABLE 3
Figure BDA0003067359970000132
2. Immunization
To induce a humoral immune response against IL2 in camelids, 5 doses of human IL2 protein were injected subcutaneously on alpacas at 1 to 3 week intervals. The dose range is 150ug to 500ug per injection.
3. Serum potency detection
After immunization, anti-IL 2-specific antibody serum titers were determined by ELISA. For ELISA experiments, an ELISA (NEST,504201) was coated with 400 ng/well recombinant his-tagged human IL2 protein and incubated overnight at 4 ℃. After blocking and washing, the pre-immune and immune sera diluted in series were added and incubated for 2 hours at room temperature, then incubated for 1 hour at room temperature with Rabbitanthi-VHH (HRP) (Genscript, A01861-200) diluted 1:2000, after washing TMB color developing solution (Solebao, PR1200-500ML) was added and the reaction was stopped by 1M H2SO 4. The absorbance at 460nm was read using a plate reader (Tecan, SPARK10M) as shown in Table 4.
TABLE 4 results of ELISA for the detection of IL-2 serum titers from three alpacas
Figure BDA0003067359970000133
Figure BDA0003067359970000141
4. Phage library construction
70ml blood samples were collected 6-7 days after the last two injections, respectively. Peripheral Blood Mononuclear Cells (PBMC) were purified by density gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare, 17144002) and approximately 8X107 PBMC were collected. Total RNA was then extracted from PBMC and Reverse transcribed into cDNA using oligo dT primer and random 6 base primer, GoScript Reverse Transcription System (Promega, A5001) according to the supplier's recommendations.
The cDNA was purified and used as a template to amplify a library of Ig heavy chain encoding gene fragments using signal peptide domain specific primers and CH2 domain specific primers. This amplification produced PCR fragments of approximately 900bp (representing regular IgG) and 700bp (representing heavy chain IgG lacking the CH1 domain). The two classes of heavy chain encoding genes were then separated by size on an agarose Gel and the genes encoding only heavy chain IgG were purified by the QIAquick Gel Extraction Kit (Qiagen, 28704). The purified fragments were used as templates to amplify VHH libraries using a frame 1(FR1) and frame 4(FR4) specific primer pair. This amplification procedure introduced a BamH1 restriction site at the 5 'end of FR1 and a Xho1 restriction site at the 3' end of FR 4. The VHH gene library amplified by PCR of approximately 300-400bp was loaded on an agarose Gel and purified by QIAquick Gel Extraction Kit. The purified fragment was then cut with BamHI and XhoI and recovered by purification through 1.2X AgencourtAmpure XP beads (Qiagen, 28104). The VHH gene fragment was finally ligated into the phagemid vector pComb and electrically transformed into e.coli TG 1. After transformation, TG1 cells were cultured in 2YT medium with shaking at 200rpm for 30min, then escherichia coli TG1 was plated on plates containing solid TB medium supplemented with 100 μ g/mL Amp and cultured overnight at 37 ℃. The following day, colonies were scraped into liquid 2YT medium supplemented with 1/3(v/v) 80% glycerol and stored at-80 ℃.
5. Phage display selection of anti-IL 2-specific VHH fragments
To select a VHH fragment that efficiently binds IL2, a protein panning approach was used.
For protein panning, 100. mu.g of recombinant his-tagged human IL2 protein was first individually coated in 5ml immune tubes (Nunc, Rochester, MN, USA) overnight at 4 ℃ with shaking at 400 rpm. The following day, after washing away unbound protein, the tubes were blocked with 5% skim milk at 25 ℃ for 1 hour. Approximately 1013cfu of phage from the immunophage library were added to uncoated immune tubes blocked with 5% skim milk to deplete non-specifically bound phage, and then treated phage were added to the tubes and incubated at 25 ℃ for 2 hours. After extensive washing with PBST, the non-specifically adsorbed phages were discarded, and specifically bound target phages were eluted with 0.1M triethylamine, followed by neutralization with 1M Tris-HCl (pH7.5) for infection of exponentially growing TG1 cells.
Infected TG1 cells were plated on TB agar plates containing 100. mu.g/ml ampicillin and cultured overnight at 37 ℃. The next day, colonies were scraped from the plate with 3ml of 2YT and frozen at-80 ℃ by adding 1/3(v/v) 80% glycerol. The scraped library of bacteria was inoculated into 2YT containing 100. mu.g/ml ampicillin and infected with helper phage M13Ko7 in 2YT medium containing 50. mu.g/ml kanamycin and 1mM IPTG for phage rescue for the next round of panning. The amount of coated antigen was reduced for each panning round to increase the affinity of the phage for a total of 4 panning rounds.
6. CD25 blocking assay
The fourth round of eluted phage was infected with HB2151 bacteria, incubated at 37 ℃ for 1h with shaking, and then diluted to spread on a plate containing 100. mu.g/mL Amp of solid TB medium and incubated overnight at 37 ℃. The next day, 300 single clones were picked up in plates, 1ml LB/AMP/1% glycerol medium was added to each well, cultured at 37 degrees and 220rpm until OD600 became 0.5, and 1M IPTG was added to induce VHH protein expression. Centrifuging the induced bacteria liquid to remove the supernatant, adding 500ul TES periplasm lysate into each hole, mixing uniformly, standing on ice for 30min, centrifuging, and taking the supernatant to perform a CD25 blocking experiment.
96-well plates (Nunc, Rochester, MN, USA) were coated with recombinant FC-labeled human CD25 protein overnight at 4 ℃. After blocking and washing, HB2151 lysate supernatant was transferred to new 48-well plates, bound to IL2 for 1h at room temperature, and then the supernatant was transferred to coated plates and incubated for 1h at room temperature. The plates were then washed and subsequently incubated with the mouse monoclonal Antibody Anti-His tag Antibody (HRP) (Sino Biological, 105327-MM02T-H) for 1 hour. After washing, TMB substrate was added and the reaction was stopped with 2M HCl. Absorbance at 460nm was read using a microplate reader (Tecan, SPARK 10M). TMB color developing solution (Solebao, PR1200-500ML) was added and the reaction was stopped by 1M H2SO 4. The absorbance at 460nm was read using a microplate reader (Tecan, SPARK 10M). Wherein, when the ratio of the OD value blocked by the CD25 divided by the OD value of the blank control is less than or equal to 0.25, the antibody is judged to be capable of blocking the combination of the CD25 and the IL 2. The results show that 54 antibodies among the 800 antibodies screened blocked the binding between CD25 and IL2, and the results are shown in table 5 and fig. 1.
TABLE 5 antibody strain ELISA blocking experiments
Figure BDA0003067359970000161
Figure BDA0003067359970000171
7. ELISA for affinity determination
After screening of blocking experiments, antibody strains with blocking effects were subjected to ELISA for IL2 affinity. IL2 was coated on ELISA plates and incubated at 4 degrees overnight.
The next day, the antigen-coated ELISA plates were incubated with 5% mik, blocked at room temperature for 2h, washed with washing buffer 2 times after blocking, then the antibody strain supernatants with blocking effect were transferred to 100ul ELISA plates, incubated at room temperature for 1h, and washed with washing buffer 6 times. Rabbit anti-VHH (HRP) (Genscript, A01861-200) was added to the ELISA plates for incubation, and after incubation, TMB developing solution (Solebao, PR1200-500ML) was added and the reaction was stopped with 1M H2SO 4. The absorbance at 460nm was read using a microplate reader (Tecan, SPARK 10M). Wherein, when the ratio of the OD value of the IL2 protein divided by the OD value of the blank control is more than or equal to 4, the antibody is judged to be capable of binding to the IL2 protein. The results are shown in Table 6 and FIG. 2.
Table 6 antibody strain ELISA affinity assay for IL2
Figure BDA0003067359970000172
Figure BDA0003067359970000181
Figure BDA0003067359970000191
8. Sequencing
Positive E.coli clones screened by the CD25 blocking ELISA assay were sent to Biotechnology (Shanghai) GmbH for nucleotide sequencing of the VHH gene. Sequencing results were analyzed using "single domain antibody signature sequence analysis software". The nucleic acid sequences of Table 7 were obtained.
TABLE 7
Figure BDA0003067359970000192
Figure BDA0003067359970000201
The VHH of this example is derived from alpaca, and can also be used with llama, the host cell is a bacterial cell (e.g. e. The VHH may be fused to the Fc domain of an immunoglobulin or to a fluorescent protein or another VHH with a different specificity.
EXAMPLE III
The present example discloses an immunoconjugate and a pharmaceutical composition.
The immunoconjugate comprises a therapeutic moiety and the interleukin 2 binding molecule of example one. Therapeutic moieties include cytotoxins, biologically active proteins, or radioisotopes. The therapeutic moiety is conjugated to an interleukin 2 binding molecule.
The pharmaceutical composition comprises the interleukin 2 binding molecule or the immunoconjugate described above in example one, and a pharmaceutically acceptable carrier.
The pharmaceutical compositions are prophylactic or therapeutic agents for proliferative disorders, disorders or conditions that may respond to IL2 antagonists: such as a medicament for treating cancer, or a medicament for treating chronic viral infection, or a medicament for inhibiting or blocking the binding of CD25 to interleukin 2.
Example four
The embodiment discloses a kit, which comprises a container, wherein the interleukin 2 binding molecule of the first embodiment is arranged in the container. By adopting the kit, the IL-2 generation or abnormal expression of a patient can be detected, so that a reliable basis is provided for early diagnosis, prognosis and curative effect observation of diseases.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any changes or substitutions that can be easily conceived by those skilled in the art within the technical scope of the present invention are included in the scope of the present invention.
