CN113241807A - 一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法 - Google Patents

一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法 Download PDF

Info

Publication number
CN113241807A
CN113241807A CN202110535188.XA CN202110535188A CN113241807A CN 113241807 A CN113241807 A CN 113241807A CN 202110535188 A CN202110535188 A CN 202110535188A CN 113241807 A CN113241807 A CN 113241807A
Authority
CN
China
Prior art keywords
node
distributed photovoltaic
voltage
distribution network
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110535188.XA
Other languages
English (en)
Other versions
CN113241807B (zh
Inventor
黄方能
周剑
梅勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Southern Power Grid Co Ltd
Original Assignee
China Southern Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Southern Power Grid Co Ltd filed Critical China Southern Power Grid Co Ltd
Priority to CN202110535188.XA priority Critical patent/CN113241807B/zh
Publication of CN113241807A publication Critical patent/CN113241807A/zh
Application granted granted Critical
Publication of CN113241807B publication Critical patent/CN113241807B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明提出一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法。为了解决现有配电网低电压治理技术的经济性和保守性问题,本发明提出了一种配电网低电压治理的分布式光伏逆变器鲁棒自适应调节方法。首先在电压灵敏度系数矩阵的基础上建立节点电压偏差优化模型,考虑分布式光伏逆变器容量线性化约束和出力的区间不确定性,设计分布式光伏逆变器根据分布式光伏出力不确定性自适应调节的策略,通过对偶变换将节点电压偏差鲁棒优化模型转化为确定性线性规划问题求解,实现了分布式光伏逆变器根据光伏出力的不确定性自适应鲁棒控制策略。

