CN113248002A - 一种阻断光催化降解含盐废水过程中氯代副产物生成的方法 - Google Patents

一种阻断光催化降解含盐废水过程中氯代副产物生成的方法 Download PDF

Info

Publication number
CN113248002A
CN113248002A CN202010090728.3A CN202010090728A CN113248002A CN 113248002 A CN113248002 A CN 113248002A CN 202010090728 A CN202010090728 A CN 202010090728A CN 113248002 A CN113248002 A CN 113248002A
Authority
CN
China
Prior art keywords
salt
containing wastewater
generation
photocatalytic
chlorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010090728.3A
Other languages
English (en)
Other versions
CN113248002B (zh
Inventor
徐世平
池英华
张启亮
李璐璐
马德方
岳钦艳
高宝玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202010090728.3A priority Critical patent/CN113248002B/zh
Publication of CN113248002A publication Critical patent/CN113248002A/zh
Application granted granted Critical
Publication of CN113248002B publication Critical patent/CN113248002B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明涉及一种阻断光催化降解含盐废水过程中氯代副产物生成的方法。由于氯离子猝灭空穴或羟基自由基的反应能引发后续自由基反应,生成攻击污染物的活性氯基团。而活性氯基团攻击污染物的直接后果是致使氯元素进入到污染物的降解过程,并导致高毒性氯代副产物的产生。因此,通过向光催化体系中投加适量的空穴捕获剂或羟基自由基捕获剂,可有效地阻断氯离子猝灭空穴或羟基自由基,进而排除氯离子于污染物降解路径之外,有效阻止氯代副产物的生成。