SEQUENCE LISTING
<110> Xiamen Baibeici Biotech Co., Ltd
<120> interleukin 2 binding molecule, derivative thereof, kit, production method thereof and use thereof
<160> 192
<170> PatentIn version 3.3
<210> 1
<211> 5
<212> PRT
<213> Artificial sequence
<400> 1
Asn Tyr Asp Met Gly
1 5
<210> 2
<211> 5
<212> PRT
<213> Artificial sequence
<400> 2
Asn Tyr Asp Met Ala
1 5
<210> 3
<211> 5
<212> PRT
<213> Artificial sequence
<400> 3
Gly Tyr Val Met Gly
1 5
<210> 4
<211> 5
<212> PRT
<213> Artificial sequence
<400> 4
Asp Tyr Asp Met Gly
1 5
<210> 5
<211> 5
<212> PRT
<213> Artificial sequence
<400> 5
Asp Tyr Asp Met Ala
1 5
<210> 6
<211> 5
<212> PRT
<213> Artificial sequence
<400> 6
Ser Leu Asp Met Ala
1 5
<210> 7
<211> 5
<212> PRT
<213> Artificial sequence
<400> 7
Ser Tyr Val Met Ala
1 5
<210> 8
<211> 5
<212> PRT
<213> Artificial sequence
<400> 8
Tyr Asp Met Ala Trp
1 5
<210> 9
<211> 5
<212> PRT
<213> Artificial sequence
<400> 9
Val Met Gly Trp Tyr
1 5
<210> 10
<211> 5
<212> PRT
<213> Artificial sequence
<400> 10
Ser Leu Asp Met Gly
1 5
<210> 11
<211> 5
<212> PRT
<213> Artificial sequence
<400> 11
Arg Tyr Val Met Ala
1 5
<210> 12
<211> 5
<212> PRT
<213> Artificial sequence
<400> 12
Asn Tyr Asp Leu Gly
1 5
<210> 13
<211> 5
<212> PRT
<213> Artificial sequence
<400> 13
Ile Tyr Ile Met Gly
1 5
<210> 14
<211> 5
<212> PRT
<213> Artificial sequence
<400> 14
Gly Gly Gly Leu Val
1 5
<210> 15
<211> 5
<212> PRT
<213> Artificial sequence
<400> 15
Tyr Tyr Asp Met Ala
1 5
<210> 16
<211> 16
<212> PRT
<213> Artificial sequence
<400> 16
Ser Ile Ser Trp Ser Gly Arg Thr Thr Phe Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 17
<211> 16
<212> PRT
<213> Artificial sequence
<400> 17
Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asn Ser Val Lys
1 5 10 15
<210> 18
<211> 16
<212> PRT
<213> Artificial sequence
<400> 18
Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 19
<211> 16
<212> PRT
<213> Artificial sequence
<400> 19
Ser Ile Ser Trp Ser Gly Gly Thr Ile Phe Tyr Gly Ala Ser Val Lys
1 5 10 15
<210> 20
<211> 16
<212> PRT
<213> Artificial sequence
<400> 20
Gly Ser Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys Gly
1 5 10 15
<210> 21
<211> 16
<212> PRT
<213> Artificial sequence
<400> 21
Gly Ser Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys Asp
1 5 10 15
<210> 22
<211> 16
<212> PRT
<213> Artificial sequence
<400> 22
Val Met Thr Trp Ser Gly Arg Thr Thr Ile Tyr Ala Asp Ser Val Lys
1 5 10 15
<210> 23
<211> 16
<212> PRT
<213> Artificial sequence
<400> 23
Val Ile Thr Trp Ser Gly Arg Thr Thr Ile Tyr Ala Asp Ser Val Lys
1 5 10 15
<210> 24
<211> 16
<212> PRT
<213> Artificial sequence
<400> 24
Val Ile Thr Trp Ser Glu Arg Thr Thr Ile Tyr Ala Asp Ser Val Lys
1 5 10 15
<210> 25
<211> 16
<212> PRT
<213> Artificial sequence
<400> 25
Val Ile Ser Trp Ser Gly Arg Thr Thr Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15
<210> 26
<211> 16
<212> PRT
<213> Artificial sequence
<400> 26
Val Ile Ser Trp Ser Gly Arg Thr Thr Trp Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 27
<211> 16
<212> PRT
<213> Artificial sequence
<400> 27
Val Ile Ser Trp Ser Gly Arg Thr Thr Phe Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 28
<211> 16
<212> PRT
<213> Artificial sequence
<400> 28
Thr Met Ser Trp Ser Gly Arg Thr Thr Tyr Tyr Thr Gly Ser Val Gln
1 5 10 15
<210> 29
<211> 16
<212> PRT
<213> Artificial sequence
<400> 29
Thr Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 30
<211> 16
<212> PRT
<213> Artificial sequence
<400> 30
Thr Ile Ser Arg Trp Ile Gly Ser Thr Lys Tyr Ala Asp Ser Val Lys
1 5 10 15
<210> 31
<211> 16
<212> PRT
<213> Artificial sequence
<400> 31
Ser Val Ser Trp Ser Gly Arg Ser Ile Phe Tyr Ala Asp Ser Val Lys
1 5 10 15
<210> 32
<211> 16
<212> PRT
<213> Artificial sequence
<400> 32
Ser Ser Leu Gly Ser Thr Ile Tyr Ser Asp His Val Lys Gly Arg Phe
1 5 10 15
<210> 33
<211> 16
<212> PRT
<213> Artificial sequence
<400> 33
Ser Ser Leu Gly Ser Thr Ile Tyr Asn Asp Ser Val Lys Gly Arg Phe
1 5 10 15
<210> 34
<211> 16
<212> PRT
<213> Artificial sequence
<400> 34
Ser Met Thr Trp Ser Gly Arg Thr Thr Tyr Tyr Val Asp Ser Val Lys
1 5 10 15
<210> 35
<211> 16
<212> PRT
<213> Artificial sequence
<400> 35
Ser Ile Thr Trp Ser Gly Arg Thr Thr Tyr Tyr Gly Asn Ser Val Lys
1 5 10 15
<210> 36
<211> 16
<212> PRT
<213> Artificial sequence
<400> 36
Ser Ile Ser Trp Ser Ser Arg Thr Thr Phe Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 37
<211> 16
<212> PRT
<213> Artificial sequence
<400> 37
Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Phe Val Lys
1 5 10 15
<210> 38
<211> 16
<212> PRT
<213> Artificial sequence
<400> 38
Ser Ile Ser Trp Ser Gly Gly Ser Thr Phe Tyr Thr Asp Ser Val Lys
1 5 10 15
<210> 39
<211> 16
<212> PRT
<213> Artificial sequence
<400> 39
Ser Ile Ser Trp Ser Gly Ala Thr Thr Phe Tyr Gly Ala Ser Val Lys
1 5 10 15
<210> 40
<211> 16
<212> PRT
<213> Artificial sequence
<400> 40
Ser Ile Asn Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 41
<211> 16
<212> PRT
<213> Artificial sequence
<400> 41
Arg Leu Ser Thr Asn Tyr Asp Met Ala Trp Phe Arg Gln Ala Pro Gly
1 5 10 15
<210> 42
<211> 16
<212> PRT
<213> Artificial sequence
<400> 42
Met Ser Trp Ser Gly Tyr Ser Thr Tyr Tyr Thr Asn Ser Val Lys Gly
1 5 10 15
<210> 43
<211> 16
<212> PRT
<213> Artificial sequence
<400> 43
Met Met Thr Trp Ser Gly Arg Ser Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15
<210> 44
<211> 16
<212> PRT
<213> Artificial sequence
<400> 44
Leu Ser Trp Ser Gly Arg Thr Ile Phe Tyr Thr Asp Ser Val Lys Gly
1 5 10 15
<210> 45
<211> 16
<212> PRT
<213> Artificial sequence
<400> 45
Leu Gly Thr Trp Ser Gly Arg Thr Ile Leu Tyr Glu Asn Ser Val Lys
1 5 10 15
<210> 46
<211> 16
<212> PRT
<213> Artificial sequence
<400> 46
Ile Ser Trp Ser Gly Arg Ser Ile Tyr Tyr Thr Asp Ser Val Lys Gly
1 5 10 15
<210> 47
<211> 16
<212> PRT
<213> Artificial sequence
<400> 47
Gly Ile Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys Gly
1 5 10 15
<210> 48
<211> 16
<212> PRT
<213> Artificial sequence
<400> 48
Ala Thr Asn Trp Asp Gly Ser Ser Thr Ser Tyr Val Asp Ser Val Arg
1 5 10 15
<210> 49
<211> 16
<212> PRT
<213> Artificial sequence
<400> 49
Ala Ile Ser Trp Ser Gly Arg Thr Thr Tyr Tyr Gly Val Ser Val Lys
1 5 10 15
<210> 50
<211> 16
<212> PRT
<213> Artificial sequence
<400> 50
Ala Ile Asn Trp Ser Gly Ser Ser Thr Ser Tyr Val Asp Ser Val Lys
1 5 10 15
<210> 51
<211> 16
<212> PRT
<213> Artificial sequence
<400> 51
Ala Ile Asn Trp Ser Gly Ser Ser Thr Ser Tyr Leu Asp Ser Val Lys
1 5 10 15
<210> 52
<211> 16
<212> PRT
<213> Artificial sequence
<400> 52
Ala Ile Asn Trp Ser Gly Ser Ser Thr Ser Tyr Gly Asp Ser Val Lys
1 5 10 15
<210> 53
<211> 16
<212> PRT
<213> Artificial sequence
<400> 53
Ala Ile Asn Trp Ser Gly Ser Ser Ala Ser Tyr Ala Asp Ser Val Lys
1 5 10 15
<210> 54
<211> 16
<212> PRT
<213> Artificial sequence
<400> 54
Ala Ile Asn Trp Ser Gly Glu Ser Ile Ser Tyr Val Asp Ser Val Arg
1 5 10 15
<210> 55
<211> 21
<212> PRT
<213> Artificial sequence
<400> 55
Tyr Cys Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 56
<211> 19
<212> PRT
<213> Artificial sequence
<400> 56
Tyr Cys Ala Ala Asp Arg Phe Phe Thr Ala Ile Gly Asn Phe Arg Pro
1 5 10 15
Glu Tyr Val
<210> 57
<211> 21
<212> PRT
<213> Artificial sequence
<400> 57
Tyr Cys Ala Ala Arg Asn Arg Tyr Tyr Ile Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 58
<211> 21
<212> PRT
<213> Artificial sequence
<400> 58
Tyr Cys Ala Ala Arg Ser Arg Tyr Val Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 59
<211> 13
<212> PRT
<213> Artificial sequence
<400> 59
Cys Ala Ala Arg Arg Pro Thr Thr Ser Arg Tyr Pro Tyr
1 5 10
<210> 60
<211> 21
<212> PRT
<213> Artificial sequence
<400> 60
Tyr Cys Ala Ala Arg Ser Arg Phe Val Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 61
<211> 21
<212> PRT
<213> Artificial sequence
<400> 61
Leu Cys Ala Ala Arg Gly Arg Leu Thr Val Gly Ser Tyr Tyr Pro Ser
1 5 10 15
Ser Leu Tyr Asp Tyr
20
<210> 62
<211> 5
<212> PRT
<213> Artificial sequence
<400> 62
Gly Asp Tyr Asp Tyr
1 5
<210> 63
<211> 13
<212> PRT
<213> Artificial sequence
<400> 63
Tyr Cys Tyr Ala Leu Ser Ser Thr Arg Gly Ser Glu Tyr
1 5 10
<210> 64
<211> 21
<212> PRT
<213> Artificial sequence
<400> 64
Tyr Cys Gly Ala Arg Ser Arg Tyr Tyr Ile Gly Ser Tyr Asn Ser Pro
1 5 10 15
Ile Glu Tyr Ser Tyr
20
<210> 65
<211> 21
<212> PRT
<213> Artificial sequence
<400> 65
Tyr Cys Ala Thr Arg Thr Arg Tyr Leu Val Gly Ser Tyr Tyr Asp Met
1 5 10 15
Asn Ser Tyr Asn Thr
20
<210> 66
<211> 21
<212> PRT
<213> Artificial sequence
<400> 66
Tyr Cys Ala Gly Arg Ser Arg Tyr Arg Ile Gly Ser Tyr Thr Ser Pro
1 5 10 15
Ile Glu Tyr Asp Tyr
20
<210> 67
<211> 21
<212> PRT
<213> Artificial sequence
<400> 67
Tyr Cys Ala Ala Arg Ser Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 68
<211> 21
<212> PRT
<213> Artificial sequence
<400> 68
Tyr Cys Ala Ala Arg Ser Arg Tyr Tyr Ile Gly Ser Tyr Val Ser Pro
1 5 10 15
Ser Glu Tyr Ser Tyr
20
<210> 69
<211> 21
<212> PRT
<213> Artificial sequence
<400> 69
Tyr Cys Ala Ala Arg Ser Arg Tyr Tyr Ile Gly Ser Tyr Thr Ser Pro
1 5 10 15
Ile Glu Tyr Ser Tyr
20
<210> 70
<211> 21
<212> PRT
<213> Artificial sequence
<400> 70
Tyr Cys Ala Ala Arg Ser Arg Phe Tyr Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 71
<211> 21
<212> PRT
<213> Artificial sequence
<400> 71
Tyr Cys Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Tyr
20
<210> 72
<211> 21
<212> PRT
<213> Artificial sequence
<400> 72
Tyr Cys Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Lys
20
<210> 73
<211> 21
<212> PRT
<213> Artificial sequence
<400> 73
Tyr Cys Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Ile Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 74
<211> 21
<212> PRT
<213> Artificial sequence
<400> 74