Description

一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节 方法
技术领域
本发明涉及配电网低电压治理领域,具体涉及一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法。
技术背景
随着大量分布式光伏接入配电网,配电网络由放射型的无源网络转变为用户与分布式光伏耦合的有源网络,改变了配电网络的电压分布,使得配电网的低电压问题日益严重。现有的配电网低电压治理方法主要有:优化配电网络结构、配置无功补偿装置和配电变压器有载调压等。优化配电网络结构是通过优化供电半径提高供电区域内的电压质量;配置无功补偿装置是装设并联无源电容器和SVG等有源电力电子装置等;配电变压器有载调压是通过关口节点处的有载调压变压器抽头来改善配电网的电压分布。这三种方法都需要一定的额外成本投入,且需要运行维护。另外,分布式光伏输出功率波动频繁,这三种方法很难快速响应分布式光伏输出功率的快速波动。
相比额外的投资成本,基于逆变器控制的分布式光伏具有一定快速无功响应能力得到了广泛的关注,在不增加成本的基础上,通过控制用户侧额分布式光伏逆变器的无功实现低电压治理则更加经济合理。现有的分布式光伏逆变器控制方法主要是基于光伏逆变器有功无功的就地电压控制策略和整体协调优化分布式光伏无功能力的多电压层级配电网无功电压协调控制策略。但这些方法均是基于确定性分布式光伏出力模型开展研究的,并未考虑实际配电网中分布式光伏出力的不确定性,得到的分布式光伏逆变器无功控制方案的鲁棒性较差。
发明内容:
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法,其特征在于,包括:
步骤1、初始化,输入配电网线路参数、分布式光伏出力和负荷预测基准值;
步骤2、基于分布式光伏和负荷预测基准值,建立配电网牛顿迭代潮流方程,如下:
Figure BDA0003069575270000021
式中:ΔP、ΔQ为除去平衡节点的有功功率偏差和无功功率偏差,n为配电网总节点数。平衡节点为与输电网相连的根节点,Δθ、ΔV为除去平衡节点的节点电压相角偏差和节点电压幅值偏差。JP/θ、JP/V、JQ/θ、JQ/V为雅克比矩阵的四个分块矩阵,其对应的矩阵元素
Figure BDA0003069575270000022
分别计算如下:
Figure BDA0003069575270000023
式中:Pi、Qi为分别为节点i处的注入有功功率、无功功率;θj、Vj分别为节点j处的电压相角、电压幅值;
Figure BDA0003069575270000024
表示节点i处的注入有功功率对节点j处的电压相角的偏导数,
Figure BDA0003069575270000025
表示节点i处的注入有功功率对节点j处的电压幅值的偏导数,
Figure BDA0003069575270000026
表示节点i处的注入无功功率对节点j处的电压相角的偏导数,
Figure BDA0003069575270000027
表示节点i处的注入无功功率对节点j处的电压幅值的偏导数。
步骤3、基于步骤2得到的
Figure BDA0003069575270000028
求解其逆矩阵得到节点电压灵敏度系数矩阵
Figure BDA0003069575270000029
建立以配电网节点电压总偏差最小化的优化目标,如下:
Figure BDA00030695752700000210
式中:ΔVj表示节点j处的节点电压偏差;ΔPk、ΔQk分别表示节点k处的分布式光伏的有功出力和无功出力,m为分布式光伏的数目。
Figure BDA00030695752700000211
分别表示节点j处节点电压对节点k处的分布式光伏的有功出力和无功出力的灵敏度系数,其元素为KV/Q、KV/Q矩阵的元素:
Figure BDA0003069575270000031
式中,
Figure BDA0003069575270000032
Figure BDA0003069575270000033
互为逆矩阵。
步骤4、考虑基于光伏的分布式光伏出力的不确定性,建立以分布式光伏逆变器无功线性调节的自适应鲁棒优化目标,以获得逆变器无功线性调节系数αk
Figure BDA0003069575270000034
式中:αk分布式光伏逆变器无功线性决策系数,ΔQk=αkΔPk,即逆变器的无功Qk根据分布式光伏的有功出力的不确定性波动而自适应调节,如下:
Figure BDA0003069575270000035
式中:
Figure BDA0003069575270000036
为节点k处分布式光伏基准值处的无功出力。进一步引入辅助变量tj j=2,…,n,将自适应鲁棒优化模型的绝对值去掉,即为
Figure BDA0003069575270000037
Figure BDA0003069575270000038
Figure BDA0003069575270000039
步骤5、建立分布式光伏逆变器调节容量约束的线性化模型:通过将
Figure BDA00030695752700000310
Figure BDA00030695752700000311
带入到分布式光伏逆变器线性化约束
Figure BDA0003069575270000041
中,式中,
Figure BDA0003069575270000042
是节点k处分布式光伏逆变器的容量,
Figure BDA0003069575270000043
构造如下的分布式光伏逆变器调节容量约束线性化条件:
Figure BDA0003069575270000044
Figure BDA0003069575270000045
式中:
Figure BDA0003069575270000046
为节点k处分布式光伏基准值处的有功出力和无功出力。
步骤6、考虑分布式光伏出力预测误差区间
Figure BDA0003069575270000047
Figure BDA0003069575270000048
通过对偶变换将步骤4、步骤5所建立的自适应鲁棒优化模型转换为确定性的线性规划模型如下:
Figure BDA0003069575270000049
Figure BDA00030695752700000410
Figure BDA00030695752700000411
Figure BDA00030695752700000412
Figure BDA00030695752700000413
Figure BDA00030695752700000414
γ′+γ″≥(cosφ-sinφ)+αk(cosφ+sinφ)
γ′≥0,γ″≤0
Figure BDA00030695752700000415
式中:θ′jk、θ″jk、γ′、γ′为对偶变量。