Description

一种阻断光催化降解含盐废水过程中氯代副产物生成的方法
技术领域
本发明涉及一种阻断光催化降解含盐废水过程中氯代副产物生成的方法,属于光催化水处理领域。
背景技术
光催化技术可以在温和的环境下实现多种难降解有机污染物的快速有效降解,且不产生二次污染,在抗生素、染料、垃圾渗滤液、医药副产物等大分子有机污染物降解方面,均表现出巨大的应用潜力。然而实际废水中往往含有大量盐分,特别是氯离子(Cl-)普遍存在,利用高级氧化技术处理此类废水时,将直接导致多种氯代副产物的产生。
研究发现,在光催化过程中,Cl-可通过猝灭光生活性物种,如:空穴(h+)、羟基自由基(·OH)等,生成多种活性氯基团,进而干扰污染物的光催化降解路径,产生多种具有更强毒性的氯代副产物。更重要的是,除直接毒性外,氯代副产物还会诱导细菌基因突变提高抗生素抗性,增加毒理学风险。因此,如何控制氯代副产物的产生是含氯废水处理过程中面临的一大难点。
然而,目前尚无有效技术能阻断含盐废水处理中氯代副产物的生成,这不仅极大地限制了高级氧化技术在含盐废水深度处理领域中的应用,也对水体生态环境安全构成严重威胁。
为此,提出本发明。
发明内容
针对现有技术的不足,尤其是现有技术中缺少有效阻断含盐废水处理中氯代副产物生成的手段,本发明提供一种阻断光催化降解含盐废水过程中氯代副产物生成的方法。
本发明的技术方案如下:
一种阻断光催化降解含盐废水过程中氯代副产物生成的方法,包括步骤如下:
向光催化降解含盐废水的反应体系中添加空穴或羟基自由基捕获剂,阻止Cl-参与光催化过程,进而避免氯代副产物的生成。
根据本发明,优选的,光催化反应体系为可产生空穴和/或羟基自由基的光催化体系,进一步优选紫外光/二氧化钛(TiO2)、可见光/石墨相氮化碳(g-C3N4)等光催化体系。
根据本发明,优选的,所述的含盐废水为含有Cl-的废水;进一步优选的,含盐废水中Cl-的浓度范围为0.1-3mol/L。
根据本发明,优选的,所述的空穴或羟基自由基捕获剂为用于空穴或羟基自由基捕获的试剂,进一步优选乙二胺四乙酸二钠(EDTA-2Na)、甲醇、甲酸、乙醇、三乙醇胺、异丙醇等。
根据本发明,优选的,所述的空穴或羟基自由基捕获剂的添加量需根据实际光催化体系及捕获剂类型来确定。比如,针对TiO2投加量为1.0g/L的光催化体系而言,EDTA-2Na的最佳投加浓度范围为30-50mmol/L。针对石墨相氮化碳投加量为1.0g/L的光催化体系而言,EDTA-2Na的最佳投加浓度范围为10-35mmol/L。
本发明还提供可阻断光催化降解含盐废水过程中氯代副产物生成的光催化体系,该体系包括光催化剂,以及空穴或羟基自由基捕获剂。
根据本发明,一种可阻断光催化降解含盐废水过程中氯代副产物生成的光催化体系,包括如下组成:
TiO2 1.0g/L、EDTA-2Na 30-50mmol/L。
根据本发明,一种可阻断光催化降解含盐废水过程中氯代副产物生成的光催化体系,包括如下组成:
石墨相氮化碳1.0g/L、EDTA-2Na 10-35mmol/L。
本发明原理:
研究发现,溶液中游离的Cl-可以通过如下公式1和公式2的反应,直接猝灭光催化过程中产生的空穴或羟基自由基,所产生的·Cl和·ClOH-自由基又会与溶液中的Cl-或氢离子(H+)持续发生自由基链式反应,如公式3、4和5所示,致使溶液中产生多种活性氯基团,如·Cl、·ClOH-、·Cl2 -等,虽然这些活性氯基团的氧化还原能力较空穴或羟基自由基更弱,E(·Cl/Cl-)=2.41V,E(·Cl2 -/Cl-)=2.00V,但仍具备攻击污染物的能力。当活性氯基团攻击污染物后,其直接后果是致使氯元素进入到污染物的降解过程,并导致高毒性氯代副产物的产生。
由于Cl-猝灭空穴或羟基自由基的反应是引发后续自由基反应的初始反应,所以,阻断该反应是抑制氯代副产物产生的关键。而空穴或羟基自由基捕获剂可以有效捕获空穴或羟基自由基,进而阻断活性氯基团的生成路径,因此能有效阻断高毒性氯代副产物的产生。
Cl-+h+→·Cl 公式1
Cl-+·OH→·ClOH- 公式2
·ClOH-+H+→·Cl+H2O 公式3
Figure BDA0002383621310000021
·Cl+H2O→·ClOH-+H+ 公式5
Figure BDA0002383621310000022
与现有技术相比,本发明具有如下优点:
1、本发明提出的阻断方法,可高效阻断高毒性氯代副产物的产生,避免在光催化处理含盐废水的过程中产生氯代副产物二次污染。
2、本发明中的阻断方法,在高含氯条件下(以NaCl质量浓度10%的情况为例)依然能有效阻断高毒性氯代副产物的产生,使光催化技术处理含盐废水的过程更加绿色安全。
3、本发明涉及的空穴或羟基自由基捕获剂,如:EDTA-2Na、甲醇、甲酸、乙醇、三乙醇胺、异丙醇等,均为工业常用试剂,廉价易得。可低成本、高效率地阻断氯代副产物的产生。
附图说明
图1为未采取阻断措施,NaCl质量浓度为0%时(记为Cl-0),甲基橙经20min光催化降解反应后,中间产物的高效液相色谱-质谱联用(High performance liquidchromatography-mass spectrometry,HPLC-MS)谱图。
图2为未采取阻断措施,NaCl质量浓度为10%时(记为Cl-10),甲基橙经20min光催化降解反应后中间产物的HPLC-MS谱图。
图3为加入EDTA-2Na后,NaCl质量浓度为10%时(记为EDTA-2Na+Cl-10),甲基橙经20min光催化降解反应后中间产物的HPLC-MS谱图。
图4为不同条件下,甲基橙经不同时长光催化降解反应后,所得反应溶液的紫外-可见吸收光谱图,其中各反应条件为(a)NaCl质量浓度为0%(Cl-0);(b)NaCl质量浓度为10%(Cl-10);(c)NaCl质量浓度为10%时,加入EDTA-2Na(EDTA-2Na+Cl-10);(d)NaCl质量浓度为10%时,加入异丙醇(异丙醇+Cl-10)。
具体实施方式
以下通过具体实施例并结合附图来进一步解释本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。实施例中所用原料均为常规原料,市购产品,所用设备均为常规设备。实施例中所用的水为电导率为18.2MΩ的超纯水。
实施例1
利用EDTA-2Na(常用空穴捕获剂)阻断光催化降解含盐废水过程中氯代副产物生成的方法,包括步骤如下:
(1)在常温且不断搅拌的条件下,配制NaCl质量浓度为10%的甲基橙溶液,其中甲基橙浓度为50mg/L,记为溶液A。
(2)使用分析天平准确称量0.2000gDegussa P25。
(3)在常温且不断搅拌的条件下,将称量好的Degussa P25加入到上述溶液A中,得到混合液B。
(4)在常温且不断搅拌的条件下,将EDTA-2Na加入到上述混合液B中,EDTA-2Na浓度为50mM。在黑暗条件下达到吸附平衡后(30min)开启光源,进行光催化反应。
(5)以一定时间间隔(0,10,20,30,40,50,60min)提取样品,并用0.22nm膜过滤器过滤以去除TiO2纳米颗粒。
(6)利用HPLC-MS技术分析滤液中的物质组成,结果如图3所示。
(7)利用紫外-可见分光光度计,于463nm处测试上述滤液的吸光度,计算剩余甲基橙浓度,并于200-800nm范围内测定滤液的吸光曲线,分析溶液中物质的变化,结果如图4c、所示。
对比图1(Cl-0)和图2(Cl-10),可以清晰地发现,含Cl-体系经光催化反应20min后,产生了明显的氯代副产物特征峰。而加入EDTA-2Na后,从图3中可以看出,虽然NaCl的质量浓度高达10%,但并无氯代副产物的生成。说明,EDTA-2Na的加入成功阻断了光催化反应20min时氯代副产物的产生。
另外,对照图4a、4b和4c中所有吸光谱线可以发现,在未采取阻断措施的图4b中,所有降解曲线(30和60min)都在376nm附近处产生了一个新峰,这对应于氯代副产物的产生。而加入EDTA-2Na后(图4c),谱线中的所有峰值都与图4a处于相同位置,而并无376nm峰值出现。这不仅印证了HPLC-MS分析结果,即光催化反应20min时并未产生氯代副产物,更能说明,加入EDTA-2Na后,在甲基橙光催化降解的全过程中,并无氯代副产物的产生。
因此,本发明提供的方法,能有效阻断光催化体系中氯代副产物的产生,具有广阔的应用前景。
实施例2
本实施例与实施例1所述步骤,除步骤(4)中以异丙醇代替EDTA-2Na外,其他步骤皆相同。异丙醇是常用的羟基自由基捕获剂。
在此条件下,甲基橙经不同时长光催化降解反应后,所得反应溶液的紫外-可见吸收光谱图如图4d所示。
与实施例1相同,图4d中所有谱线均未在376nm处出现氯代副产物的特征峰,说明当溶液中存在异丙醇时,虽然NaCl的质量浓度高达10%,但在甲基橙降解的全过程中,并未出现氯代副产物的吸收峰,即异丙醇的加入也能阻断氯代副产物的生成。