Tyr Cys Ala Ala Arg Asn Arg Tyr Phe Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 75
<211> 21
<212> PRT
<213> Artificial sequence
<400> 75
Tyr Cys Ala Ala Arg Asn Ile Tyr Tyr Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 76
<211> 21
<212> PRT
<213> Artificial sequence
<400> 76
Tyr Cys Ala Ala Arg Gly Arg Leu Val Ile Gly Ser Tyr Tyr His Ala
1 5 10 15
Val Leu Tyr Asp Asn
20
<210> 77
<211> 21
<212> PRT
<213> Artificial sequence
<400> 77
Ser Cys Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly
1 5 10 15
Pro Thr Tyr Asp Asn
20
<210> 78
<211> 44
<212> PRT
<213> Artificial sequence
<400> 78
Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu Gln Thr Ile Ser Leu Lys
1 5 10 15
Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala Ala Arg Asn Arg Tyr Tyr
20 25 30
Ile Gly Ser Tyr Thr Glu Gly Pro Thr Tyr Asp Asn
35 40
<210> 79
<211> 21
<212> PRT
<213> Artificial sequence
<400> 79
Phe Cys Ala Ala Arg Glu Arg Leu Thr Val Gly Ser Tyr Tyr Pro Ser
1 5 10 15
Ser Leu Tyr Asp Tyr
20
<210> 80
<211> 13
<212> PRT
<213> Artificial sequence
<400> 80
Cys Ala Ser Arg Arg Pro Thr Thr Ser Gly Tyr Pro Tyr
1 5 10
<210> 81
<211> 20
<212> PRT
<213> Artificial sequence
<400> 81
Cys Ala Ala Arg Ser Arg Tyr Lys Ile Gly Ser Tyr Tyr Asp Gly Val
1 5 10 15
Leu Tyr Asp Ser
20
<210> 82
<211> 20
<212> PRT
<213> Artificial sequence
<400> 82
Cys Ala Ala Arg Ser Arg Leu Val Ile Gly Ser Tyr Tyr Asp Ala Val
1 5 10 15
Arg Tyr Asp Thr
20
<210> 83
<211> 20
<212> PRT
<213> Artificial sequence
<400> 83
Cys Ala Ala Arg Ser Arg Phe Val Ile Gly Ser Tyr Tyr Asp Ala Val
1 5 10 15
Arg Tyr Asp Thr
20
<210> 84
<211> 13
<212> PRT
<213> Artificial sequence
<400> 84
Cys Ala Ala Arg Lys Pro Thr Thr Ser Arg Tyr Pro Tyr
1 5 10
<210> 85
<211> 118
<212> PRT
<213> Artificial sequence
<400> 85
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Leu Thr Phe Ser Ser Tyr
20 25 30
Val Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Gly Ser Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys
50 55 60
Asp Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Ser Cys Ala
85 90 95
Ala Arg Arg Pro Thr Thr Ser Arg Tyr Pro Tyr Trp Gly Gln Gly Thr
100 105 110
Gln Val Thr Val Ser Ser
115
<210> 86
<211> 126
<212> PRT
<213> Artificial sequence
<400> 86
His Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Thr Cys Ala Ala Ser Gly Arg Arg Ser Arg Asp Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Thr Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Tyr Val Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 87
<211> 118
<212> PRT
<213> Artificial sequence
<400> 87
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Glu
1 5 10 15
Ser Leu Arg Leu Ser Cys Glu Ala Ser Gly Ser Ile Ser Ser Ile Tyr
20 25 30
Ile Met Gly Trp Tyr Arg Gln Ala Pro Gly Lys Gln Arg Glu Tyr Val
35 40 45
Ala Thr Ile Ser Arg Trp Ile Gly Ser Thr Lys Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Thr Lys Asn Thr Val Phe
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Tyr Ala Leu Ser Ser Thr Arg Gly Ser Glu Tyr Trp Gly Gln Gly Thr
100 105 110
Gln Val Thr Val Ser Ser
115
<210> 88
<211> 126
<212> PRT
<213> Artificial sequence
<400> 88
Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 89
<211> 126
<212> PRT
<213> Artificial sequence
<400> 89
Asp Val Gln Leu Gln Ala Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 90
<211> 118
<212> PRT
<213> Artificial sequence
<400> 90
Asp Val Gln Leu Gln Ala Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Leu Thr Phe Ser Ser Tyr
20 25 30
Val Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Gly Ser Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Thr Tyr Leu Cys Ala
85 90 95
Ala Arg Arg Pro Thr Thr Ser Arg Tyr Pro Tyr Trp Gly Gln Gly Thr
100 105 110
Gln Val Thr Val Ser Ser
115
<210> 91
<211> 126
<212> PRT
<213> Artificial sequence
<400> 91
Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Arg Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Val Ile Ser Trp Ser Gly Arg Thr Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 92
<211> 110
<212> PRT
<213> Artificial sequence
<400> 92
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ala Cys Thr Val Ser Gly Arg Ile Phe Tyr Val Met
20 25 30
Gly Trp Tyr His Gln Ala Pro Gly Lys Gln Arg Glu Arg Val Ala Thr
35 40 45
Ile Ser Ser Leu Gly Ser Thr Ile Tyr Asn Asp Ser Val Lys Gly Arg
50 55 60
Phe Thr Val Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu Gln Met
65 70 75 80
Asn Ser Leu Lys Pro Glu Asp Thr Gly Val Tyr Tyr Cys Thr Gly Asp
85 90 95
Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
100 105 110
<210> 93
<211> 126
<212> PRT
<213> Artificial sequence
<400> 93
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Thr Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Ile Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 94
<211> 126
<212> PRT
<213> Artificial sequence
<400> 94
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Gly Thr Ile Ser Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ser Leu Gly Thr Trp Ser Gly Arg Thr Ile Leu Tyr Glu Asn Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Val Pro Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Tyr Tyr Ile Gly Ser Tyr Val Ser Pro Ser Glu
100 105 110
Tyr Ser Tyr Trp Gly Pro Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 95
<211> 118
<212> PRT
<213> Artificial sequence
<400> 95
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Leu Thr Phe Thr Ser Tyr
20 25 30
Val Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Gly Ser Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Thr Cys Ala
85 90 95
Ser Arg Arg Pro Thr Thr Ser Gly Tyr Pro Tyr Trp Gly Gln Gly Thr
100 105 110
Gln Val Thr Val Ser Ser
115
<210> 96
<211> 126
<212> PRT
<213> Artificial sequence
<400> 96
Asp Val Gln Leu Gln Ala Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Arg Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asp Ala Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 97
<211> 124
<212> PRT
<213> Artificial sequence
<400> 97
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Ser Leu Ser Cys Val Ala Ser Gly Arg Thr Phe Ser Gly Tyr
20 25 30
Val Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Asn Trp Ser Gly Ser Ser Thr Ser Tyr Leu Asp Ser Val
50 55 60
Lys Gly Arg Phe Phe Ile Ser Arg Asp Ser Ala Lys Asn Thr Ala Tyr
65 70 75 80
Leu Arg Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Phe Phe Thr Ala Ile Gly Asn Phe Arg Pro Glu Tyr
100 105 110
Val Gly Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 98
<211> 126
<212> PRT
<213> Artificial sequence
<400> 98
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Gly Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Thr Ser Gly Arg Thr Phe Ser Ser Leu
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Asp Phe Val
35 40 45
Ala Val Ile Thr Trp Ser Gly Arg Thr Thr Ile Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Ser
65 70 75 80
Leu Leu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Leu Cys
85 90 95
Ala Ala Arg Gly Arg Leu Thr Val Gly Ser Tyr Tyr Pro Ser Ser Leu
100 105 110
Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 99
<211> 126
<212> PRT
<213> Artificial sequence
<400> 99
Glu Val Gln Leu Gln Ala Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Tyr Val Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 100
<211> 124
<212> PRT
<213> Artificial sequence
<400> 100
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Ser Val Glu Ala Gly Gly
1 5 10 15
Ser Leu Ser Leu Ser Cys Val Ala Ser Gly Arg Thr Phe Ser Gly Tyr
20 25 30
Val Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Asn Trp Ser Gly Ser Ser Thr Ser Tyr Val Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Ser Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Arg Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Phe Phe Thr Ala Ile Gly Asn Phe Arg Pro Glu Tyr
100 105 110
Val Gly Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 101
<211> 149
<212> PRT
<213> Artificial sequence
<400> 101
Glu Val Gln Leu Gln Ala Ser Gly Gly Gly Leu Val Val Leu Ala Ala
1 5 10 15
Leu Leu Gln Gly Val Gln Ala Gln Val Gln Leu Val Glu Ser Gly Gly
20 25 30
Gly Leu Val Gln Ala Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser
35 40 45
Gly Arg Leu Ser Thr Asn Tyr Asp Met Ala Trp Phe Arg Gln Ala Pro
50 55 60
Gly Lys Glu Arg Glu Phe Val Ala Ser Ile Ser Trp Ser Ser Arg Thr
65 70 75 80
Thr Phe Tyr Gly Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp
85 90 95
Asn Ala Lys Asn Thr Val Tyr Leu Gln Thr Ile Ser Leu Lys Pro Glu
100 105 110
Asp Thr Ala Ile Tyr Tyr Cys Ala Ala Arg Asn Arg Tyr Tyr Ile Gly
115 120 125
Ser Tyr Thr Glu Gly Pro Thr Tyr Asp Asn Trp Gly Gln Gly Thr Gln
130 135 140
Val Thr Val Ser Ser
145
<210> 102
<211> 126
<212> PRT
<213> Artificial sequence
<400> 102
His Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Thr Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Thr Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Lys Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Ala Thr Thr Phe Tyr Gly Ala Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 103
<211> 126
<212> PRT
<213> Artificial sequence
<400> 103
Gln Val Lys Leu Glu Asp Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Ser Leu Thr Cys Ala Ala Ser Gly Arg Arg Phe Arg Asp Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Thr Pro Gly Lys Asp Arg Glu Phe Val
35 40 45
Ala Ser Ile Asn Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Tyr Val Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 104
<211> 126
<212> PRT
<213> Artificial sequence
<400> 104
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Asn Tyr
20 25 30
Asp Leu Gly Trp Phe Arg Gln Ala Pro Glu Lys Glu Arg Glu Phe Val
35 40 45