步骤7、求解步骤6建立的确定性线性规划模型,得到分布光伏逆变器无功线性决策系数αi,输出
Figure BDA00030695752700000416
表示分布式光伏逆变器无功出力Qk在基准点处
Figure BDA0003069575270000051
的基础上根据分布式光伏预测误差不确定性量ΔPk来实时线性调节逆变器出力,进而使得配电网的电压偏差最小。
因此,本发明具有如下优点:根据分布式光伏有功预测出力的波动性来优化分布式光伏的逆变器无功功率,设计了分布式光伏逆变器自适应线性调节规则;与现有的优化技术相比,本发明可以克服分布式光伏出力频繁波动的电压越限问题,维持节点电压在安全范围。
附图说明
图1为本发明的一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节流程图。
具体实施方式:
为了更加清楚地说明本发明的技术方案及其优点,下文将结合附图对本发明进行进一步详细说明。此处所描述的具体实例仅用以解释本发明,并不用于限定本发明。
本发明提出了一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法,流程图如图1所示,本发明的分布式光伏逆变器自适应鲁棒调节方法包括以下步骤:
第一步:初始化,输入配电网线路参数,分布式光伏出力和负荷预测基准值;
第二步:基于分布式光伏和负荷预测基准值,建立配电网牛顿迭代潮流方程,如下:
Figure BDA0003069575270000052
式中:ΔP、ΔQ为除去平衡节点的有功功率偏差和无功功率偏差,n为配电网总节点数。平衡节点为与输电网相连的根节点,Δθ、ΔV为除去平衡节点的节点电压相角偏差和节点电压幅值偏差。JP/θ、JP/V、JQ/θ、JQ/V为雅克比矩阵的四个分块矩阵,其对应的矩阵元素
Figure BDA0003069575270000053
分别计算如下:
Figure BDA0003069575270000054
式中:Pi、Qi为分别为节点i处的注入有功功率、无功功率;θj、Vj分别为节点j处的电压相角、电压幅值;
Figure BDA0003069575270000061
表示节点i处的注入有功功率对节点j处的电压相角的偏导数,
Figure BDA0003069575270000062
表示节点i处的注入有功功率对节点j处的电压幅值的偏导数,
Figure BDA0003069575270000063
表示节点i处的注入无功功率对节点j处的电压相角的偏导数,
Figure BDA0003069575270000064
表示节点i处的注入无功功率对节点j处的电压幅值的偏导数。
第三步:基于步骤2得到的
Figure BDA0003069575270000065
求解其逆矩阵得到节点电压灵敏度系数矩阵
Figure BDA0003069575270000066
建立以配电网节点电压总偏差最小化的优化目标,如下:
Figure BDA0003069575270000067
式中:ΔVj表示节点j处的节点电压偏差;ΔPk、ΔQk分别表示节点k处的分布式光伏的有功出力和无功出力,m为分布式光伏的数目。
Figure BDA0003069575270000068
分别表示节点j处节点电压对节点k处的分布式光伏的有功出力和无功出力的灵敏度系数,其元素为KV/Q、KV/Q矩阵的元素:
Figure BDA0003069575270000069
式中,
Figure BDA00030695752700000610
Figure BDA00030695752700000611
互为逆矩阵。
第四步:考虑基于光伏的分布式光伏出力的不确定性,建立以分布式光伏逆变器无功线性调节的自适应鲁棒优化目标,以获得逆变器无功线性调节系数αk
Figure BDA00030695752700000612
式中:αk分布式光伏逆变器无功线性决策系数,ΔQk=αkΔPk,即逆变器的无功Qk根据分布式光伏的有功出力的不确定性波动而自适应调节,如下:
Figure BDA0003069575270000071
式中:
Figure BDA0003069575270000072
为节点k处分布式光伏基准值处的无功出力。进一步引入辅助变量tj j=2,…,n,将自适应鲁棒优化模型的绝对值去掉,即为
Figure BDA0003069575270000073
Figure BDA0003069575270000074
Figure BDA0003069575270000075
第五步:建立分布式光伏逆变器调节容量约束的线性化模型:通过将
Figure BDA0003069575270000076
Figure BDA0003069575270000077
带入到分布式光伏逆变器线性化约束
Figure BDA0003069575270000078
中,式中,
Figure BDA0003069575270000079
是节点k处分布式光伏逆变器的容量,
Figure BDA00030695752700000710
构造如下的分布式光伏逆变器调节容量约束线性化条件:
Figure BDA00030695752700000711
Figure BDA00030695752700000712
式中:
Figure BDA00030695752700000713
为节点k处分布式光伏基准值处的有功出力和无功出力。
第六步:考虑分布式光伏出力预测误差区间
Figure BDA00030695752700000714
Figure BDA00030695752700000715
通过对偶变换将步骤4、步骤5所建立的自适应鲁棒优化模型转换为确定性的线性规划模型如下:
Figure BDA00030695752700000716
Figure BDA0003069575270000081
Figure BDA0003069575270000082
Figure BDA0003069575270000083
Figure BDA0003069575270000084
Figure BDA0003069575270000085
γ′+γ″≥(cosφ-sinφ)+αk(cosφ+sinφ)
γ′≥0,γ″≤0
Figure BDA0003069575270000086
式中:θ′jk、θ″jk、γ′、γ′为对偶变量。
第七步:求解步骤6建立的确定性线性规划模型,得到分布光伏逆变器无功线性决策系数αi,输出
Figure BDA0003069575270000087
表示分布式光伏逆变器无功出力Qk在基准点处
Figure BDA0003069575270000088
的基础上根据分布式光伏预测误差不确定性量ΔPk来实时线性调节逆变器出力,进而使得配电网的电压偏差最小。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (1)