Claims (10)

1.一种阻断光催化降解含盐废水过程中氯代副产物生成的方法,包括步骤如下:
向光催化降解含盐废水的反应体系中添加空穴或羟基自由基捕获剂,阻止Cl-参与光催化过程,进而避免氯代副产物的生成。
2.根据权利要求1所述的阻断光催化降解含盐废水过程中氯代副产物生成的方法,其特征在于,光催化反应体系为可产生空穴和/或羟基自由基的光催化体系。
3.根据权利要求2所述的阻断光催化降解含盐废水过程中氯代副产物生成的方法,其特征在于,可产生空穴和/或羟基自由基的光催化体系为外光/二氧化钛(TiO2)、可见光/石墨相氮化碳(g-C3N4)光催化体系。
4.根据权利要求1所述的阻断光催化降解含盐废水过程中氯代副产物生成的方法,其特征在于,所述的含盐废水为含有Cl-的废水。
5.根据权利要求4所述的阻断光催化降解含盐废水过程中氯代副产物生成的方法,其特征在于,含盐废水中Cl-的浓度范围为0.1-3mol/L。
6.根据权利要求1所述的阻断光催化降解含盐废水过程中氯代副产物生成的方法,其特征在于,所述的空穴或羟基自由基捕获剂为乙二胺四乙酸二钠(EDTA-2Na)、甲醇、甲酸、乙醇、三乙醇胺、异丙醇。
7.根据权利要求6所述的阻断光催化降解含盐废水过程中氯代副产物生成的方法,其特征在于,针对TiO2投加量为1.0g/L的光催化体系而言,EDTA-2Na的投加浓度范围为30-50mmol/L;针对石墨相氮化碳投加量为1.0g/L的光催化体系而言,EDTA-2Na的投加浓度范围为10-35mmol/L。
8.一种可阻断光催化降解含盐废水过程中氯代副产物生成的光催化体系,其特征在于,该体系包括光催化剂,以及空穴或羟基自由基捕获剂。
9.一种可阻断光催化降解含盐废水过程中氯代副产物生成的光催化体系,其特征在于,该体系包括如下组成:
TiO2 1.0g/L、EDTA-2Na 30-50mmol/L。
10.一种可阻断光催化降解含盐废水过程中氯代副产物生成的光催化体系,其特征在于,该体系包括如下组成:
石墨相氮化碳1.0g/L、EDTA-2Na 10-35mmol/L。
CN202010090728.3A 2020-02-13 2020-02-13 一种阻断光催化降解含盐废水过程中氯代副产物生成的方法 Expired - Fee Related CN113248002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010090728.3A CN113248002B (zh) 2020-02-13 2020-02-13 一种阻断光催化降解含盐废水过程中氯代副产物生成的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010090728.3A CN113248002B (zh) 2020-02-13 2020-02-13 一种阻断光催化降解含盐废水过程中氯代副产物生成的方法