Ser Ser Met Thr Trp Ser Gly Arg Thr Thr Tyr Tyr Val Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Val Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Tyr Tyr Ile Gly Ser Tyr Thr Ser Pro Ile Glu
100 105 110
Tyr Ser Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 105
<211> 126
<212> PRT
<213> Artificial sequence
<400> 105
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Thr Cys Ala Ala Ser Gly Arg Arg Ser Arg Asp Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Thr Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 106
<211> 110
<212> PRT
<213> Artificial sequence
<400> 106
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ala Cys Ala Val Ser Gly Arg Arg Phe Tyr Val Met
20 25 30
Gly Trp Tyr Tyr Gln Ala Pro Gly Lys Gln Arg Glu Arg Val Ala Thr
35 40 45
Ile Ser Ser Leu Gly Ser Thr Ile Tyr Ser Asp His Val Lys Gly Arg
50 55 60
Phe Thr Val Ser Arg Asp Asn Ala Lys Asn Ser Val Tyr Leu Gln Met
65 70 75 80
Asn Ser Leu Lys Pro Glu Asp Thr Gly Val Tyr Tyr Cys Asn Gly Asp
85 90 95
Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
100 105 110
<210> 107
<211> 126
<212> PRT
<213> Artificial sequence
<400> 107
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Asp Arg Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Thr Trp Ser Gly Arg Thr Thr Tyr Tyr Gly Asn Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val His
65 70 75 80
Leu Leu Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 108
<211> 126
<212> PRT
<213> Artificial sequence
<400> 108
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly His Thr Ser Ser Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ser Met Met Thr Trp Ser Gly Arg Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Gln Met Asn Asn Leu Val Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Gly Ala Arg Ser Arg Tyr Tyr Ile Gly Ser Tyr Asn Ser Pro Ile Glu
100 105 110
Tyr Ser Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 109
<211> 124
<212> PRT
<213> Artificial sequence
<400> 109
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Ser Leu Ser Cys Val Ala Ser Gly Arg Thr Phe Ser Gly Tyr
20 25 30
Val Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Asn Trp Ser Gly Glu Ser Ile Ser Tyr Val Asp Ser Val
50 55 60
Arg Gly Arg Phe Thr Ile Ser Arg Asp Ser Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Arg Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Thr Phe Thr Ala Ile Gly Asn Phe Arg Pro Glu Tyr
100 105 110
Val Gly Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 110
<211> 126
<212> PRT
<213> Artificial sequence
<400> 110
Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Tyr Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Phe Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Glu Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Ile Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 111
<211> 124
<212> PRT
<213> Artificial sequence
<400> 111
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Ser Leu Ser Cys Val Ala Ser Gly Arg Thr Phe Arg Gly Tyr
20 25 30
Val Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Asn Trp Ser Gly Ser Ser Ala Ser Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Ser Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Arg Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Phe Phe Thr Ala Ile Gly Asn Phe Arg Pro Glu Tyr
100 105 110
Val Gly Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 112
<211> 126
<212> PRT
<213> Artificial sequence
<400> 112
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Lys Arg Glu Phe Val
35 40 45
Ala Ser Val Ser Trp Ser Gly Arg Ser Ile Phe Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Met Ser Arg Asp Asn Ala Gln Asn Thr Ala Phe
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Thr Arg Thr Arg Tyr Leu Val Gly Ser Tyr Tyr Asp Met Asn Ser
100 105 110
Tyr Asn Thr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 113
<211> 126
<212> PRT
<213> Artificial sequence
<400> 113
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Arg Arg Ser Thr Asp Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Val Ile Ser Trp Ser Gly Arg Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val His
65 70 75 80
Leu Gln Ala Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Phe Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 114
<211> 126
<212> PRT
<213> Artificial sequence
<400> 114
Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Tyr Val
35 40 45
Ala Thr Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Ile Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 115
<211> 126
<212> PRT
<213> Artificial sequence
<400> 115
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Asp
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Ser Leu
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ser Thr Met Ser Trp Ser Gly Arg Thr Thr Tyr Tyr Thr Gly Ser Val
50 55 60
Gln Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Ala Asn Thr Met Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Val Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Gly Arg Ser Arg Tyr Arg Ile Gly Ser Tyr Thr Ser Pro Ile Glu
100 105 110
Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 116
<211> 125
<212> PRT
<213> Artificial sequence
<400> 116
Asp Val Gln Leu Val Asp Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Asn Tyr Asp
20 25 30
Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val Ala
35 40 45
Ser Met Ser Trp Ser Gly Tyr Ser Thr Tyr Tyr Thr Asn Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Gly Glu Asn Thr Met Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Phe Cys Ala
85 90 95
Ala Arg Ser Arg Leu Val Ile Gly Ser Tyr Tyr Asp Ala Val Arg Tyr
100 105 110
Asp Thr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 117
<211> 125
<212> PRT
<213> Artificial sequence
<400> 117
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Asp
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Glu Arg Thr Phe Ser Tyr Asp
20 25 30
Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val Ala
35 40 45
Val Leu Ser Trp Ser Gly Arg Thr Ile Phe Tyr Thr Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Ser Ala Lys Asn Thr Met Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Phe Cys Ala
85 90 95
Ala Arg Ser Arg Tyr Lys Ile Gly Ser Tyr Tyr Asp Gly Val Leu Tyr
100 105 110
Asp Ser Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 118
<211> 126
<212> PRT
<213> Artificial sequence
<400> 118
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asn Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Gln Ala Gly Arg Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Ile Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 119
<211> 125
<212> PRT
<213> Artificial sequence
<400> 119
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Asn Tyr Asp
20 25 30
Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val Ser
35 40 45
Ser Ile Ser Trp Ser Gly Arg Ser Ile Tyr Tyr Thr Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Gly Lys Asn Thr Val Tyr Leu
65 70 75 80
Glu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Phe Cys Ala
85 90 95
Ala Arg Ser Arg Phe Val Ile Gly Ser Tyr Tyr Asp Ala Val Arg Tyr
100 105 110
Asp Thr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 120
<211> 126
<212> PRT
<213> Artificial sequence
<400> 120
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Gly Arg Ser Val Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Arg Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Asp Lys Asn Thr Val Tyr
65 70 75 80
Leu Glu Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 121
<211> 126
<212> PRT
<213> Artificial sequence
<400> 121
Pro Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Ile Leu Arg Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Ser Thr Phe Tyr Thr Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Ser
65 70 75 80
Leu Arg Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Gly Arg Leu Val Ile Gly Ser Tyr Tyr His Ala Val Leu
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 122
<211> 118
<212> PRT
<213> Artificial sequence
<400> 122
Glu Val Gln Leu Gln Ala Ser Gly Gly Gly Ser Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Arg Pro Phe Arg Arg Tyr
20 25 30
Val Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Gly Ser Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys
50 55 60
Asp Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Ser Cys Ala
85 90 95
Ala Arg Arg Pro Thr Thr Ser Arg Tyr Pro Tyr Trp Gly Gln Gly Thr
100 105 110
Gln Val Thr Val Ser Ser
115
<210> 123
<211> 126
<212> PRT
<213> Artificial sequence
<400> 123
Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Gly Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Thr Ser Gly Arg Thr Phe Ser Ser Leu
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Val Ile Thr Trp Ser Glu Arg Thr Thr Ile Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Ser
65 70 75 80
Leu Leu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Leu Cys
85 90 95
Ala Ala Arg Gly Arg Leu Thr Val Gly Ser Tyr Tyr Pro Ser Ser Leu
100 105 110
Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 124
<211> 118
<212> PRT
<213> Artificial sequence
<400> 124
Pro Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Leu Thr Phe Ser Ser Tyr
20 25 30
Val Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Gly Ile Trp Ser Thr Gly Ser Thr Ser Tyr Asp Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Thr Tyr Leu Cys Ala
85 90 95
Ala Arg Lys Pro Thr Thr Ser Arg Tyr Pro Tyr Trp Gly Gln Gly Thr
100 105 110
Gln Val Thr Val Ser Ser
115
<210> 125
<211> 126
<212> PRT
<213> Artificial sequence
<400> 125
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Gly Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Thr Ser Gly Arg Thr Phe Ser Ser Leu
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Asp Phe Val
35 40 45