1.一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法,其特征在于,包括:
步骤1、初始化,输入配电网线路参数、分布式光伏出力和负荷预测基准值;
步骤2、基于分布式光伏和负荷预测基准值,建立配电网牛顿迭代潮流方程,如下:
Figure FDA0003069575260000011
式中:ΔP、ΔQ为除去平衡节点的有功功率偏差和无功功率偏差,n为配电网总节点数;平衡节点为与输电网相连的根节点,Δθ、ΔV为除去平衡节点的节点电压相角偏差和节点电压幅值偏差;JP/θ、JP/V、JQ/θ、JQ/V为雅克比矩阵的四个分块矩阵,其对应的矩阵元素
Figure FDA0003069575260000012
分别计算如下:
Figure FDA0003069575260000013
式中:Pi、Qi为分别为节点i处的注入有功功率、无功功率;θj、Vj分别为节点j处的电压相角、电压幅值;
Figure FDA0003069575260000014
表示节点i处的注入有功功率对节点j处的电压相角的偏导数,
Figure FDA0003069575260000015
表示节点i处的注入有功功率对节点j处的电压幅值的偏导数,
Figure FDA0003069575260000016
表示节点i处的注入无功功率对节点j处的电压相角的偏导数,
Figure FDA0003069575260000017
表示节点i处的注入无功功率对节点j处的电压幅值的偏导数;
步骤3、基于步骤2得到的
Figure FDA0003069575260000018
求解其逆矩阵得到节点电压灵敏度系数矩阵
Figure FDA0003069575260000019
建立以配电网节点电压总偏差最小化的优化目标,如下:
Figure FDA0003069575260000021
式中:ΔVj表示节点j处的节点电压偏差;ΔPk、ΔQk分别表示节点k处的分布式光伏的有功出力和无功出力,m为分布式光伏的数目;
Figure FDA0003069575260000022
分别表示节点j处节点电压对节点k处的分布式光伏的有功出力和无功出力的灵敏度系数,其元素为KV/Q、KV/Q矩阵的元素:
Figure FDA0003069575260000023
式中,
Figure FDA0003069575260000024
Figure FDA0003069575260000025
互为逆矩阵;
步骤4、考虑基于光伏的分布式光伏出力的不确定性,建立以分布式光伏逆变器无功线性调节的自适应鲁棒优化目标,以获得逆变器无功线性调节系数αk
Figure FDA0003069575260000026
式中:αk分布式光伏逆变器无功线性决策系数,ΔQk=αkΔPk,即逆变器的无功Qk根据分布式光伏的有功出力的不确定性波动而自适应调节,如下:
Figure FDA0003069575260000027
式中:
Figure FDA0003069575260000028
为节点k处分布式光伏基准值处的无功出力;进一步引入辅助变量tj j=2,…,n,将自适应鲁棒优化模型的绝对值去掉,即为
Figure FDA0003069575260000029
Figure FDA00030695752600000210
Figure FDA00030695752600000211
步骤5、建立分布式光伏逆变器调节容量约束的线性化模型:通过将
Figure FDA00030695752600000212
Figure FDA0003069575260000031
带入到分布式光伏逆变器线性化约束
Figure FDA0003069575260000032
中,式中,
Figure FDA0003069575260000033
是节点k处分布式光伏逆变器的容量,
Figure FDA0003069575260000034
构造如下的分布式光伏逆变器调节容量约束线性化条件:
Figure FDA0003069575260000035
Figure FDA0003069575260000036
式中:
Figure FDA0003069575260000037
为节点k处分布式光伏基准值处的有功出力和无功出力;
步骤6、考虑分布式光伏出力预测误差区间
Figure FDA0003069575260000038
通过对偶变换将步骤4、步骤5所建立的自适应鲁棒优化模型转换为确定性的线性规划模型如下:
Figure FDA0003069575260000039
Figure FDA00030695752600000310
Figure FDA00030695752600000311
Figure FDA00030695752600000312
Figure FDA00030695752600000313
Figure FDA00030695752600000314
γ′+γ″≥(cosφ-sinφ)+αk(cosφ+sinφ)
γ′≥0,γ″≤0
Figure FDA00030695752600000315
式中:θ′jk、θ″jk、γ′、γ′为对偶变量;
步骤7、求解步骤6建立的确定性线性规划模型,得到分布光伏逆变器无功线性决策系数αi,输出
Figure FDA00030695752600000316
表示分布式光伏逆变器无功出力Qk在基准点处
Figure FDA00030695752600000317
的基础上根据分布式光伏预测误差不确定性量ΔPk来实时线性调节逆变器出力,进而使得配电网的电压偏差最小。
CN202110535188.XA 2021-05-17 2021-05-17 一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法 Expired - Fee Related CN113241807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110535188.XA CN113241807B (zh) 2021-05-17 2021-05-17 一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110535188.XA CN113241807B (zh) 2021-05-17 2021-05-17 一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法