Publications (2)

Publication Number Publication Date
CN113248002A true CN113248002A (zh) 2021-08-13
CN113248002B CN113248002B (zh) 2022-06-10

Family

ID=77219855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010090728.3A Expired - Fee Related CN113248002B (zh) 2020-02-13 2020-02-13 一种阻断光催化降解含盐废水过程中氯代副产物生成的方法

Country Status (1)

Country Link
CN (1) CN113248002B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549900A (zh) * 2008-04-01 2009-10-07 埃维昂矿泉水有限公司 用臭氧消毒的瓶装水生产过程和消毒的瓶装水
CN108178283A (zh) * 2017-12-27 2018-06-19 苏州大学 去除高氯废水中有机物的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549900A (zh) * 2008-04-01 2009-10-07 埃维昂矿泉水有限公司 用臭氧消毒的瓶装水生产过程和消毒的瓶装水
CN108178283A (zh) * 2017-12-27 2018-06-19 苏州大学 去除高氯废水中有机物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUIXIA YUAN ETAL.: ""Photocatalytic degradation and chlorination of azo dye in saline wastewater:Kinetics and AOX formation"", 《CHEMICAL ENGINEERING JOURNAL》 *

Also Published As

Publication number Publication date
CN113248002B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Saufi et al. Photocatalytic Degradation of Methylene Blue from Aqueous Medium onto Perlite‐Based Geopolymer
Chen et al. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis
Li et al. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis
Vaghela et al. Laboratory studies of electrochemical treatment of industrial azo dye effluent
Abdelmalek et al. Bleaching and degradation of textile dyes by nonthermal plasma process at atmospheric pressure
Xiao et al. Degradation of biologically treated landfill leachate by using electrochemical process combined with UV irradiation
Gül et al. Degradation of Reactive Red 194 and Reactive Yellow 145 azo dyes by O3 and H2O2/UV-C processes
Li et al. Degradation of 2, 4-dichlorophenol in wastewater by low temperature plasma coupled with TiO 2 photocatalysis
Wang et al. Removal of ammonia and phenol from saline chemical wastewater by ionizing radiation: Performance, mechanism and toxicity
Carneiro et al. A comparative study on chemical and electrochemical degradation of reactive blue 4 dye
CN110697824A (zh) 一种氨氮去除剂及其制备方法
Stupar et al. Direct and indirect electrochemical degradation of acid blue 111 using IrOX anode
Joksimović et al. Microbial fuel cells as an electrical energy source for degradation followed by decolorization of Reactive Black 5 azo dye
Bai et al. Conversion of aniline contaminant to valuable polyaniline polymers from wastewater under alkaline conditions
Li et al. Electrochemical oxidation combined with UV irradiation for synergistic removal of perfluorooctane sulfonate (PFOS) in water
Sun et al. Degradation of auramine-O in aqueous solution by Ti/PbO2-electro-Fenton process by hydrogen peroxide produced in situ
CN113248002B (zh) 一种阻断光催化降解含盐废水过程中氯代副产物生成的方法
Zhu et al. Optimization and Modelling Using the Response Surface Methodology for Methylene Blue Removal by Electrocoagulation/Hazelnut Shell Adsorption Coupling in a Batch System.
Tahir et al. The statistical optimization of indirect electrochemical oxidation process for the treatment of dye from simulated textile discharge
Xu et al. Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation
CN113247986B (zh) 一种阻断氯离子猝灭自由基的方法
Abid et al. Electrolyte assisted sono-electrochemical decomposition of reactive red 195
Zhang et al. Effects of environmental parameters on the ultraviolet degradation of methylphosphonate.
Mustafa et al. Treatment of Furfural Wastewater by (AOPs) Photo-Fenton Method
Sano et al. Possibility of utilization of radicals and ions produced by gaseous corona discharge to degradation of organic compounds in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220610

CF01 Termination of patent right due to non-payment of annual fee