Ala Val Met Thr Trp Ser Gly Arg Thr Thr Ile Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Ser
65 70 75 80
Leu Leu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95
Ala Ala Arg Glu Arg Leu Thr Val Gly Ser Tyr Tyr Pro Ser Ser Leu
100 105 110
Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 126
<211> 124
<212> PRT
<213> Artificial sequence
<400> 126
Asp Val Gln Leu Gln Ala Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Ile Phe Ser Gly Tyr
20 25 30
Val Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Asn Trp Ser Gly Ser Ser Thr Ser Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Ser Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Arg Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Phe Phe Thr Ala Ile Gly Asn Phe Arg Pro Glu Tyr
100 105 110
Val Gly Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 127
<211> 126
<212> PRT
<213> Artificial sequence
<400> 127
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Ser Trp Ser Gly Arg Thr Thr Tyr Tyr Gly Val Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ala Gln Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Thr Ser Leu Lys Pro Glu Asp Thr Ala Lys Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 128
<211> 126
<212> PRT
<213> Artificial sequence
<400> 128
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Ile Phe Tyr Gly Ala Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asn
65 70 75 80
Leu Gln Met Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Phe Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 129
<211> 126
<212> PRT
<213> Artificial sequence
<400> 129
His Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Ile Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 130
<211> 126
<212> PRT
<213> Artificial sequence
<400> 130
Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asp Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Ser Arg Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 131
<211> 126
<212> PRT
<213> Artificial sequence
<400> 131
Ala Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Phe Val Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 132
<211> 126
<212> PRT
<213> Artificial sequence
<400> 132
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Arg Asp Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Ser Arg Phe Val Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 133
<211> 126
<212> PRT
<213> Artificial sequence
<400> 133
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Arg Arg Ser Thr Asp Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Val Ile Ser Trp Ser Gly Arg Thr Thr Trp Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Ser Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 134
<211> 124
<212> PRT
<213> Artificial sequence
<400> 134
Gln Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Ser Leu Ser Cys Val Ala Ser Gly Arg Thr Leu Arg Gly Tyr
20 25 30
Val Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Thr Asn Trp Asp Gly Ser Ser Thr Ser Tyr Val Asp Ser Val
50 55 60
Arg Gly Arg Phe Thr Ile Ser Arg Asp Ser Ala Lys Asn Thr Met Phe
65 70 75 80
Leu Arg Met Ser Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Thr Phe Thr Ala Ile Gly Asn Phe Arg Pro Glu Tyr
100 105 110
Val Gly Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120
<210> 135
<211> 126
<212> PRT
<213> Artificial sequence
<400> 135
Gln Leu Gln Leu Val Glu Ser Gly Gly Asp Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Pro Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Arg Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Glu Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Ile Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 136
<211> 126
<212> PRT
<213> Artificial sequence
<400> 136
Pro Val Gln Leu Val Asp Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Ile Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Lys Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 137
<211> 126
<212> PRT
<213> Artificial sequence
<400> 137
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Thr Phe Tyr Gly Asn Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Thr Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 138
<211> 126
<212> PRT
<213> Artificial sequence
<400> 138
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Arg Ser Thr Asn Tyr
20 25 30
Asp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ser Ile Ser Trp Ser Gly Gly Thr Ile Phe Tyr Gly Ala Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asn
65 70 75 80
Leu Gln Met Ile Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Arg Asn Arg Tyr Tyr Val Gly Ser Tyr Thr Glu Gly Pro Thr
100 105 110
Tyr Asp Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125
<210> 139
<211> 354
<212> DNA
<213> Artificial sequence
<400> 139
caggtaaagc tggaggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggact caccttcagt tcctatgtca tggcttggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcaggt agctggagta ctggtagcac gtcgtatgac 180
gactccgtga aggaccgatt caccatctcc agagacaacg ccaagaacac ggtatatctg 240
cagatgaaca gcctgaaacc tgaggacacg gccgtttatt catgtgcagc caggaggcct 300
actacatcta ggtatccgta ctggggccag gggacccagg tcaccgtctc ctca 354
<210> 140
<211> 378
<212> DNA
<213> Artificial sequence
<400> 140
catgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
acctgtgcag cctctggacg tcgctccaga gattatgaca tgggctggtt ccgccaaact 120
ccagggaagg agcgtgaatt tgtagcgtcc attagctgga gtggtggcac cacattttac 180
ggagactccg tgaagggccg gttcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggagt 300
agatacgtcg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 141
<211> 354
<212> DNA
<213> Artificial sequence
<400> 141
caggtgcagc tcgtggagtc tgggggaggc ttggtgcagc ctggggagtc tctgagactc 60
tcctgtgaag cctctggaag tatcagtagt atctacatca tgggctggta ccgccaggct 120
ccagggaagc agcgcgagta tgtcgcaact attagcaggt ggattggtag cacaaagtac 180
gcagactccg tgaagggccg attcaccatc tccagagaca acaccaagaa cacggtgttt 240
ctgcaaatga acagcttgaa atctgaggac acggccgtct attactgtta tgcgctctca 300
agcactcggg gatctgagta ctggggccag gggacccagg tcaccgtctc ctca 354
<210> 142
<211> 378
<212> DNA
<213> Artificial sequence
<400> 142
gctgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcggtccaca aattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggtac cacattttac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 143
<211> 378
<212> DNA
<213> Artificial sequence
<400> 143
gatgtgcagc tgcaggcgtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtacaa cctctggacg tcgctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggtac cacattctac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attattgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 144
<211> 354
<212> DNA
<213> Artificial sequence
<400> 144
gatgtgcagc tgcaggcgtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag tttctggact caccttcagt tcctatgtca tggcctggtt ccgtcaggct 120
ccagggaagg agcgtgagtt tgtagcaggc agttggagta ctggtagcac gtcgtatgac 180
gactccgtga agggccgatt caccatctcc agagacaacg ccaagaacac ggtatatctg 240
caaatgaaca gcctgaaacc tgaggacacg gccacttatt tatgtgcagc taggaggcct 300
actacatcta ggtatccgta ctggggccag gggacccagg tcaccgtctc ctca 354
<210> 145
<211> 378
<212> DNA
<213> Artificial sequence
<400> 145
gcggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggaag tcgctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcggtc attagctgga gtggacgtac cacatactac 180
agagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 146
<211> 330
<212> DNA
<213> Artificial sequence
<400> 146
caggtgcagc tcgtggagtc tgggggaggc ttggtgcagc ctggggggtc tctgagactc 60
gcctgtacag tctctggaag gatcttttat gtcatgggct ggtaccacca ggccccaggg 120
aagcagcgcg agcgcgtcgc cactatcagc agccttggta gcacaattta taacgactcc 180
gtgaagggcc gattcaccgt ctcgagagac aacgccaaga acacggtgta tctgcaaatg 240
aacagcctga aacctgagga cacgggcgtc tattactgta ctggagacta cgattattgg 300
ggccagggga cccaggtcac cgtctcctca 330
<210> 147
<211> 378
<212> DNA
<213> Artificial sequence
<400> 147
cctgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcaa cctctggacg tcgctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggtac cacattctac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactata ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 148
<211> 378
<212> DNA
<213> Artificial sequence
<400> 148
gaggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgtag cctctggagg cacgatcagt aactatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtatcactt ggtacctgga gtggtcgtac catattgtat 180
gaaaactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacggtgtat 240
ctgcaaatga acagccttgt acctgacgac acggccgttt attactgtgc agctcggtcc 300
cgctactata tcggtagtta cgtctcccct tctgagtatt cctactgggg cccggggacc 360
caggtcaccg tctcctca 378
<210> 149
<211> 354
<212> DNA
<213> Artificial sequence
<400> 149
gaggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggact cacctttact tcctatgtca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcaggt agttggagta ctggtagcac gtcgtatgac 180
gactccgtga agggccgatt caccatctcc agagacaacg ccaagaacac ggtgtatctg 240
caaatgaaca gcctgaaacc tgaggacacg gccgtttaca catgtgcaag caggaggcct 300
actacatcgg ggtatccgta ctggggccag gggacccagg tcaccgtctc ctca 354
<210> 150
<211> 378
<212> DNA
<213> Artificial sequence
<400> 150
gatgtgcagc tgcaggcgtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgcgcag cctctggacg tcgctccaca aattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtcgtac cacattctac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaaaga cgcggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 151
<211> 372
<212> DNA
<213> Artificial sequence
<400> 151
caggtgcagc tcgtggagtc tgggggcgga ttggtgcagg ctgggggctc tctgagcctc 60
tcctgtgtag cctctggacg caccttcagc ggctatgtca tgggctggtt ccgccaggct 120
cctgggaagg agcgtgagtt tgtagcagct attaactgga gtggtagtag tacaagctac 180