Publications (2)

Publication Number Publication Date
CN113241807A true CN113241807A (zh) 2021-08-10
CN113241807B CN113241807B (zh) 2022-04-19

Family

ID=77134819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110535188.XA Expired - Fee Related CN113241807B (zh) 2021-05-17 2021-05-17 一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法

Country Status (1)

Country Link
CN (1) CN113241807B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986747A (zh) * 2022-12-27 2023-04-18 上海交通大学 一种基于升维仿射的配电网节点电压实时控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195496A1 (en) * 2012-01-31 2013-08-01 Kyocera Document Solutions Inc. Power Supply Control Device Including Switching Regulator and Linear Regulator, Image Forming Apparatus Including the Same, and Electronic Apparatus Including the Same
CN105870972A (zh) * 2016-06-16 2016-08-17 扬州华鼎电器有限公司 一种光伏微网pwm逆变器的智能控制系统
US20170104346A1 (en) * 2015-10-08 2017-04-13 Johnson Controls Technology Company Electrical energy storage system with variable state-of-charge frequency response optimization
CN108462200A (zh) * 2018-01-30 2018-08-28 国网江苏省电力有限公司电力科学研究院 一种计及光伏和负荷不确定性的配电网无功电压鲁棒控制方法
CN111262245A (zh) * 2020-03-07 2020-06-09 西南交通大学 一种计及光伏不确定性的牵引供电系统能量管理优化运行方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195496A1 (en) * 2012-01-31 2013-08-01 Kyocera Document Solutions Inc. Power Supply Control Device Including Switching Regulator and Linear Regulator, Image Forming Apparatus Including the Same, and Electronic Apparatus Including the Same
US20170104346A1 (en) * 2015-10-08 2017-04-13 Johnson Controls Technology Company Electrical energy storage system with variable state-of-charge frequency response optimization
CN105870972A (zh) * 2016-06-16 2016-08-17 扬州华鼎电器有限公司 一种光伏微网pwm逆变器的智能控制系统
CN108462200A (zh) * 2018-01-30 2018-08-28 国网江苏省电力有限公司电力科学研究院 一种计及光伏和负荷不确定性的配电网无功电压鲁棒控制方法
CN111262245A (zh) * 2020-03-07 2020-06-09 西南交通大学 一种计及光伏不确定性的牵引供电系统能量管理优化运行方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高家原: "入网电压控制型逆变器的功率传输特性分析", 《电网技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986747A (zh) * 2022-12-27 2023-04-18 上海交通大学 一种基于升维仿射的配电网节点电压实时控制方法
CN115986747B (zh) * 2022-12-27 2024-01-12 上海交通大学 一种基于升维仿射的配电网节点电压实时控制方法

Also Published As

Publication number Publication date
CN113241807B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
Zhu et al. Fast local voltage control under limited reactive power: Optimality and stability analysis
CN109390962B (zh) 一种多端柔直系统的不平衡功率自适应优化分配方法
CN110768262B (zh) 一种基于节点聚类分区的有源配电网无功电源配置方法
Long et al. Volt-var optimization of distribution systems for coordinating utility voltage control with smart inverters
CN113241807B (zh) 一种配电网低电压治理的分布式光伏逆变器自适应鲁棒调节方法
Liu et al. Power system model predictive load frequency control
CN114362267A (zh) 考虑多目标优化的交直流混合配电网分散式协调优化方法
CN113346539B (zh) 一种协同多类型无功资源的在线电压控制方法
Zhang et al. A variable self-tuning horizon mechanism for generalized dynamic predictive control on DC/DC boost converters feeding CPLs
CN110957731A (zh) 基于模型预测控制的分布式电源就地集群电压控制方法
Alhattab et al. An intelligent mitigation of disturbances in electrical power system using distribution static synchronous compensator
Mushtaq et al. Coordinated operation of fuzzy‐based TCSC and SMES for low‐frequency oscillation damping in interconnected power systems
CN103701142A (zh) 考虑离散控制变量的主动配电网实时无功-电压控制方法
Wang et al. Using inverter-based renewable generators to improve the grid power quality—A review
CN110535145B (zh) 对称故障下含statcom电网电压暂降水平计算方法
Shahgholian et al. A novel approach in automatic control based on the genetic algorithm in STATCOM for improvement power system transient stability
Anitha et al. Load voltage balancing using marine predator algorithm for power system quality improvement
CN116365526A (zh) 多级电压互动控制方法
CN110854908B (zh) 光伏接入中低压配电网过电压功率控制方法及系统、介质
CN111030190B (zh) 数据驱动的新能源电力系统源-网-荷协调控制方法
Benachaiba et al. Robust and intelligent control methods to improve the performance of a Unified Power Flow Controller
CN108985579B (zh) 电源配置规划方法及其系统
Somsai et al. Design of dc voltage control for D-STATCOM
Nong et al. Nonlinear distributed MPC strategy with application to AGC of interconnected power system
CN113162060B (zh) 一种基于机会约束优化的主动配电网两阶段无功调节方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220419