ctagactccg tgaagggccg attcttcatc tccagagaca gcgccaagaa cacggcgtat 240
ctgcgaatga acagcctgaa acctgaggac acggccgttt attactgtgc agcagatcgt 300
ttttttacgg caataggaaa cttccggccc gaatatgtcg ggggccaggg gacccaggtc 360
accgtctcct ca 372
<210> 152
<211> 378
<212> DNA
<213> Artificial sequence
<400> 152
caggtaaagc tggaggagtc tgggggagga ttgggccagg ctgggggctc tctgagactc 60
tcctgtgcaa cctctggacg aacctttagt agccttgaca tggcctggtt ccgtcaggct 120
ccagggaagg agcgtgactt tgtagcagtg attacgtgga gtgggcgtac cacgatctac 180
gcagactccg tgaaaggccg atttacgatc tccagagaca acgccaagaa cacggtgtct 240
ctgctcatga acagcctgaa acctgaggac acggccgttt atttgtgtgc agccaggggg 300
agactcactg taggtagtta ctacccctca agcctatatg actactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 153
<211> 378
<212> DNA
<213> Artificial sequence
<400> 153
gaggtgcagc tgcaggcgtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcggtccaca aattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggcac cacattttac 180
ggagactccg tgaagggccg gttcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggagt 300
agatacgtcg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 154
<211> 372
<212> DNA
<213> Artificial sequence
<400> 154
caggtaaagc tggaggagtc tgggggcgga tcggtggagg ctgggggctc tctgagcctc 60
tcctgtgtag cctctggacg caccttcagc ggctatgtca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcagct attaactgga gtggtagtag tacaagttat 180
gtagactccg tgaagggccg attcaccatc tccagagaca gcgccaagaa caccgtgtat 240
ctgcgaatga acagcctgaa acctgaggac acggccgttt attactgtgc agcagatcgt 300
ttttttacgg cgataggaaa cttccggccc gaatatgtcg ggggccaggg gacccaggtc 360
accgtctcct ca 372
<210> 155
<211> 447
<212> DNA
<213> Artificial sequence
<400> 155
gaggtgcagc tgcaggcgtc tgggggaggc ttggtggtcc tggctgctct tctacaaggt 60
gtccaggctc aggtgcagct cgtggagtct gggggaggct tggtgcaggc tgggggctct 120
ctgagactct cctgtgcagc ctctggacgt ctctccacaa attatgacat ggcctggttc 180
cgccaggctc cagggaagga gcgtgagttt gttgcatcca ttagctggag tagtagaaca 240
acattctacg gagactccgt gaagggccga ttcaccatct ctagagacaa cgccaagaac 300
acggtgtatc tgcaaacgat cagcctgaaa cctgaggaca cggccattta ttactgtgca 360
gcaaggaata gatactatat tggtagttac accgagggac ccacctatga caactggggc 420
caggggaccc aggtcaccgt ctcctca 447
<210> 156
<211> 378
<212> DNA
<213> Artificial sequence
<400> 156
catgtgcagc tggtggagtc tgggggagga ttggtgcaga ctgggggctc tctgagactc 60
tcctgtgcaa cctctggacg tcgctccaca aattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtaaatt tgtagcgtcc attagctgga gtggtgctac cacattctac 180
ggagcgtccg tgaagggccg gttcaccatc tctagggaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agccaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 157
<211> 378
<212> DNA
<213> Artificial sequence
<400> 157
caggtaaagc tggaggattc tgggggagga ttggtgcagg ctgggggctc tctgagcctc 60
acctgtgcag cctctggacg tcgcttcaga gattatgaca tgggctggtt ccgccaaact 120
ccagggaagg atcgtgaatt tgtagcgtcc attaactgga gtggtggcac cacattttac 180
ggagactccg tgaagggccg gttcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggagt 300
agatacgtcg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 158
<211> 378
<212> DNA
<213> Artificial sequence
<400> 158
caggtgcagc tcgtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg taccttcagt aactatgact tgggctggtt ccgccaggct 120
ccagagaagg agcgtgagtt tgtatcatcg atgacctgga gtgggcgtac cacatactat 180
gtagactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacggtgtat 240
ctgcaaatga acagccttgt acctgaggac acggccgttt attactgtgc agctcggtcc 300
cgctactata ttggaagtta cacctcccct attgagtatt cctactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 159
<211> 378
<212> DNA
<213> Artificial sequence
<400> 159
gaggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
acctgtgcag cctctggacg tcgctccaga gattatgaca tgggctggtt ccgccaaact 120
ccagggaagg agcgtgaatt tgtagcgtcc attagctgga gtggtggcac cacattttac 180
ggagactccg tgaagggccg gttcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggagt 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 160
<211> 330
<212> DNA
<213> Artificial sequence
<400> 160
cctgtacagc tggtggagtc tgggggaggc ttggtgcagc ctggggggtc tctgagactc 60
gcctgtgcag tctctggaag gcgcttttat gtcatgggct ggtactatca ggccccaggg 120
aagcagcgcg agcgagtcgc cactatcagc agtcttggta gcacaattta tagcgaccac 180
gtgaagggcc gattcaccgt ctcgagagac aacgccaaga actcggtgta tctgcaaatg 240
aacagcctga aacctgagga cacgggcgtc tattactgta atggagacta cgattattgg 300
ggccagggga cccaggtcac cgtctcctca 330
<210> 161
<211> 378
<212> DNA
<213> Artificial sequence
<400> 161
ccggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggaga tcgctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcg attacctgga gtggtagaac cacatactac 180
ggaaactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgcat 240
ctgctcacga tcagcctgaa acctgaggac acggccgttt attactgtgc agccaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg actactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 162
<211> 378
<212> DNA
<213> Artificial sequence
<400> 162
caggtaaagc tggaggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggaca cacctccagt aactatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtatcaatg atgacctgga gtggtcgtag cacatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgatgtat 240
ctgcaaatga acaaccttgt acctgaggac acggccgttt attactgtgg agctcggtcc 300
cgctactata ttggcagtta caactcccct attgagtatt cctactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 163
<211> 372
<212> DNA
<213> Artificial sequence
<400> 163
ccggtgcagc tggtggagtc tgggggcgga ttggtgcagg ctgggggctc tctgagcctc 60
tcctgtgtag cctctggacg caccttcagc ggctatgtca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcagct attaactgga gtggtgaaag tataagttat 180
gtagactccg tgaggggccg attcaccatc tccagagaca gcgccaagaa cacgatgtat 240
ctgcgaatga acagcctgaa acctgaggac acggccgttt attactgtgc agcagatcgt 300
acttttacgg cgataggaaa cttccggccc gaatatgtcg ggggccaggg gacccaggtc 360
accgtctcct ca 372
<210> 164
<211> 378
<212> DNA
<213> Artificial sequence
<400> 164
gctgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcgctccacc tattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggtac cacattctac 180
ggagactttg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctggaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactata ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 165
<211> 372
<212> DNA
<213> Artificial sequence
<400> 165
caggtgcagc tcgtggagtc tgggggcgga tcggtgcagg ctgggggctc tctgagcctc 60
tcctgtgtag cctctggacg caccttccgc ggctatgtca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcagcg attaactgga gtggtagtag tgcaagctat 180
gcagactccg tgaagggccg attcaccatc tccagagaca gcgccaagaa cacgatgtat 240
ctgcgaatga acagcctgaa acctgaggac acggccgttt attactgtgc agcagatcgt 300
ttttttacgg cgataggaaa cttccggccc gaatacgtcg ggggccaggg gacccaggtc 360
accgtctcct ca 372
<210> 166
<211> 378
<212> DNA
<213> Artificial sequence
<400> 166
cctgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg caccttcagt aattatgaca tgggctggtt ccgccaggct 120
ccagggaaga agcgtgagtt tgtagccagt gttagctgga gtggccgtag tatattttat 180
gcagactccg tgaaggggcg cttcaccatg tccagagaca acgcccagaa cacggcgttt 240
ctgcaaatga acagcctgaa acctgaggac acggccgttt attactgtgc aacaaggacc 300
agatacttgg ttggtagtta ctacgacatg aattcctata acacctgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 167
<211> 378
<212> DNA
<213> Artificial sequence
<400> 167
ccggtacagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag tctctggacg tcgctccaca gattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcggtc attagctgga gtggccgtac cacattctac 180
ggagactccg tgaagagccg attcaccatc tctagagaca acgccaagaa cacggtgcat 240
ctgcaggcga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggagt 300
agattctatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 168
<211> 378
<212> DNA
<213> Artificial sequence
<400> 168
gcggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcgctccaca aattatgaca tggcatggtt ccgccaggct 120
ccagggaagg agcgtgagta tgtagcgacc attagctgga gtggtggtac cacattttac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaatga tcagtctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta catcgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 169
<211> 378
<212> DNA
<213> Artificial sequence
<400> 169
caggtaaagc tggaggagtc tgggggagga ttggtgcagg ctggggactc tctgagactc 60
tcctgtgcag cctctggacg cacctttagt agtcttgata tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtatcaact atgtcctgga gtggtcgtac cacatactat 180
acaggctccg tgcagggccg attcaccatc tccagggaca acgccgcgaa cacgatgtat 240
ctgcagatga acagccttgt ccctgaagac acggccgttt attactgtgc gggtcggtcc 300
cgctaccgca ttggcagtta cacctcccct attgagtatg actactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 170
<211> 375
<212> DNA
<213> Artificial sequence
<400> 170
gatgtgcagc tggtggattc tgggggagga ttggtgcagg ctgggggctc tctcagactc 60
tcctgtgcag cctctggacg caccttcaac tatgacatgg cctggttccg ccaggctcca 120
gggaaggagc gtgagttcgt agcgtctatg agctggagtg gttatagcac atactataca 180
aactccgtga agggccgctt caccatctcc agagacaacg gcgagaacac gatgtatttg 240
caaatgaaca gcctgaaacc tgaggacacg gccgtttatt tctgtgcagc ccgaagccgt 300
ttggttattg gtagctacta cgatgccgtg cggtatgaca cctggggcca ggggacccag 360
gtcaccgtct cctca 375
<210> 171
<211> 375
<212> DNA
<213> Artificial sequence
<400> 171
caggtgcagc tggtggagtc tgggggagga ttggtgcagg ctggggactc tctcagactc 60
tcctgtgcag cctctgaacg caccttcagc tatgacatgg cctggttccg ccaggctcca 120
gggaaggagc gtgagttcgt agcagtgctt agctggagtg gtcgtaccat attctataca 180
gactccgtga agggccgatt caccatttcc agagacagcg ccaagaacac gatgtatttg 240
caaatgaaca gcctgaaacc tgaggacacg gccgtttatt tctgtgcagc ccgaagccgt 300
tacaagattg gtagttacta cgatggcgtg ctgtatgaca gctggggcca ggggacccag 360
gtcaccgtct cctca 375
<210> 172
<211> 378
<212> DNA
<213> Artificial sequence
<400> 172
gaggtgcagc tcgtggagtc tgggggaggg ttggtgcagg ccgggggctc tctgaggctc 60
tcctgtgcag cctctggacg tcgctccaca aattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggtac cacattctac 180
ggaaactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacgatgtat 240
ctgcaagcgg gccgcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactata ttggtagtta caccgaggga cccacctacg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 173
<211> 375
<212> DNA
<213> Artificial sequence
<400> 173
caggtaaagc tggaggagtc tgggggagga ttggtgcagg ctgggggctc tctcagactc 60
tcctgtgcag cctctggacg caccttcaac tatgacatgg cctggttccg ccaggctcca 120
gggaaggagc gtgagttcgt atcgtctatt agctggagtg gtcgtagcat atactataca 180
gactccgtga agggccgatt caccatctcc agagacaacg gcaagaacac ggtgtatttg 240
gaaatgaaca gcttgaaacc tgaggacacg gccgtttatt tctgtgcagc ccgaagccgt 300
tttgttattg gtagctacta cgatgccgtg cgctatgaca cctggggcca ggggacccag 360
gtcaccgtct cctca 375
<210> 174
<211> 378
<212> DNA
<213> Artificial sequence
<400> 174
cctgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggagg tcgctccgta aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtcgtac cacattctac 180
ggagactccg tgaagggtcg attcaccatt tctagagaca atgacaagaa cacggtgtat 240
ctggaaacga tcagcctgaa acctgaggac acggccactt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 175
<211> 378
<212> DNA
<213> Artificial sequence
<400> 175
cctgtaaagc tggaggagtc tgggggagga ttggtgcagg ctgggggctc tctcagactc 60
tcctgtgcag cctctggaag catactcaga aactatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt cgtagcatcc attagctgga gtggtggtag cacattctat 180
acagactccg tgaagggtcg attcaccatc tccagagaca acgccaagaa cacggtgtcg 240
ttgcggatga acagcctgaa acctgaggac acggccgttt attactgtgc agcccgagga 300
cgtctggtca ttggcagtta ctaccatgcc gtgctgtatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 176
<211> 354
<212> DNA
<213> Artificial sequence
<400> 176
gaggtgcagc tgcaggcgtc tgggggagga tcggtgcagg ctgggggctc tctgagactc 60
tcctgtgtag cctctggacg ccccttcagg cgctatgtca tggcttggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcaggt agctggagta ctggtagcac gtcgtatgac 180
gactccgtga aggaccgatt caccatctcc agagacaacg ccaagaacac ggtatatctg 240
cagatgaaca gcctgaaacc tgaggacacg gccgtttatt catgtgcagc caggaggcct 300
actacatcta ggtatccgta ctggggccag gggacccagg tcaccgtctc ctca 354
<210> 177
<211> 378
<212> DNA
<213> Artificial sequence
<400> 177
gctgtgcagc tggtggagtc tgggggagga ttgggccagg ctgggggctc tctgagactc 60
tcctgtgcaa cctctggacg aacctttagt agccttgaca tggcctggtt ccgtcaggct 120
ccagggaagg agcgtgagtt tgtagcagtg attacgtgga gtgagcgtac cacgatctac 180
gcagactccg tgaaaggccg attcaccatc tccagagaca acgccaagaa cacggtgtct 240
ctgctcatga acagcctgaa acctgaggac acggccgttt atttgtgtgc agccaggggg 300
agactcactg taggttctta ctacccctca agcctatatg actactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 178
<211> 354
<212> DNA
<213> Artificial sequence
<400> 178
cctgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag tttctggact caccttcagt tcctatgtca tggcctggtt ccgtcaggct 120
ccagggaagg agcgtgagtt tgtagcaggt atttggagta ctggtagcac gtcgtatgac 180
gactccgtga agggccgatt caccatctcc agagacaacg ccaagaacac ggtatatctg 240
cagatgaaca gcctgaaacc tgaggacacg gccacttatt tatgtgcagc taggaagcct 300
actacatcta ggtatccgta ctggggccag gggacccagg tcaccgtctc ctca 354
<210> 179
<211> 378
<212> DNA
<213> Artificial sequence
<400> 179
caagtgcagc tggtggagtc tgggggagga ttgggccagg ctgggggctc tctgagactc 60
tcctgtgcaa cctctggacg aacctttagt agccttgaca tggcctggtt ccgtcaggct 120
ccagggaagg agcgtgactt tgtagcagta atgacgtgga gtgggcgtac cacgatctac 180
gcagactccg tgaaaggccg attcaccatc tccagagaca acgccaagaa cacggtgtct 240
ctgctcatga acagcctgaa acctgaggac acggccgttt atttctgtgc agccagggag 300
agactcactg taggttctta ctacccctca agcctatatg actactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 180
<211> 372
<212> DNA
<213> Artificial sequence
<400> 180
gatgtgcagc tgcaggcgtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg catttttagt ggctatgtca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcagct attaactgga gtggtagtag tacaagctat 180
ggagactccg tgaagggccg attcaccatc tccagagaca gcgccaagaa cacgatgtat 240
ctgcgaatga acagcctgaa accggaggac acggccgttt attactgtgc agcagatcgt 300
ttttttacgg cgataggaaa cttccggccc gaatatgtcg ggggccaggg gacccaggtc 360
accgtctcct ca 372
<210> 181
<211> 378
<212> DNA
<213> Artificial sequence
<400> 181
caggtaaagc tggaggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcgctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcggcc attagctgga gtggtcgtac cacatactac 180
ggagtctccg tgaagggccg attcaccatc tctagagacg acgcccagaa cacggtgtat 240
ctgcaaacga ccagcctgaa acctgaggac acggccaaat attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 182
<211> 378
<212> DNA
<213> Artificial sequence
<400> 182
gaggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcgctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtcgcgagc attagctgga gtggtggtac catattttac 180
ggagcctccg tgaagggtcg attcaccatc tctagagaca acgccaagaa cacggtaaat 240
ctgcaaatga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaac 300
agatactttg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 183
<211> 378
<212> DNA
<213> Artificial sequence
<400> 183
catgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcggtccaca aattatgata tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggtac cacattctac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
atatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 184
<211> 378
<212> DNA
<213> Artificial sequence
<400> 184
gcggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcgctccact gattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtagtaggac cacattctac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 185
<211> 378
<212> DNA
<213> Artificial sequence
<400> 185
gctgtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcggtccaca aattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggcac cacattttac 180
ggagactccg tgaagggccg gttcaccatc tctagagaca acgccaagaa cacgatgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggagt 300
agatttgtcg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 186
<211> 378
<212> DNA
<213> Artificial sequence
<400> 186
caggtaaagc tggaggagtc tgggggaggc ttggtgcagg ctggggggtc tctgagactc 60
tcctgtgcag cctctggacg tcgctccaga gattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgaatt tgtagcgtcc attagctgga gtggtggcac cacattttac 180
ggagactccg tgaagggccg gttcaccatc tctagagaca acgccaagaa cacgatgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggagt 300
agatttgtcg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 187
<211> 378
<212> DNA
<213> Artificial sequence
<400> 187
caggtaaagc tggaggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtacag cctctggacg tcgctccaca gattatgaca tggcctggtt ccgccaggct 120
ccagggaaag agcgtgaatt tgtagcggtg attagctgga gtggtcgtac cacatggtac 180
ggggactccg tgaagggccg attcagcatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt atagctgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 188
<211> 372
<212> DNA
<213> Artificial sequence
<400> 188
caggtaaagc tggaggagtc tgggggcgga ttggtgcagg ctgggggctc tctgagcctc 60
tcctgtgtag cctctggacg caccttgcgc ggctatgtca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcagct actaactggg atggtagtag tacaagctat 180
gtagactccg tgagaggccg attcaccatc tccagagaca gcgccaagaa cacgatgttt 240
ctgcgaatgt ctagcctgaa acctgaggac acggccgttt attactgtgc agcagatcgt 300
acttttacgg cgataggaaa cttccggccc gaatatgtcg ggggccaggg gacccaggtc 360
accgtctcct ca 372
<210> 189
<211> 378
<212> DNA
<213> Artificial sequence
<400> 189
cagttgcagc tcgtggagtc tgggggagac ttggtgcagc ctggggggtc tctgagactc 60
tcctgtgcag cctctggacg tccctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtcgtac cacattctac 180
ggagactccg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctggaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactata ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 190
<211> 378
<212> DNA
<213> Artificial sequence
<400> 190
ccggtgcagc tggtggattc tgggggaggc ttggtgcaac ctggggggtc tctgagactc 60
tcctgtgcag cctctggacg tcggtccata aattatgaca tggcctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcgtcc attagctgga gtggtggtac cacattttac 180
ggagactctg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaagtgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 191
<211> 378
<212> DNA
<213> Artificial sequence
<400> 191
gaggtacagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcgctccaca aattatgaca tggcttggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtagcttcc attagctgga gtggtggtac cacattctac 180
ggaaactctg tgaagggccg attcaccatc tctagagaca acgccaagaa cacggtgtat 240
ctgcaaacga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378
<210> 192
<211> 378
<212> DNA
<213> Artificial sequence
<400> 192
caggtgcagc tggtggagtc tgggggagga ttggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg tcgctccaca aattatgaca tgggctggtt ccgccaggct 120
ccagggaagg agcgtgagtt tgtcgcgagc attagctgga gtggtggtac catattttac 180
ggagcctccg tgaagggtcg attcaccatc tctagagaca acgccaagaa cacggtaaat 240
ctgcaaatga tcagcctgaa acctgaggac acggccgttt attactgtgc agcaaggaat 300
agatactatg ttggtagtta caccgaggga cccacctatg acaactgggg ccaggggacc 360
caggtcaccg tctcctca 378

Claims (19)

1. An interleukin 2 binding molecule, characterized in that: capable of specifically binding interleukin 2 and comprising at least one immunoglobulin single variable domain comprising CDR1, CDR2 and CDR 3; wherein CDR1 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 1-15, CDR2 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 16-54, and CDR3 comprises an amino acid sequence at least 90% identical to any one of SEQ ID NOs 55-84.
2. Interleukin 2 binding molecule according to claim 1, wherein: the at least one immunoglobulin single variable domain comprises a CDR1, a CDR2, and a CDR3 selected from the group consisting of:
(1) CDR1 shown in SEQ ID No. 7, CDR2 shown in SEQ ID No. 21, CDR3 shown in SEQ ID No. 59;
(2) CDR1 shown in SEQ ID No. 4, CDR2 shown in SEQ ID No. 18, CDR3 shown in SEQ ID No. 58;
(3) CDR1 shown in SEQ ID:13, CDR2 shown in SEQ ID:30, CDR3 shown in SEQ ID: 63;
(4) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:18, CDR3 shown in SEQ ID: 55;
(5) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:18, CDR3 shown in SEQ ID: 55;
(6) CDR1 shown in SEQ ID No. 7, CDR2 shown in SEQ ID No. 20, CDR3 shown in SEQ ID No. 59;
(7) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:25, CDR3 shown in SEQ ID: 55;
(8) CDR1 shown in SEQ ID:9, CDR2 shown in SEQ ID:33, CDR3 shown in SEQ ID: 62;
(9) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:18, CDR3 shown in SEQ ID: 57;
(10) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:45, CDR3 shown in SEQ ID: 68;
(11) CDR1 shown in SEQ ID No. 7, CDR2 shown in SEQ ID No. 20, CDR3 shown in SEQ ID No. 80;
(12) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:16, CDR3 shown in SEQ ID: 55;
(13) CDR1 shown in SEQ ID:3, CDR2 shown in SEQ ID:51, CDR3 shown in SEQ ID: 56;
(14) CDR1 shown in SEQ ID No. 6, CDR2 shown in SEQ ID No. 23, CDR3 shown in SEQ ID No. 61;
(15) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:18, CDR3 shown in SEQ ID: 58;
(16) CDR1 shown in SEQ ID:3, CDR2 shown in SEQ ID:50, CDR3 shown in SEQ ID: 56;
(17) CDR1 shown in SEQ ID:14, CDR2 shown in SEQ ID:41, CDR3 shown in SEQ ID: 78;
(18) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:39, CDR3 shown in SEQ ID: 55;
(19) CDR1 shown in SEQ ID No. 4, CDR2 shown in SEQ ID No. 40, CDR3 shown in SEQ ID No. 58;
(20) CDR1 shown in SEQ ID No. 12, CDR2 shown in SEQ ID No. 34, CDR3 shown in SEQ ID No. 69;
(21) CDR1 shown in SEQ ID No. 4, CDR2 shown in SEQ ID No. 18, CDR3 shown in SEQ ID No. 67;
(22) CDR1 shown in SEQ ID:9, CDR2 shown in SEQ ID:32, CDR3 shown in SEQ ID: 62;
(23) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:35, CDR3 shown in SEQ ID: 71;
(24) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:43, CDR3 shown in SEQ ID: 64;
(25) CDR1 shown in SEQ ID:3, CDR2 shown in SEQ ID:54, CDR3 shown in SEQ ID: 56;
(26) CDR1 shown in SEQ ID:15, CDR2 shown in SEQ ID:37, CDR3 shown in SEQ ID: 57;
(27) CDR1 shown in SEQ ID:3, CDR2 shown in SEQ ID:53, CDR3 shown in SEQ ID: 56;
(28) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:31, CDR3 shown in SEQ ID: 65;
(29) CDR1 shown in SEQ ID No. 4, CDR2 shown in SEQ ID No. 27, CDR3 shown in SEQ ID No. 70;
(30) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:29, CDR3 shown in SEQ ID: 73;
(31) CDR1 shown in SEQ ID:10, CDR2 shown in SEQ ID:28, CDR3 shown in SEQ ID: 66;
(32) CDR1 shown in SEQ ID:8, CDR2 shown in SEQ ID:42, CDR3 shown in SEQ ID: 82;
(33) CDR1 shown in SEQ ID:8, CDR2 shown in SEQ ID:44, CDR3 shown in SEQ ID: 81;
(34) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:17, CDR3 shown in SEQ ID: 57;
(35) CDR1 shown in SEQ ID:8, CDR2 shown in SEQ ID:46, CDR3 shown in SEQ ID: 83;
(36) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:16, CDR3 shown in SEQ ID: 55;
(37) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:38, CDR3 shown in SEQ ID: 76;
(38) CDR1 shown in SEQ ID:11, CDR2 shown in SEQ ID:21, CDR3 shown in SEQ ID: 59;
(39) CDR1 shown in SEQ ID No. 6, CDR2 shown in SEQ ID No. 24, CDR3 shown in SEQ ID No. 61;
(40) CDR1 shown in SEQ ID:7, CDR2 shown in SEQ ID:47, CDR3 shown in SEQ ID: 84;
(41) CDR1 shown in SEQ ID No. 6, CDR2 shown in SEQ ID No. 22, CDR3 shown in SEQ ID No. 79;
(42) CDR1 shown in SEQ ID:3, CDR2 shown in SEQ ID:52, CDR3 shown in SEQ ID: 56;
(43) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:49, CDR3 shown in SEQ ID: 55;
(44) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:19, CDR3 shown in SEQ ID: 74;
(45) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:18, CDR3 shown in SEQ ID: 75;
(46) CDR1 shown in SEQ ID:5, CDR2 shown in SEQ ID:36, CDR3 shown in SEQ ID: 55;
(47) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:18, CDR3 shown in SEQ ID: 60;
(48) CDR1 shown in SEQ ID No. 4, CDR2 shown in SEQ ID No. 18, CDR3 shown in SEQ ID No. 60;
(49) CDR1 shown in SEQ ID:5, CDR2 shown in SEQ ID:26, CDR3 shown in SEQ ID: 77;
(50) CDR1 shown in SEQ ID:3, CDR2 shown in SEQ ID:48, CDR3 shown in SEQ ID: 56;
(51) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:16, CDR3 shown in SEQ ID: 57;
(52) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:18, CDR3 shown in SEQ ID: 72;
(53) CDR1 shown in SEQ ID:2, CDR2 shown in SEQ ID:17, CDR3 shown in SEQ ID: 55;
(54) CDR1 shown in SEQ ID:1, CDR2 shown in SEQ ID:19 and CDR3 shown in SEQ ID: 55.
3. Interleukin 2 binding molecule according to claim 1, wherein: the immunoglobulin single variable domain is VHH.
4. Interleukin 2 binding molecule according to claim 3, wherein: the VHH comprises an amino acid sequence having at least 80% sequence identity to any one of SEQ ID NOs 85-138.
5. Interleukin 2 binding molecule according to any one of claims 1 to 4, wherein: the KD value of the combination with interleukin 2 is less than 1 x10-7M。
6. Interleukin 2 binding molecule according to any one of claims 1 to 4, wherein: it is a single domain antibody or a chimeric or humanized antibody.
7. Interleukin 2 binding molecule according to any one of claims 1 to 4, wherein: the VHH is from a camelid.
8. Interleukin 2 binding molecule according to claim 1-4, wherein the VHH is fused to another molecule which is an Fc domain of an immunoglobulin, a fluorescent protein or a VHH with a different specificity.
9. Nucleic acid molecule encoding the interleukin 2 binding molecule of any one of claims 1 to 8, comprising the nucleic acid sequence as set forth in any one of SEQ ID NO 139-192.
10. An expression vector characterized by: comprising the nucleic acid molecule of claim 9 operably linked to an expression control element.
11. A host cell characterized by: comprising the nucleic acid molecule of claim 9 or the expression vector of claim 10 and capable of expressing said interleukin 2 binding molecule.
12. A method for producing an interleukin 2 binding molecule, comprising:
a) culturing the host cell of claim 11 under conditions which allow the expression of the interleukin 2 binding molecule of any one of claims 1 to 8;
b) recovering the interleukin 2 binding molecule expressed by the host cells from the culture from step a);
c) further purifying and/or modifying the interleukin 2 binding molecule resulting from step b).
13. An immunoconjugate comprising the interleukin 2 binding molecule of any one of claims 1 to 8 conjugated to a therapeutic moiety.
14. The immunoconjugate of claim 13, characterized in that: the therapeutic moiety comprises a cytotoxin, a biologically active protein, or a radioisotope.
15. A pharmaceutical composition comprising the interleukin 2 binding molecule of any one of claims 1 to 8 or the immunoconjugate of claim 13 or 14, and a pharmaceutically acceptable carrier.
16. Use of an interleukin 2 binding molecule according to any one of claims 1 to 8 or an immunoconjugate according to claim 13 or 14 or a pharmaceutical composition according to claim 15 for the manufacture of a medicament for the prevention or treatment of a proliferative disorder.
17. Use according to claim 16, characterized in that: the medicine for preventing or treating proliferative diseases is a medicine for preventing or treating cancers or a medicine for treating chronic viral infection.
18. Use of the interleukin 2 binding molecule of any one of claims 1 to 8 for inhibiting or blocking the binding of CD25 to interleukin 2 and related medicaments.
19. The kit is characterized in that: comprising a container in which is disposed an interleukin 2 binding molecule of any one of claims 1 to 8.
CN202110528965.8A 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof Active CN113248610B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110528965.8A CN113248610B (en) 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof
CN202210864699.0A CN116284380A (en) 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110528965.8A CN113248610B (en) 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210864699.0A Division CN116284380A (en) 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof

Publications (2)

Publication Number Publication Date
CN113248610A true CN113248610A (en) 2021-08-13
CN113248610B CN113248610B (en) 2022-08-16

Family

ID=77183442

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210864699.0A Pending CN116284380A (en) 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof
CN202110528965.8A Active CN113248610B (en) 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210864699.0A Pending CN116284380A (en) 2021-05-14 2021-05-14 Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof

Country Status (1)

Country Link
CN (2) CN116284380A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007143996A (en) * 2005-06-01 2009-07-20 Микромет Аг (De) ANTIBODIES AGAINST IL2
WO2015109212A1 (en) * 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
CN111499746A (en) * 2020-04-28 2020-08-07 优睿赛思(武汉)生物科技有限公司 High-affinity rabbit monoclonal antibody for human interleukin-2 and application thereof
CN111635460A (en) * 2012-08-10 2020-09-08 罗切格利卡特公司 Interleukin-2 fusion proteins and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007143996A (en) * 2005-06-01 2009-07-20 Микромет Аг (De) ANTIBODIES AGAINST IL2
CN111635460A (en) * 2012-08-10 2020-09-08 罗切格利卡特公司 Interleukin-2 fusion proteins and uses thereof
WO2015109212A1 (en) * 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
CN111499746A (en) * 2020-04-28 2020-08-07 优睿赛思(武汉)生物科技有限公司 High-affinity rabbit monoclonal antibody for human interleukin-2 and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
O PRÜMMER: ""Treatment-induced antibodies to interleukin-2"", 《BIOTHERAPY》 *
付梦姣等: ""禽白细胞介素-2(IL-2)单克隆抗体的制备与鉴定"", 《中国畜牧兽医学会动物传染病学分会第十六次学术研讨会论文集》 *
卜丽莎等: ""人白细胞介素2单克隆抗体的制备"", 《白求恩医科大学学报》 *

Also Published As

Publication number Publication date
CN113248610B (en) 2022-08-16
CN116284380A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
JP6783886B2 (en) Anti-CTLA4 monoclonal antibody or antigen-binding fragment thereof, pharmaceutical composition and use
JP7264827B2 (en) TGF-beta receptor-containing fusion proteins and their pharmaceutical uses
KR102662387B1 (en) B7-H3 antibody, antigen-binding fragment thereof and medical uses thereof
WO2021244089A1 (en) Sars-cov-2 spike protein binding molecule and application thereof
CN113015749B (en) Antibodies targeting CD3, bispecific antibodies, and uses thereof
WO2017197667A1 (en) Anti-human pd-l1 humanized monoclonal antibody and application thereof
WO2017201766A1 (en) Anti-human pd-1 humanized monoclonal antibody and use thereof
WO2021058000A1 (en) Anti-human claudin 18.2 antibody and application thereof
TW201718657A (en) PD-L1 antibody, antigen-binding fragments and pharmaceutical use thereof
JP2009526857A (en) Functional antibody
KR20050044405A (en) Modified anti-tnf alpha antibody
CN106928354B (en) anti-I L-1 β monoclonal antibody and application thereof
JP7430924B2 (en) competitive antigen binding protein
TW201632547A (en) A phage-displayed single-chain variable fragment library
CN113004415B (en) Bispecific antibody targeting HER2 and 4-1BB and application thereof
CN116848135A (en) Novel anti-GREMLIN 1 antibodies
CN112961250B (en) Antibody fusion proteins and uses thereof
CN114262377A (en) Preparation method of anti-human CD70 nano antibody for blocking combination of CD70 and ligand CD27 thereof and coding sequence thereof
CN104861068B (en) Fully human anti-HER 3 antibody and application thereof in treating related diseases
CN113754770B (en) Antibody specifically binding to human CTLA4, and medicine and kit containing same
WO2023273595A1 (en) Antibody binding to trop2, bispecific antibody targeting trop2 and cd3, preparation methods therefor and uses thereof
CN113248610B (en) Interleukin 2 binding molecules, derivatives thereof, kits, methods of production and uses thereof
WO2022037528A1 (en) Single variable domain and antigen binding molecule binding bcma
WO2023092327A1 (en) Vegf-binding protein and use thereof
CN113004416B (en) Construction and application of HER2-CD137 targeted bispecific antibody

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant