CN113215156B - Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology - Google Patents

Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology Download PDF

Info

Publication number
CN113215156B
CN113215156B CN202110510545.7A CN202110510545A CN113215156B CN 113215156 B CN113215156 B CN 113215156B CN 202110510545 A CN202110510545 A CN 202110510545A CN 113215156 B CN113215156 B CN 113215156B
Authority
CN
China
Prior art keywords
sequence
corn
zmbadh2
gene
jing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110510545.7A
Other languages
Chinese (zh)
Other versions
CN113215156A (en
Inventor
赵久然
杨进孝
张翔
史亚兴
卢柏山
武莹
刘亚
王元东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Academy of Agriculture and Forestry Sciences
Original Assignee
Beijing Academy of Agriculture and Forestry Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Academy of Agriculture and Forestry Sciences filed Critical Beijing Academy of Agriculture and Forestry Sciences
Priority to CN202110510545.7A priority Critical patent/CN113215156B/en
Publication of CN113215156A publication Critical patent/CN113215156A/en
Application granted granted Critical
Publication of CN113215156B publication Critical patent/CN113215156B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for efficiently creating fragrant corn by using a CRISPR/Cas9 technology. The invention designs targets for exon regions of corn ZmBADH2-1 gene and ZmBADH2-2 gene, constructs CRISPR/Cas9 gene editing vector, and obtains double-gene knockout mutant through genetic transformation. Experiments prove that: in 4 seeds of the T1 generation double-gene knockout mutant, the highest 2-AP content is 438.29 mug/kg‑1The minimum content is 161.82 mug/kg‑1And 2-AP is not detected in unedited Jing 724. The invention utilizes CRISPR/Cas9 technology to directionally and efficiently improve corn aroma character from molecular genetics level, efficiently creates corn backbone parent new germplasm with different aroma gradients, and provides a new breeding material for development of aroma corn varieties and improvement of corn taste quality.

Description

Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a method for efficiently creating fragrant corn by using a CRISPR/Cas9 technology.
Background
The fragrance is an important character for improving the quality of crops, is one of important contents for improving the quality, and the crop variety with the fragrance is highly favored by consumers. For example, the planting and breeding of fragrant rice has a long history and a good result, and fragrant rice is planted in all countries. The famous fragrant rice varieties comprise rice flower fragrance in northeast China, Basmati in India, jasmine fragrant rice in Thailand and the like. These varieties of scented rice have high economic value. The germplasm resources of the fragrant rice are extremely rich, and the fragrant rice breeding is greatly facilitated. Corn is one of the most important food grains in the world, and about one third of the population worldwide today has corn as the main food grain. With the development of corn breeding and matched processing industries, the edible quality of corn is continuously improved, and fresh corn and new corn food such as corn flakes, corn flour, corn grit, instant corn and the like are very popular in domestic and foreign markets. However, the cultivation of the aromatic corn varieties needs to be further enhanced, and the discovery and creation of novel high-quality aromatic corn germplasm resources are important ways.
Genome editing techniques mainly rely on artificial endonucleases (SSNs) and a series of functional modules to perform operations such as deletion, insertion and base substitution of bases or DNA fragments in a target genome region. After ZFN and TALEN, the CRISPR/Cas9 nuclease is used as a new generation gene editing technology, has the advantages of simplicity, high efficiency and the like, and is rapidly and successfully applied to animals and plants. If LE and the like knock out the corns Sh2 and Wx simultaneously by using CRISPR/Cas9 technology, the method is proved to be capable of rapidly breeding sweet waxy corn varieties; SHI and the like edit the promoter of a corn endogenous gene ARGOS8 by using a CRISPR/Cas9 technology, so that the expression quantity of the gene is improved, and the drought tolerance of corn is further improved; ZHANG and the like knock out the corn SD1 by using a gene editing technology, so that the adjustment of the height of the corn plant is successfully realized; SVITASHEV etc. through the fixed-point editing of the MS26 and MS45, the male sterile material of corn is rapidly bred. These successful gene editing breeding efforts fully demonstrate the high efficiency of CRISPR/Cas9 gene editing technology in targeted genetic improvement in maize.
Disclosure of Invention
The first object of the present invention is to provide a kit for knocking out ZmBADH2-1 gene and ZmBADH2-2 gene in maize genome.
The kit for knocking out ZmBADH2-1 gene and ZmBADH2-2 gene in corn genome provided by the invention comprises sgRNA or biological material related to the sgRNA, Cas9 nuclease or biological material related to the Cas9 nuclease;
the sgRNA is esgRNA of a target gene target sequence; the esgRNA structure of the target gene target sequence is as follows: an RNA-esgRNA backbone transcribed from the target gene sequence;
the target genes are ZmBADH2-1 gene and ZmBADH2-2 gene;
the target point sequence of the target gene is sequence 5;
the ZmBADH2-1 gene is a gene shown as b1) -b 4):
b1) a genomic DNA molecule shown in a sequence 1 or a cDNA molecule shown in a sequence 2;
b2) a cDNA molecule or a genomic DNA molecule having 75% or more than 75% identity to the nucleotide sequence defined in b 1);
b3) a cDNA molecule or a genomic DNA molecule derived from maize and having 75% or more identity to the nucleotide sequence defined in b 1);
b4) a cDNA molecule or a genomic DNA molecule which hybridizes under stringent conditions with a nucleotide sequence defined in b1) or b2) or b 3);
the ZmBADH2-2 gene is a gene shown as the following c1) -c 4):
c1) a genomic DNA molecule shown in a sequence 3 or a cDNA molecule shown in a sequence 4;
c2) a cDNA molecule or a genomic DNA molecule having 75% or more identity to the nucleotide sequence defined in c 1);
c3) a cDNA molecule or a genomic DNA molecule derived from maize and having 75% or more identity to the nucleotide sequence defined in c 1);
c4) a cDNA molecule or a genomic DNA molecule which hybridizes under stringent conditions with a nucleotide sequence defined under c1) or c2) or c 3).
In the kit, the Cas9 nucleases include Cas9 nuclease or variants thereof, Cas9 inactivating enzyme (dead Cas9, dCas9) or variants thereof, Cas9 nickase (Cas9 nickase, Cas9n) or variants thereof from different sources. The Cas9 nucleases or variants thereof from different sources include Cas9 (such as SaCas9, SaCas9-KKH and the like), Cas9-PAM variants (such as xCas9, NG Cas9, Cas9-VQR, Cas9-VRER and the like), Cas9 high fidelity enzyme variants (such as HypaCas9, eSPcas9(1.1), Cas9-HF1 and the like) and the like. In a particular embodiment of the invention, the Cas9 nuclease is specifically SpCas9 protein. The encoding gene sequence of the SpCas9 protein is shown as 2912-7012 of a sequence 6.
The esgRNA framework sequence is an RNA molecule obtained after replacing T in positions 599-684 of the sequence 6 with U.
Further, the kit also comprises a screening agent resistance gene or biological materials related to the screening agent resistance gene. In one embodiment of the present invention, the screening agent resistance gene is specifically Phosphomannose isomerase (PMI) gene. The PMI gene sequence is shown in the 9430-10608 position of the sequence 6.
Further, the biological material related to the sgrnas is an expression cassette, a recombinant vector, a recombinant microorganism, or a recombinant cell line encoding the sgrnas.
The biological material associated with the Cas9 nuclease is an expression cassette, recombinant vector, recombinant microorganism, or recombinant cell line encoding the Cas9 nuclease.
The biological material related to the screening agent resistance gene is an expression cassette, a recombinant vector, a recombinant microorganism or a recombinant cell line which encodes the screening agent resistance gene.
The second purpose of the invention is to provide an expression cassette, a recombinant vector, a recombinant microorganism or a recombinant cell line containing the gene coding for the reagent kit.
In one embodiment of the invention, the nucleotide sequence of the recombinant vector is sequence 6.
The third purpose of the invention is to provide a new application of the reagent kit or an expression cassette, a recombinant vector, a recombinant microorganism or a recombinant cell line containing the gene coding for the reagent kit.
The invention provides the application of the kit or an expression cassette, a recombinant vector, a recombinant microorganism or a recombinant cell line containing the gene coding the kit in any one of the following M1) -M10):
m1) to create a maize mutant with ZmBADH2-1 and ZmBADH2-2 double gene knockout;
m2) preparing a product for creating a corn mutant with ZmBADH2-1 and ZmBADH2-2 double gene knockout;
m3) breeding aromatic corn;
m4) preparing a product for cultivating fragrant corn;
m5) improving the 2-AP content in the corn kernels;
m6) preparing a product for improving the 2-AP content in the corn kernels;
m7) improving corn kernel aroma;
m8) preparing a product for improving the fragrance of corn kernels;
m9) breeding corn;
m10) preparing a product for corn breeding.
A fourth object of the present invention is to provide any one of the following methods N1) -N5):
n1) A method for creating maize mutants with double knockout of ZmBADH2-1 and ZmBADH2-2 comprising the steps of: introducing a coding gene of Cas9 nuclease, a DNA molecule of esgRNA for transcribing a target gene target sequence and a screening agent resistance gene into receptor corn, so that the Cas9 nuclease, the sgRNA and the screening agent resistance gene are expressed, and a corn mutant with double gene knockout of ZmBADH2-1 and ZmBADH2-2 is obtained;
n2) a method for growing aromatic corn comprising the steps of: introducing the encoding gene of the Cas9 nuclease, the DNA molecule of the esgRNA for transcribing the target gene target sequence and the screening agent resistance gene into receptor corn, so that the Cas9 nuclease, the sgRNA and the screening agent resistance gene are all expressed to obtain fragrant corn;
n3) A method for increasing the 2-AP content in corn kernels, comprising the steps of: introducing the encoding gene of the Cas9 nuclease, the DNA molecule of the esgRNA for transcribing the target gene target sequence and the screening agent resistance gene into a receptor corn, so that the Cas9 nuclease, the sgRNA and the screening agent resistance gene are all expressed, and the content of 2-AP in corn grains is improved;
n4) a method of enhancing the flavor of corn kernels comprising the steps of: the coding gene of Cas9 nuclease, the DNA molecule of esgRNA for transcribing a target gene target sequence and a screening agent resistance gene are introduced into receptor corn, so that the Cas9 nuclease, the sgRNA and the screening agent resistance gene are expressed, and the corn kernel fragrance is improved;
n5) A method of maize breeding comprising the steps of: obtaining the corn mutant with ZmBADH2-1 and ZmBADH2-2 double gene knockout according to the method of N1), and breeding by taking the corn mutant as a variety or as a parent material.
Further, the maize mutant is a BH02 mutant strain, a BH06 mutant strain, a BH11 mutant strain, or a BH13 mutant strain:
the difference between the genome DNA of the BH02 mutant strain and the genome DNA of the maize inbred line Jing 724 is only that in a ZmBADH2-1 gene (sequence 1), 1bp of base deletion is carried out on one chromosome, the deleted base is the 3681 st site of the sequence 1, 2bp of base deletion is carried out on the other chromosome, the deleted base is the 3680 st and 3681 st sites of the sequence 1, in a ZmBADH2-2 gene (sequence 3), 1bp of base deletion is carried out on one chromosome, the deleted base is the 3375 st site of the sequence 3, 1bp of base A insertion is carried out on the other chromosome, and the inserted position of the base A is between the 3374 th site and the 3375 th site of the sequence 3;
the difference between the genome DNA of the BH06 mutant strain and the genome DNA of the maize inbred line Jing 724 is only that in a ZmBADH2-1 gene (sequence 1), 15bp base deletion is carried out on one chromosome, the deleted base is the 3666 rd and 3680 th positions of the sequence 1, 4bp base deletion is carried out on the other chromosome, the deleted base is the 3682 th and 3685 th positions of the sequence 1, in a ZmBADH2-2 gene (sequence 3), 9bp base deletion is carried out on one chromosome, the deleted base is the 3367 rd and 3375 th positions of the sequence 3, and 19bp base deletion is carried out on the other chromosome, and the deleted bases are the 3354 th position and the 3360 nd and 3377 th positions of the sequence 3;
the difference between the genome DNA of the BH11 mutant strain and the genome DNA of the maize inbred line Jing 724 is only that in a ZmBADH2-1 gene (sequence 1), 1bp base deletion is carried out on one chromosome, the deleted base is 3673 th in the sequence 1, 5bp base deletion is carried out on the other chromosome, the deleted base is 3677 rd and 3681 th in the sequence 1, in a ZmBADH2-2 gene (sequence 3), 5bp base deletion is carried out on one chromosome, the deleted base is 3371 nd and 3375 th in the sequence 3, and 2bp base deletion is carried out on the other chromosome, and the deleted bases are 3371 nd and 3375 th in the sequence 3;
the difference between the genome DNA of the BH13 mutant strain and the genome DNA of the maize inbred line Jing 724 is only that in a ZmBADH2-1 gene (sequence 1), 19bp base deletion is carried out on one chromosome, the deleted base is the 3663 rd and 3681 th positions of the sequence 1, 11bp base deletion is carried out on the other chromosome, the deleted base is the 3674 th and 3684 th positions of the sequence 1, in a ZmBADH2-2 gene (sequence 3), 3bp base deletion is carried out on one chromosome, the deleted base is the 3375 th and 3377 th positions of the sequence 3, 2bp base CT insertion is carried out on the other chromosome, and the inserted position of the base CT is between the 3376 th position and the 3377 th position of the sequence 3.
The fragrant corns are corns with different fragrance gradients. In one embodiment of the invention, the corn with different flavor gradients has a 2-AP content of 438.29 μ g-kg-1、404.63μg·kg-1、348.65μg·kg-1And 161.82. mu.g/kg-1The corn of (1).
It is a fifth object of the present invention to provide a nucleic acid molecule.
The nucleic acid molecule provided by the invention is any one of the following P1) -P4):
p1) the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, wherein the nucleic acid molecule A is a sequence 7 and/or a sequence 8, and the nucleic acid molecule B is a sequence 9 and/or a sequence 10;
p2) the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, wherein the nucleic acid molecule A is sequence 11 and/or sequence 12, and the nucleic acid molecule B is sequence 13 and/or sequence 14;
p3) said nucleic acid molecule comprises nucleic acid molecule a and nucleic acid molecule b, said nucleic acid molecule a is sequence 15 and/or sequence 16, said nucleic acid molecule b is sequence 17 and/or sequence 18;
p4) the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, wherein the nucleic acid molecule A is a sequence 19 and/or a sequence 20, and the nucleic acid molecule B is a sequence 21 and/or a sequence 22.
The nucleic acid molecule may be a single-stranded DNA molecule or a double-stranded DNA molecule. When the nucleic acid molecule is a single-stranded DNA molecule, in the P1), the nucleic acid molecule A is a sequence 7 or a sequence 8, and the nucleic acid molecule B is a sequence 9 or a sequence 10; in the P2), the nucleic acid molecule A is a sequence 11 or a sequence 12, and the nucleic acid molecule B is a sequence 13 or a sequence 14; in P3), the nucleic acid molecule A is sequence 15 or sequence 16, and the nucleic acid molecule B is sequence 17 or sequence 18; the P4), the nucleic acid molecule A is sequence 19 or sequence 20, and the nucleic acid molecule B is sequence 21 or sequence 22.
When the nucleic acid molecule is a double-stranded DNA molecule, the nucleic acid molecule A is shown as a sequence 7 and a sequence 8, and the nucleic acid molecule B is shown as a sequence 9 and a sequence 10 in the P1); the P2), the nucleic acid molecule A is shown as a sequence 11 and a sequence 12, and the nucleic acid molecule B is shown as a sequence 13 and a sequence 14; the P3), the nucleic acid molecule A is sequence 15 and sequence 16, and the nucleic acid molecule B is sequence 17 and sequence 18; the P4), the nucleic acid molecule A is shown as a sequence 19 and a sequence 20, and the nucleic acid molecule B is shown as a sequence 21 and a sequence 22.
Further, in P1), the nucleic acid molecule includes a nucleic acid molecule a and a nucleic acid molecule B, the nucleic acid molecule a is sequence a and/or sequence B, the nucleic acid molecule B is sequence C and/or sequence D; the sequence A is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 7 and keeping other sequences unchanged; the sequence B is obtained by replacing the 3665-3684 th site of the sequence 1 with a sequence 8 and keeping other sequences unchanged; the sequence C is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 9 and keeping other sequences unchanged; the sequence D is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 10 and keeping other sequences unchanged;
the P2), the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, the nucleic acid molecule A is a sequence E and/or a sequence F, and the nucleic acid molecule B is a sequence G and/or a sequence H; the sequence E is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 11 and keeping other sequences unchanged; the sequence F is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 12 and keeping other sequences unchanged; the sequence G is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 13 and keeping other sequences unchanged; the sequence H is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 14 and keeping other sequences unchanged;
the P3), the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, the nucleic acid molecule A is a sequence I and/or a sequence J, and the nucleic acid molecule B is a sequence K and/or a sequence L; the sequence I is obtained by replacing 3665-3684 th site of the sequence 1 with the sequence 15 and keeping other sequences unchanged; the sequence J is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 16 and keeping other sequences unchanged; the sequence K is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 17 and keeping other sequences unchanged; the sequence L is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 18 and keeping other sequences unchanged;
the P4), the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, the nucleic acid molecule A is a sequence M and/or a sequence N, and the nucleic acid molecule B is a sequence O and/or a sequence P; the sequence M is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 19 and keeping other sequences unchanged; the sequence N is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 20 and keeping other sequences unchanged; the sequence O is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 21 and keeping other sequences unchanged; the sequence P is obtained by replacing 3359-3378 of the sequence 3 with the sequence 22 and keeping other sequences unchanged.
Further, in P1), the nucleic acid molecules include a nucleic acid molecule a and a nucleic acid molecule b, wherein the nucleic acid molecule a is sequence a and/or sequence b, and the nucleic acid molecule b is sequence c and/or sequence d; the sequence a is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 7 and keeping other sequences unchanged; the sequence b is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 8 and keeping other sequences unchanged; the sequence c is obtained by replacing the 447-466 position of the sequence 4 with the sequence 9 and keeping other sequences unchanged; the sequence d is obtained by replacing the 447-466 position of the sequence 4 with the sequence 10 and keeping other sequences unchanged;
the P2), the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, the nucleic acid molecule A is a sequence e and/or a sequence f, and the nucleic acid molecule B is a sequence g and/or a sequence h; the sequence e is obtained by replacing the position 444-463 of the sequence 2 with the sequence 11 and keeping other sequences unchanged; the sequence f is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 12 and keeping other sequences unchanged; the sequence g is obtained by replacing the 447-466 position of the sequence 4 with the sequence 13 and keeping other sequences unchanged; the sequence h is obtained by replacing the 447-466 locus of the sequence 4 with the sequence 14 and keeping other sequences unchanged;
the P3), the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, the nucleic acid molecule A is a sequence i and/or a sequence j, and the nucleic acid molecule B is a sequence k and/or a sequence l; the sequence i is obtained by replacing the position 444-463 of the sequence 2 with the sequence 15 and keeping other sequences unchanged; the sequence j is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 16 and keeping other sequences unchanged; the sequence k is obtained by replacing the 447-466 position of the sequence 4 with the sequence 17 and keeping other sequences unchanged; the sequence l is obtained by replacing the 447-466 locus of the sequence 4 with the sequence 18 and keeping other sequences unchanged;
the P4), the nucleic acid molecule comprises a nucleic acid molecule A and a nucleic acid molecule B, the nucleic acid molecule A is a sequence m and/or a sequence n, and the nucleic acid molecule B is a sequence o and/or a sequence P; the sequence m is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 19 and keeping other sequences unchanged; the sequence n is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 20 and keeping other sequences unchanged; the sequence o is obtained by replacing the 447-466 position of the sequence 4 with the sequence 21 and keeping other sequences unchanged; the sequence p is obtained by replacing the 447-466 th site of the sequence 4 with the sequence 22 and keeping the other sequences unchanged.
It is a final object of the present invention to provide a method for growing flavored corn.
The method for cultivating the fragrant corn provided by the invention comprises the following steps: planting at least one seed of corn, said corn comprising said nucleic acid molecule, and allowing said seed to grow into a plant.
In any one of the above kits or uses or methods, the maize variety is Jing 724.
The invention has the following beneficial effects:
1) the sgRNA target sequences designed aiming at target genes ZmBADH2-1 and ZmBADH2-2 in corn have good specificity and high knockout efficiency, and the specific expression is that the target genes ZmBADH2-1 and ZmBADH2-2 can be knocked out simultaneously, and the co-knockout efficiency can reach 100%.
2) The method can obtain new corn germplasm with different fragrance gradients, can meet different requirements of different consumer groups on corn taste, and generates great economic additional value.
3) Jing 724 has many advantages such as high combining ability, high resistance and high yield, and has been used as female parent to breed a plurality of excellent corn varieties such as Jingke 968, MC738 and MC 948. Especially, the Beijing department 968 has the annual popularization area exceeding 2000 ten thousand mu, and is the domestic first three famous dominant large variety. The novel fragrant Jing 724 germplasm created by the method has important application value.
Based on the principle of CRISPR/Cas9 gene editing technology, specific targets are designed at exons of target candidate genes ZmBADH2-1 and ZmBADH2-2, and a CRISPR/Cas9 gene editing vector is constructed. And then using a corn backbone parent Jing 724 as a receptor, and screening by Phosphomannose isomerase (PMI) resistance to obtain a positive transgenic strain by utilizing an agrobacterium-mediated genetic transformation method. Most preferablyThe mutation type of the later transgenic line in the target gene is determined by sequencing, and the content of the main fragrant substance 2-AP of the fragrant rice in seeds of the T1 generation of the gene editing line is detected by using a Gas chromatography-mass spectrometry (GC-MS) instrument so as to determine the change of the content of the 2-AP of Jing 724 before and after gene editing. The results show that: designing targets for exon regions of the two genes, constructing a CRISPR/Cas9 gene editing vector, and obtaining 28 transgenic strains through genetic transformation. Sequencing analysis results show that target areas of ZmBADH2-1 and ZmBADH2-2 in 10 strains of materials are mutated, the mutation types are different numbers of base deletion, substitution and insertion, and the double-gene co-knockout efficiency reaches 100%. The average 2-AP content in the grains of 4 randomly selected T1 generation gene editing strains is 438.29 mug/kg-1、404.63μg·kg-1、348.65μg·kg-1And 161.82. mu.g/kg-1While 2-AP was not detected in unedited Jing 724. The invention simultaneously carries out site-directed knockout on the ZmBADH2-1 gene and the ZmBADH2-2 gene of the corn by using the CRISPR/Cas9 technology, directionally and efficiently improves the aroma character of the corn from the aspect of molecular genetics, efficiently creates a new germplasm of backbone parents of the corn with different aroma gradients, and provides a new breeding material for the development of aroma type corn varieties and the promotion of the taste quality of the corn.
Drawings
FIG. 1 is a schematic diagram showing the structures of ZmBADH2-1 and ZmBADH2-2 genes.
FIG. 2 is a schematic diagram of the knockout vector structure.
FIG. 3 shows the base and protein mutations of ZmBADH2-1 and ZmBADH2-2 knockout maize mutant material. A is the base mutation status of the maize mutant material with ZmBADH2-1 and ZmBADH2-2 gene knockout (wild type ZmBADH2-1 gene (94-130 th site) and ZmBADH2-2 gene (99-136 th site) in FIG. 3A are respectively for the 4 th exon of ZmBADH2-1 gene and ZmBADH2-2 gene); b is the mutation condition of the ZmBADH2-1 and ZmBADH2-2 proteins caused by base mutation.
FIG. 4 shows Zmbadh1/Zmbadh2 double mutant T1 generation seeds.
FIG. 5 shows the chromatogram and the content of 2-AP in the seeds of the gene editing strain (n is 3, mean. + -. standard deviation). A is a 2-AP chromatogram in grains of a gene editing strain; and B is the content of 2-AP in the grains of the gene editing strain (n is 3, and the average value is +/-standard deviation).
FIG. 6 is the chromatogram of 2-AP of rice flower fragrance seeds and the mass spectrum of 2-AP in seeds of rice flower fragrance seed and BH02 gene editing line T1. A is a chromatogram of the rice flower fragrance seeds 2-AP; b and C are 2-AP mass spectrograms in the seeds of the rice floral fragrance and the BH02 gene editing line T1.
Detailed Description
The following examples are intended to facilitate a better understanding of the invention, but are not intended to limit the invention thereto. The test methods in the following examples are conventional methods unless otherwise specified. The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified.
Beijing 724, an inbred corn line, described in examples below, is described in "WANG X, SHI Z, ZHANG R, SUN X, WANG J, WANG S, ZHANG Y, ZHAO Y, SU A, LI C, WANG R, ZHANG Y, WANG S, WANG Y, SONG W, ZHAO J.Stalk architecture, cell wall composition, and QTL undercording high stand flexibility for improved flexibility resistance in mail. BMC Plant Biology,2020.20(1): 515", publicly available from the Applicant (Beijing Nongline academy of sciences), which is used only for repetition of experiments related to the present invention and is not useful for other applications.
The primers used in the following examples are shown in Table 1.
TABLE 1
Figure BDA0003060142350000071
Example 1 preparation of maize mutant Material with double Gene knockout of ZmBADH2-1 and ZmBADH2-2 and determination of aroma substance 2-AP content thereof
Preparation of ZmBADH2-1 and ZmBADH2-2 double-gene knockout corn mutant material
1. Target gene
The invention uses ZmBADH2-1 gene and ZmBADH2-2 gene in corn as target genes, and uses CRISPR/Cas9 system to knock out ZmBADH2-1 gene and ZmBADH2-2 gene in corn, so as to obtain corn mutant with double gene knock-out of ZmBADH2-1 and ZmBADH 2-2.
Wherein, the ZmBADH2-1 gene is positioned on the No. 4 chromosome of the maize genome, consists of 15 exons and encodes 505 amino acids; the genome sequence of the ZmBADH2-1 gene is shown as sequence 1 in a sequence table, and the CDS sequence is shown as sequence 2 in the sequence table.
The ZmBADH2-2 gene is located on chromosome 1 of maize genome, and likewise has 15 exons, and the translated protein contains 506 amino acids. The genome sequence of the ZmBADH2-2 gene is shown as a sequence 3 in a sequence table, and the CDS sequence is shown as a sequence 4 in the sequence table.
The schematic structure of ZmBADH2-1 gene and ZmBADH2-2 gene is shown in FIG. 1.
2. Target design
According to the principle of CRISPR/Cas9 technology, the coding region sequences of genes ZmBADH2-1 and ZmBADH2-2 in Jing 724 are combined to design a sgRNA Target sequence Target1 with better 20bp specificity: TCTCCGAAGAGAGCCTATTG (SEQ ID NO: 5), which is located at positions 3359-3378 of SEQ ID NO: 3. Target1 is located on the 4 th exon of both ZmBADH2-1 and ZmBADH2-2 (FIG. 1), and the CRISPR/Cas9 vector containing the sgRNA can introduce mutations in both genes simultaneously.
3. CRISPR/Cas9 vector construction
The nucleotide sequence of the CRISPR/Cas9 vector containing Target1 is shown as a sequence 6 in a sequence table. Wherein, the 101-495 position of the sequence 6 is a nucleotide sequence of ZmU6 promoter, the 502-578 position is a nucleotide sequence of tRNA, the 579-598 position is a Target sequence Target1, the 599-684 position is an esgRNA framework sequence, the 685-975 position is a OsU3 terminator sequence, the 982-2695 position is an OsUbq3 promoter sequence, the 2912-7012 position is an SpCas9 sequence, the 7169-7423 position is a Nos terminator sequence, the 7452-9423 position is a ZmUbi promoter sequence, the 9430-10608 position is a PMI sequence, and the 10615-10868 position is a Nos terminator sequence.
A schematic diagram of the CRISPR/Cas9 vector structure is shown in figure 2.
4. Obtaining transgenic positive plants
And (3) transforming an agrobacterium strain EAH105 by using the constructed CRISPR/Cas9 vector, and identifying a positive transformation clone by using a PMI gene specific primer PMI-F/PMI-R. The positive agrobacterium strain is used for transforming callus of Jing 724 maize inbred line (the specific transformation step is referred to a method in the literature of ISHIDA Y, HIEIY, KOMARI T. Agrobacterium-mediated transformation of Nature Protocals,2007.2(7): 1614-21.), and the regenerated tissue obtained by PMI screening is used for culturing maize seedlings, namely T0 generation plants. Extracting genome DNA of T0 generation plants, and performing PCR amplification by using PMI specific primer PMI-F/PMI-R to obtain 1.2Kb target segment, namely T0 generation transgenic positive plants.
The results show that: agrobacterium containing the CRISPR/Cas9 vector was transformed into Jing 724 callus to obtain 28 strains of positive T0 plants.
5. Target gene target point sequence mutation type analysis of T0 generation positive plant
In order to detect the mutation condition of a target site, primer pairs are respectively designed on both sides of the target sites of genes ZmBADH2-1 and ZmBADH2-2, and PCR amplification is carried out on the T0 generation transgenic positive plant genome DNA. The ZmBADH2-1 target amplification primer is BH2-1-F/BH 2-1-R; the ZmBADH2-2 target amplification primer is BH2-2-F/BH 2-2-R. The PCR product was subjected to 1% agarose gel electrophoresis, gel tapping recovery, and Sanger sequencing. And (3) obtaining a T0 mutant plant by a plant with a sequencing peak image having double peaks at positions near the target point. Analyzing a sequencing peak map ab1 file by using a R language tool TIDE, and obtaining the mutation type (the number of inserted/deleted basic groups) of a mutant plant target point; and further using a DSDecodeM online tool and an R language tool sangerseqR in CRISPR-GE to analyze and obtain the specific mutant genotype of the mutant plant target.
The results of post-amplification sequencing of the upstream and downstream regions of the target of genes ZmBADH2-1 and ZmBADH2-2 show that: in 28 positive plants of T0 generations obtained in step 4, 10 positive plants of T0 generations have mutation of ZmBADH2-1 gene and ZmBADH2-2 gene, and the double-gene co-knockout efficiency (ZmBADH 2-1 gene and ZmBADH2-2 gene target sequence of mutated T0 positive plants/target sequence of mutated T0 positive plants) reaches 100%.
Further analysis on the sequencing results shows that the target regions of ZmBADH2-1 and ZmBADH2-2 in 10 positive T0 plants generate bi-allelic or multi-allelic mutations, the mutation types comprise base deletion, base insertion and base substitution (figure 3-A), and all the mutations result in the changes of premature termination or amino acid deletion of protein sequences of ZmBADH2-1 and ZmBADH2-2 (figure 3-B).
The specific mutation conditions of BH02, BH06, BH11 and BH13 mutant strains are as follows:
sequencing identification shows that: compared with the genome DNA of a maize inbred line Jing 724, the BH02 mutant strain only has the difference that in the gene ZmBADH2-1 (sequence 1), one chromosome has 1bp base deletion (the deletion base is the 3681 st site of the sequence 1), the other chromosome has 2bp base deletion (the deletion base is the 3680 rd and 3681 st sites of the sequence 1), in the gene ZmBADH2-2 (sequence 3), one chromosome has 1bp base deletion (the deletion base is the 3375 rd site of the sequence 3), and the other chromosome has 1bp base A insertion (the insertion site of the base A is between the 3374 th site and the 3375 th site of the sequence 3).
For the BH02 mutant line, in the ZmBADH2-1 gene, one chromosome contains sequence 7 or sequence A or sequence a, and the other chromosome contains sequence 8 or sequence B or sequence B, in the ZmBADH2-2 gene, one chromosome contains sequence 9 or sequence C or sequence C, and the other chromosome contains sequence 10 or sequence D or sequence D. The sequence A is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 7 and keeping other sequences unchanged; the sequence B is obtained by replacing the 3665-3684 th site of the sequence 1 with a sequence 8 and keeping other sequences unchanged; the sequence C is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 9 and keeping other sequences unchanged; the sequence D is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 10 and keeping other sequences unchanged; the sequence a is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 7 and keeping other sequences unchanged; the sequence b is obtained by replacing the position 444-463 of the sequence 2 with the sequence 8 and keeping other sequences unchanged; the sequence c is obtained by replacing the 447-466 position of the sequence 4 with the sequence 9 and keeping other sequences unchanged; the sequence d is obtained by replacing the 447-466 position of the sequence 4 with the sequence 10 and keeping the other sequences unchanged.
Sequencing identification shows that: compared with the genome DNA of the inbred line Jing 724 of maize, the BH06 mutant strain only has the difference that in the gene ZmBADH2-1 (sequence 1), 15bp base deletion (the deletion base is 3666-19 bit of the sequence 1) occurs on one chromosome, 4bp base deletion (the deletion base is 3682-85 bit of the sequence 1) occurs on the other chromosome, and in the gene ZmBADH2-2 (sequence 3), 9bp base deletion (the deletion base is 3367-3375 bit of the sequence 3) occurs on one chromosome, and 19bp base deletion (the deletion bases are 3354-3354 bit and 3360-3377 bit of the sequence 3) occurs on the other chromosome.
For the BH06 mutant line, in the ZmBADH2-1 gene, one chromosome contains the sequence 11 or the sequence E or the sequence E, and the other chromosome contains the sequence 12 or the sequence F or the sequence F, in the ZmBADH2-2 gene, one chromosome contains the sequence 13 or the sequence G or the sequence G, and the other chromosome contains the sequence 14 or the sequence H or the sequence H. The sequence E is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 11 and keeping other sequences unchanged; the sequence F is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 12 and keeping other sequences unchanged; the sequence G is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 13 and keeping other sequences unchanged; the sequence H is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 14 and keeping other sequences unchanged; the sequence e is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 11 and keeping other sequences unchanged; the sequence f is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 12 and keeping other sequences unchanged; the sequence g is obtained by replacing the 447-466 position of the sequence 4 with the sequence 13 and keeping other sequences unchanged; the sequence h is obtained by replacing the 447-466 position of the sequence 4 with the sequence 14 and keeping the other sequences unchanged.
Sequencing identification shows that: compared with the genomic DNA of the maize inbred line Jing 724, the BH11 mutant line only has the difference that in the ZmBADH2-1 gene (sequence 1), 1bp base deletion occurs on one chromosome (the deleted base is the 3673 th position of the sequence 1), 5bp base deletion occurs on the other chromosome (the deleted base is the 3677 th and 3681 th positions of the sequence 1), and in the ZmBADH2-2 gene (sequence 3), 5bp base deletion occurs on one chromosome (the deleted base is the 3371 nd and 3375 th positions of the sequence 3), and 2bp base deletion occurs on the other chromosome (the deleted base is the 3371 nd and 3375 th positions of the sequence 3).
For the BH011 mutant line, one chromosome contains the sequence 15 or the sequence I or the sequence I and the other chromosome contains the sequence 16 or the sequence J or the sequence J in the ZmBADH2-1 gene, and one chromosome contains the sequence 17 or the sequence K or the sequence K and the other chromosome contains the sequence 18 or the sequence L or the sequence L in the ZmBADH2-2 gene. The sequence I is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 15 and keeping other sequences unchanged; the sequence J is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 16 and keeping other sequences unchanged; the sequence K is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 17 and keeping other sequences unchanged; the sequence L is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 18 and keeping other sequences unchanged; the sequence i is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 15 and keeping other sequences unchanged; the sequence j is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 16 and keeping other sequences unchanged; the sequence k is obtained by replacing the 447-466 position of the sequence 4 with the sequence 17 and keeping other sequences unchanged; the sequence l is obtained by replacing the 447-466 position of the sequence 4 with the sequence 18 and keeping the other sequences unchanged.
Sequencing identification shows that: compared with the genomic DNA of the maize inbred line Jing 724, the BH13 mutant strain only has the difference that in the ZmBADH2-1 gene (sequence 1), 19bp base deletion (the deleted base is the 3663 rd and 3681 st positions of the sequence 1) occurs in one chromosome, 11bp base deletion (the deleted base is the 3674 th and 3684 st positions of the sequence 1) occurs in the other chromosome, and in the ZmBADH2-2 gene (sequence 3), 3bp base deletion (the deleted base is the 3375 rd and 3377 st positions of the sequence 3) occurs in one chromosome and 2bp CT insertion (the inserted position of the base is between the 3376 st position and the 3377 st position of the sequence 3) occurs in the other chromosome.
For the BH013 mutant line, one chromosome contained sequence 19 or sequence M or sequence M and the other chromosome contained sequence 20 or sequence N or sequence N in the ZmBADH2-1 gene, and one chromosome contained sequence 21 or sequence O or sequence O and the other chromosome contained sequence 22 or sequence P or sequence P in the ZmBADH2-2 gene. The sequence M is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 19 and keeping other sequences unchanged; the sequence N is obtained by replacing the 3665-3684 th site of the sequence 1 with the sequence 20 and keeping other sequences unchanged; the sequence O is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 21 and keeping other sequences unchanged; the sequence P is obtained by replacing 3359-3378 bit of the sequence 3 with the sequence 22 and keeping other sequences unchanged; the sequence m is obtained by replacing the position 444-463 of the sequence 2 with the sequence 19 and keeping other sequences unchanged; the sequence n is obtained by replacing the 444-463 th position of the sequence 2 with the sequence 20 and keeping other sequences unchanged; the sequence o is obtained by replacing the 447-466 position of the sequence 4 with the sequence 21 and keeping other sequences unchanged; the sequence p is obtained by replacing the 447-466 th site of the sequence 4 with the sequence 22 and keeping the other sequences unchanged.
All T0 transgenic positive plants were selfed to obtain T1 generation seeds.
Secondly, measuring the content of the aromatic substance 2-AP of the mutant material
Respectively taking 3g of wild type control Jing 724 mature seeds and gene editing mutant mature seeds (T1 generation seeds of BH02, BH06, BH11 and BH13 obtained in the step one), respectively taking 2g of rice variety Nipponbare and rice flower fragrance seeds, grinding the seeds into powder, and then determining the content of the fragrance substance 2-acetyl-1-pyrroline (2-AP). Procedure for determination of 2-AP content of fragrance substance reference is made to the method in "SHAN Q, ZHANG Y, CHEN K, ZHANG K, GAO C.creation of fragranced edge by target knock-out of the OsBADH2 gene using TALEN technology. plant Biotechnology Journal,2015.13(6):791-800 ]. With 2,4, 6-trimethylpyridine as an internal standard, 3 biological replicates per material. The determination experiment is completed by a metabonomics platform of the institute of genetics and development of Chinese academy of sciences. The detection results were analyzed using R language, multiple comparisons were performed using LSD, and p-value correction was performed using Bonferroni method.
The results show that: the 4 ZmBADH2-1/-2 co-knockout mutants of T1 generation seeds all showed obvious smell discernable fragrance, suggesting that T0 generation target gene mutation is stably inherited to T1 generation seeds and gene function is lost. In addition, from T1 seed generations, no adverse effect of simultaneous mutations in ZmBADH2-1 and ZmBADH2-2 on maize seed traits was observed (FIG. 4).
The content of 2-AP in T1 generation seeds of four gene editing strains of BH02, BH06, BH11 and BH13 is further detected. The 2-AP content measurement result shows that 2-AP is not detected in the Jing 724 control, and the 2-AP content in the seeds of 4 gene editing strains BH02, BH06, BH11 and BH13 is higher than that of the Jing 724 wild type control variety (P724 wild type variety)<0.01). Wherein the highest 2-AP content in BH06 is 438.29 mug/kg-1(ii) a BH02 and BH11 times, 404.63 mug kg-1And 348.65. mu.g/kg-1(ii) a The 2-AP content in BH13 is lowest, 161.82 mug/kg-1(FIG. 5). The target points of the 4 editing lines T1 generation plants are subjected to PCR amplification and then sequenced, and the result shows that the gene mutation generated by the T0 generation is stably inherited to the T1 generation, so that in T1 generation seeds obtained by T0 generation selfing, two genes are supposed to generate functional deletion or weakening, the 2-AP content in the seeds is increased, and the fragrance is generated.
To determine whether the same composition of 2-AP in oryza sativa was present in the seeds of maize mutant line T1, the oryza sativa seed was selected as a control. As can be seen from FIG. 6-A, 2-AP in the rice flower fragrance seeds can be effectively separated, and the retention time is about 8.3 min. The 2-AP mass spectrum shows that the molecular ion peak m/z 111, the characteristic fragment peaks m/ z 68 and 83 and the like are consistent with the existing research results (figure 6-B). In line BH02, mass spectrum results obtained at the same time are consistent with the mass spectrum of 2-AP in rice fragrance (FIGS. 6-B and 6-C), which indicates that 2-AP with the same composition as that of rice exists in corn ZmBADH2 double-gene knockout mutant grains.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the technical principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.
Sequence listing
<110> agriculture, forestry, and scientific colleges in Beijing
<120> method for efficiently creating fragrant corn by using CRISPR/Cas9 technology
<160> 22
<170> PatentIn version 3.5
<210> 1
<211> 12838
<212> DNA
<213> Artificial Sequence
<400> 1
cggtcggttc atcgtcagag acggcgggcg actctgctct cccgatgaag aggacgtcgg 60
ggtagaacgg tactgctgtc gcggtgattt tctttccgtt ctcctttgag gccggaggaa 120
cgggaagaac gacttgcctc tccctggtct ccttctttct cacgacccgt gtccattctt 180
tcgtcgggga agtggacagc ggagtcttcc gggtcagcga gcttccagct ccagcctccc 240
cggagacgat ctttttccga agagccggag gtagcgtctt tccagcattt tcggagtttg 300
ttggaggaga cttctgttcc ggcagatctg cgaggcggtg tagaattcct tcttcatccg 360
ctacggacga gattgtcccg aagcagaata cagatccggg acgcacggcg atcttgctgt 420
ggaaggtgac ggccattgag ctagcttgga tcgtcgacac accccctacc tggcgcgcca 480
gctgtcggtg ttttgggtcc gaccgcacac ccggggttgc ccctcaaagt gtttttagga 540
gtaggacggt gtcaacgact gtaacaaaat ggttcgtgcc gattgcacga gggacaatgg 600
acaagatttg caggttcggg ccgcttagaa gtgcgtaaca ccctacgtcc tggtgagtat 660
atgagcgtgg ttacaagagg gttctctgat agagggcgca gagagtttta cgtgggtggc 720
tatgtccaac agggtcgatc gttctgaagg ggtgccccct aggccttata tactcgaccg 780
tggggcagta catgtggata tgatagctac aagtagctga aagatagtaa acctctcgag 840
tttatcccta cgtaaccctt gccgacttat cctcgcatgg ctctgttgca tgggggcttc 900
agcgcgggaa agtcgggtct ctgttgcgat ttactcgctc gacgttgtgg gccgtctggg 960
tttgctccaa tctagtctta cgtcttctcc gcttcgttga ttgtctttcc ccaggcccac 1020
gaaagaacga ccttacgatt tattgggcct ttgggccttt cgtgaggtat tttatctctt 1080
tagtggaccc gggggatatc tatcccccac agctgcagca ttgttttgat gtaaaaaaag 1140
aggttagtat tacaggctcc ttccttgaac actaaatcct ataagtactt cgatgcccta 1200
tatgtcattc ctccaattgc agtcagtaca tagtttacct cctttattat aatatataaa 1260
tttaacaatg cattttatag cttctttctc cgatatttag aagctcaaaa aaagtgttca 1320
actgtgtagg aacagtgaga tcaatgattc aatgcctgca cctagatatg acatgtggtg 1380
attttgttga ctgtacttta aactcaagtt ttgaacaact cattaaactc aaattgtgaa 1440
caactcattg taacacataa ctgttgtctt ttctacaatg ttcactatta tcttgtgtat 1500
ggtttctatt atgctcctag aaccttcatt gcagcagtcg agtttttttt gcatgtgtat 1560
atatatgtcc gaacctcgtg gtgcaaaaaa acatgaaaaa tgttgaaaaa caggtattat 1620
gctggtaaag gcttatgtgg ttgcagacat gttcaactaa tatccttttt tcacatattt 1680
gccaatgatc tgattattgt ttttaaactt tctttaccat gaagattact aattgtatat 1740
tgttataatt taagtttagt tatatccctt cttcgtataa aagtatccta caataaaaaa 1800
ttgtgcgcgc tctggcgcgc gccaaccacc agtatatata taaagtgaag gggtaaatag 1860
cgttagtcag aaaaagacaa cattgtattg gtcacaacat tatataacat gttttgtaac 1920
gatagcgtta gtgcagaaaa aggtacgcat ctgaaacgga cgtgccagca aaaaccgcca 1980
cgtgctgaac cgcctgccgc accgcactag cgtccgcaac agcaggagac gtcctcgctt 2040
tccacctgca cagagcgcca gggccgtagc gtgccgatcg ctcgatccca ccaactgagg 2100
ccactgtcta gttgccgact ctcctcgcag gccgcaatct cgcagacacg caccgtcgcg 2160
gtatccgtat cgccagagtc ctcacggatg gcctcgccag cgatggtccc gctgcggcag 2220
ctcttcgtcg acggcgagtg gcgcccgccc gcgcagggcc gccgcctccc cgtcgtcaac 2280
cccaccaccg aggctcacat cggtgagtaa gctcccccga tcactgtcgc cttctattat 2340
tatactctac tagcttttta cttggcctgg cgctgatgcg ctgggtttcg cgtgcgcgcg 2400
caggcgagat ccctgcgggc acagcggagg acgtggacgc cgcggtggcg gcggcgcggg 2460
cggcgctcaa gaggaaccgt ggccgcgact gggcgcgcgc cccgggggcc gtccgggcca 2520
agtacctccg cgctatcgcc gccaaggtac gctggtcctc tttgctctag cctaattggg 2580
ccagaaacca ctcctgtgct gtgcctctgc ttccaatggt tggtacctac tagcccctaa 2640
gctagtaagt tattcagagt ggattgaatg tgtgacaact aagtaggggg tgtttgggag 2700
tgaagttttt tcaaagtttt agaagaatac tgcagtattc tcaaaaacta tagtattata 2760
taccaaaagg tgtttggcaa gccagctaaa atctctgttt tcaaaactaa agtattacaa 2820
atactgcagc tcttttgaag tattctaaac ttatgtttat acctcagttt tctctgtaaa 2880
acgcagcgcg cacatctctc ccacgtgcaa aaaaaatact ttgcttccaa acacctctat 2940
gtattcaata ctgtggtatt ctaaaactgt agtattttaa actgtggtat tgtcatgact 3000
aaaatatact gtagtatttt aaaaaccgtg gtttccaaaa actttgttcc caaacaggcc 3060
cgtacttgtg aaatatacgt tggtttccgt acactccatt actgtttctg cgttacatga 3120
gcagaggcac agaaagtaca aattaaactc ctccaattgt aaaccaatct attcagggga 3180
aatccttatg ttctgctttt ggtgtgaaca aactattgca cttcccatca atacagggtg 3240
tgttagcttt attatcaact ccaatttcaa aacacctcaa aagatctttc tctttaaact 3300
tcaattgaga aagtcttgta acatttggct gggccatcaa agttttgttc aaatatattc 3360
acatatgtca cattttgtgt ataagaatgt cttcttattc aggtgattga gaggaaacct 3420
gagctggcta agctagaggc acttgattgt gggaagcctt atgatgaagc agcatgggac 3480
atggtatgtg acaccttatg gaagtgcaat ttattttcac tagcttgcaa ttacaatctg 3540
tttggtattc catttatcag gatgatgttg ctgggtgctt tgagtacttt gcggatcagg 3600
cagaagcctt ggataaaagg caaaattccc cagtttctct tccaatggaa acttttaaat 3660
gtcatctccg aagagagcct attggggtag ttgggctgat aactccttgg tattttcatt 3720
tccccctcac ttagctgtta cttgtattta tgaccaaaac tcacaggcga gtgccttatt 3780
cagtaataca acttcatttc tcatagatct cagggttgta taaatgtata gcgaataaac 3840
tgcatattct ctaaccacac acagtctttt aaacctaatt tcgataactt tcctcatcac 3900
cattctgaaa tatttccagt attcagattt gtacttccta tccagtgttg aatctcacct 3960
atatatccaa gttaatgtca attttttttt gcttgtgtca atgtttggcc aatatcaagt 4020
attctttcta tgttgatatg acagtgagct ttgtcctagt ataagtgtac gcttcttttc 4080
tagaaactca ctattgtgtt actatctttg ttcacataat tgttgtgcgg gccatttcag 4140
actattatgt ctatatataa gatgctgttg actaagtaac ttatttactt atatttatgt 4200
tttcttcata tgttcttgtt ttacttattc tgattctgac tctaaagcat tatactttgt 4260
acttgtattt gtgttgcagg aactatcctc tactgatggc tacatggaag atagcccctg 4320
cattggctgc tggttgtaca gctgtgctga agccatctga actggcttct gtgtaagtat 4380
tagcatgtta tatcatgttc atgctacaag caacagcatt ttatgtgcct acgttttgaa 4440
ttaccaggac ttgcttagag cttgctgata tctgtaaaga agtcggtctc ccttctggtg 4500
tcttgaacat tgtgacagga ttaggtcctg atgctggcgc tcctttgtca gcacacccag 4560
atgttgacaa ggtaaactat tctgcatata atgacataat catgcatgag cactcctcat 4620
agcatgggtt ttctgtttat ttaggtcgct tttactggga gttttgaaac tggcaagaaa 4680
attatggcat cggcagctcc tatggtcaag gttcgtctgt gaattatgtt ttatttatag 4740
taatgtgctg tgccgtgttg ttttgctctc ttctagttga taaattatca gaaagtatga 4800
tttgagtgcc ctattttaag aggaaattct gttgcattcc ttaacattgc atttttcttg 4860
acagcctgtt acactggaac ttggtggaaa aagtcctata gtagtatttg atgatgttga 4920
cattgacaaa ggtacgttta tattctaagg attacaaaat tcctgaagtt cattggtatt 4980
tgtggattgt tgcaatttgc agagaattta actgatgaga atgctaaatg cctaaaccct 5040
tcaaagccct tcatcggttt ctgggatttt catagaaata ctcagctgag cctgatcagg 5100
ctactacaat aagaattatt ttggtttgaa aattgattgt taggatttgt aaaatacagt 5160
ccataaagtt gtggggaaaa cccacatgct tgctatagtt tggacttttg accacagcac 5220
cagacttttt attagctgca ttttgcacaa aatttagaga tgcagcatgc cagttgaata 5280
aaaagatgaa acagaaagta tttgatgcat tatgtatatg ttacatgatt tgatttcatc 5340
atagaccttg agaaatatag ggctgaactt cctgtttggg tggagagccc ctgtgttggt 5400
tccccttcaa taagggtgtt gttttctggt tggtgatgta aactgtgttt cttaatggat 5460
ccatccagaa ttcttatttg gaatgtgcga ggtctcaatt ctcgtgctcg tcaagattct 5520
gttagagaat tagctctgtc cgttaaggct gaggtggtat gtttgcagga aactaagatg 5580
caatctattg ctagtagcac cttaatttct gttttgggcg ctgaattttc tgaatatgtc 5640
ttcttgcctt cgattggagc cagtggagga attctggtgg cctggaaaaa tcatttgaga 5700
ttcacaggtg cgagcagaat tgataatcac agtgtctcca ttcagttcca taagcaagaa 5760
ggaggtacct ggtggttaac ctgtgtttat ggtccccaag gggatgatga gaagatctct 5820
tttctgcagg agctaagaaa tgtaagagag ggctgcaatg gtccttgggt tgttgctggg 5880
gacttcaact taatctacaa agcctctgac aagaacaaca acaatttcag cagagctatg 5940
atgggaaggt ttaggcgatt tatcaatgat ctcgacctta aagaaattcc tctccatggt 6000
cggcgtttta cttggtcaaa tcaacaaatg gagcccgttc tggtcagatt ggacagagtc 6060
ctttgctcag ttgactggga gtttcttttc cctgatgtgc tgctgcagag ttctgcttcc 6120
caagactctg atcattgccc attaattctg ggtcttcgag ataatatatc agggagtcga 6180
cgttttcatt ttgaggcttt ttggcctaaa ttggagggat ttcatgatac tgtacgcgat 6240
gcctgggact cagttggtac aacgaactgt cctttcctca ctctccacta taaactgaag 6300
aagacagcca ggaggttgca agcttggagt gataggcagg ttggtcacat tagatctcaa 6360
ctggctttgg caaaagaaat ttctcataag ctggaaattg ctcaggatga aagggtgttg 6420
actccggatg aattttggct gaaaggcaag cttaaaaaac attctttgct tttatcctcc 6480
ctgaagcgta ctatggctag gatgagatca aggattttgt ggctcaagga tggtgatgcc 6540
aacacgaaat tcttccacct gcatgccaaa caccgtaaga gaaagaattt tattgctacg 6600
ttggttgatg gggatgatat ccttactagc catagggaca aggctgcagc agtggatggt 6660
ttcttttcaa acttaattgg ttcatgctgg gacagagagc aagcagtgga tctggaggcc 6720
cttggccttt ctcagcatga tttggctgcg cttgaggctc cctgttcgga aagggaacta 6780
tgggatacca ttaagctttt accttctgat aaagcgccgg ggccggatgg atttactgga 6840
tgtttttata agtcctgctg gaccgttatc aaatctgata tcatggctgc tactcatgct 6900
gtctggaata ataactttgt taattttgac aagttgaatt ctgcttacat taccttgatc 6960
ccaaaaaaag agggggctga gcatgtgaag gattttaggc caataagcct tgtgcacagt 7020
ttcggcaagc tgattacaaa gattcttgcc aacaggctgg ctagcaagct taacaggctg 7080
atttctccaa atcagagtgc cttcatcaag gggcggttta ttcaagataa cttcatgctg 7140
gtgcagcaga cttccagatt ccttcatcgc cagaagaagg ccagtttgct tctcaaattg 7200
gacatcacca aggccttcga ttcggtctcg tggccttttc ttattgaggt attggcgcag 7260
cttgggtttg gacagctttg gagggatatt atctgtggtc tgttggcctc ttcatctact 7320
caggtcctcc ttaatggttt tttggggaga aggatttttc acagaagagg tcttcggcaa 7380
ggcgaccctc tttccccaat gctttttatc ttggtaatgg acattttggc cctgctattt 7440
actagggccg aggaagcagg tttattgcag cgcctgtcgg acagggttaa tctccaccgg 7500
atctctatgt atgctgatga tgttgtcata tttttgaggc cctcggctgc tgacatttcc 7560
actacattaa atatcttgga tttgtttgga aaggcgtctg ggctccgcaa caatgagcag 7620
aaatctaatg tttttcccat ccagtgccct acggatgacc ttgtgctggt ccagaattta 7680
ttgccttttg agaggtctga attcccttgc aaatatcttg gaattccact ctcccttcat 7740
aagctgacca gagaacagat tcaatctatc atagacaggg tggccgaccg tcttccgagt 7800
tggaaagctg atcttatgac tagagccggt aggaagatta tggttcagca tgtgctctcc 7860
agtatgatca tatatttggc tatggccatt gattttcctc aatgggcttt ggaggcaatt 7920
gataaaatta gaaagggttt tctttggaaa ggccgcaagg aagtcagagg agggcattgt 7980
ctggttgctt ggggaagggt gtgcagaccc ctccatttgg gagggctggg tatttctagt 8040
ttaaaggaac tttgctgggc ccttcgtatg agatggttat ggcttcataa aactgatcct 8100
ggaaaacctt gggctaatct ccctatccaa gttccaaaaa aggcagaagc tttcttctcc 8160
actgttttgg tctctaaggt tggaaatgga gcacacactc tgttttggac agataaatgg 8220
atcttggggc agaatgtgtg tagtctggcg cctaggttat tcgccatcat tcctaaaagg 8280
attgcaaata aaagaactgt gcttgaagct cttgccaaca gaaaatggat atctgatata 8340
aagggtgctc tgtctgtggg agttctagtg gattatctga atctttggga gcttctttca 8400
gaaatagtgt tgcagcctga agtggaggat aagcacattt ttagtattgc agcagatggt 8460
aaatactcgg ctaagtcggc ttatgagggc ctctttgctg ggtcaacgtc ctttggtctc 8520
tatcacctga tttggaaaac ctgggcacct ccaaagtgtc ggttctttct ttggctggtt 8580
gctaacaaaa gatgctggac cgctgacagg cttgcgaaga gaggcttaga tcatccagct 8640
aggtgcctct tttgtgacca ggaagctgaa actattgatc acatcctcgt ctcctgtgtg 8700
ttcacaagag tattctggtt ttctcttctt aaaccgtttg ggtttcagag actggctccc 8760
cagcctgggc attcttcttt tatggcttgg tgggagcaga tttctgggtt ggcttctggt 8820
atccgtggta aaggtcttaa ttctcttgtg gccttaggag cttggataac ctggaagcat 8880
cgtaatagtt gtgttttcga tggttgtact cctagtttag atctgtccat taatttagcc 8940
agggaggaga ggcagtcttg ggagatggct ggggctaagg gtctttcata ccttgctgcc 9000
ctaattcctg gagactaggg agttgtttag tttgatggat tttttcagtt tgctgtgttt 9060
ctggccccca tgaggaggcc ttgtaatttg tccagatctc tttgatctgg atttatctct 9120
tcttcttaat atattgaggc gcagttctcc tgcgttttcc aaaaaaaaat aagttttagt 9180
tcccagaaag ggaactttta caaattcact gaccaactta ctttagttat gctgatactt 9240
tgctcattgt ggaattatgg attatgctat acttccatca ttgatcattc cttctaaata 9300
taaaacagct gtcgagtgga ctctgtttgg gtgcttttgg accaatggtc agatttgcag 9360
cgcgacatct cgtcttctta tccatgtaag tttcatatgt cattgccagt agcagttggg 9420
atacttttca cacataatag ctgtcaacca taatatattt ccttgagtgg tgttgcttta 9480
gctttacccc gccgtgccgt taacttctga ttcgagaagg ctaccatttc aaaatcgctg 9540
tactgaatat atagcagtat actatgaggt ttacacctat attgaacaat atatgtgccc 9600
cattgcctaa ggttcacact cttcaatttg ttgtgaactg tgcactttgg tttggtgtat 9660
atttagaagt atatattctc aatgacttga ttgtttttac tccctctgat accaaatgca 9720
agtagtttag gacatagtcc tgatctccaa tgtgacactg tttgaccgac ttgaacaaaa 9780
aacaacctaa caattgggat tggaaggaat aggttaacaa tggctattta ctgctatata 9840
ttactctttc aaatcagatc tcaattatga atcagttatg ttatgtactt atgttattgt 9900
tgtcagtaac acagtaacca agttctgcct ccaatgaaac cgttgcagac aaaaattgct 9960
aaaaaattta atgagaggat ggttgcatgg gccaaaaata ttaaggtttc ggatccactt 10020
gaagagggtt gcaggcttgg gccagttgtt agtgaaggac aggtactaca tgtcaacttt 10080
gtctaaatgt aaattcacca tgccaatgct atgatttgta gcttctttct tatttgacaa 10140
tttggtactt ctgatatagt agctgtaaac tttgtctaaa tgtaaattca ccatgcgaat 10200
gctataattt gtagcttctt tctgatttga caatttggta cttctgattt agtagttgta 10260
cactcttgtt tttgctagtt tgtttctaca ggatgtagct tcctctgatt ttgagaggat 10320
ctgtgttcag atgcactgac caacaccacc tttagattta ctttgttata ttttagtatg 10380
tttttacagc aagagctatg gtatggatta atgtttatgg tcatactgga ttatgagaaa 10440
atgacaccct aatcaccacc atattggtaa ccatacacat agtttcagat taccttgttt 10500
catctatagt tgttcatagg agccttatat atatttttgt gttctcagta tgagaagatt 10560
aagaagttca tatcgaatgc caaaagccaa ggtgctacta ttctgactgg aggtgttaga 10620
cctgcggtaa ggcctgcatt tggatttaca aagatccaca tgctaaaagc atgctataga 10680
gagatagaac taatgtttca tgttttacag catcttgaga aggggttctt tattgaacca 10740
actattatta ctgatatcac cacatcaatg gaaatctgga gggaggaagt ctttggtcca 10800
gtcctgtgcg ttaaagaatt tagcactgaa gatgaagcca tcgaacttgc caacgataca 10860
cagtgagctg attcttttta gcgcagtttc gatgtctttt ttgcaggctt cacaggtcat 10920
gtgtagtcca tagcttatga atttatgcca gtatccttct tttgaatttt tgataggtat 10980
ggtttggctg gtgctgtaat ttctggtgat cgggagcgct gccagaggtt atctgaggta 11040
cgtataagtg aagaggtcca cagtatttgg ttggcaaatt gactgcatca gactgatact 11100
cagagtgcac ttttttttgt gtgtgtgtgt gtatgtgggg tggggggggg gataaggggt 11160
caccattata gctctgtgct tctgtccatg ctatcactcg tttgaagggt tcaatttggt 11220
acttttgata ccataccact caattcgatt ttcgtgttgc aacatggaat tcgtggtgca 11280
cttgctctca gaactggttt tgggtatttc tactacacat ctctaatgaa acttgcgcaa 11340
caggagattg acgctggatg catctgggta aactgctcgc aaccctgctt ctgccaagct 11400
ccctggggcg ggaacaagcg cagtgaattt ggacgtgagc ttggagaagg gtgggtaaca 11460
tggaacgaca acatttctaa cagatattgc tatgggatat gaatgacact ggctgtttat 11520
ctgtaggggc attgataact acctgagcgt caagcaagtc acggagtaca tctctgatga 11580
gccgtgggga tggtaccaat ccccctccaa gctgtaaact ggcaagacga aaatttgtct 11640
gtttcggtag aataaatata tctcgatgct atacagaacg aacccgtgta tcacattgaa 11700
tgacatggtg aaaaaggcac atctgcagga taaaggcgag agttgagttg aaaccaaaaa 11760
ttttggaact gtgccattat aagaggtgga ttttgtcaat gggccttgtc tagacttcat 11820
tatcagcaaa gacagatttg cccctatctt atctggacag aatcccggca cggggtccgt 11880
catgagccca agacaagagc acggccgttt attgtcggcg cacggccgtt tattgcggca 11940
tatttagcct gatgctaggt actataggta tggatagcct atcaaactga accgagcccg 12000
tccccgtcga acctgtttgt ggcccaacct tagttatgat atagtccatt atatataaat 12060
atgaccgact cgatctctca atttaaagct attttctagt tctaaggggc ccaacgaaga 12120
agattggaga gactataatt ttaggatatg ggacgggctt gaactggtac gatctaataa 12180
aggcatgacg tggtttagag tcggactgta tcactgtttt ttacacttcg aactggcatg 12240
gtataaccca aaactttttt gaattttctt tgtctgaact cgtttagctt gaagcatgat 12300
gtgctaggtc tggtttgact caattccaag cattagtcac attaacgaag aagattggag 12360
ggactataat tttctttgta ttcaaaaatg aatatcaaga aagttttagc ccctccattc 12420
ctgttttccc aaacatgtcc ataacatatt aagttacgta aaataaactc taacttaatt 12480
agaacacaac ttcaacaata tccagttggg attgaacaaa aagttgtcat gcttccgacc 12540
gtgtcagttg gttggccgcc aagccagtgc aaccgttacg ttccaaactt ccaactcaaa 12600
ggcgtcaatc tcgtggtcat gctctcgtgc aagtgcagca aagcacgggt caccggatcc 12660
tttccagctc tcggccgcgg gccgcccgct tgaaatagag cccaggccac ctgccgccgg 12720
tggcccgtgc actgcacccg ggagtaccgc tctacgcctc taccgcgccg gcgcgccttg 12780
ctccgcccta ggcaagcaac acgcacgccg gtcgctggcg tggcggcggc acttaaaa 12838
<210> 2
<211> 1518
<212> DNA
<213> Artificial Sequence
<400> 2
atggcctcgc cagcgatggt cccgctgcgg cagctcttcg tcgacggcga gtggcgcccg 60
cccgcgcagg gccgccgcct ccccgtcgtc aaccccacca ccgaggctca catcggcgag 120
atccctgcgg gcacagcgga ggacgtggac gccgcggtgg cggcggcgcg ggcggcgctc 180
aagaggaacc gtggccgcga ctgggcgcgc gccccggggg ccgtccgggc caagtacctc 240
cgcgctatcg ccgccaaggt gattgagagg aaacctgagc tggctaagct agaggcactt 300
gattgtggga agccttatga tgaagcagca tgggacatgg atgatgttgc tgggtgcttt 360
gagtactttg cggatcaggc agaagccttg gataaaaggc aaaattcccc agtttctctt 420
ccaatggaaa cttttaaatg tcatctccga agagagccta ttggggtagt tgggctgata 480
actccttgga actatcctct actgatggct acatggaaga tagcccctgc attggctgct 540
ggttgtacag ctgtgctgaa gccatctgaa ctggcttctg tgacttgctt agagcttgct 600
gatatctgta aagaagtcgg tctcccttct ggtgtcttga acattgtgac aggattaggt 660
cctgatgctg gcgctccttt gtcagcacac ccagatgttg acaaggtcgc ttttactggg 720
agttttgaaa ctggcaagaa aattatggca tcggcagctc ctatggtcaa gcctgttaca 780
ctggaacttg gtggaaaaag tcctatagta gtatttgatg atgttgacat tgacaaagct 840
gtcgagtgga ctctgtttgg gtgcttttgg accaatggtc agatttgcag cgcgacatct 900
cgtcttctta tccatacaaa aattgctaaa aaatttaatg agaggatggt tgcatgggcc 960
aaaaatatta aggtttcgga tccacttgaa gagggttgca ggcttgggcc agttgttagt 1020
gaaggacagt atgagaagat taagaagttc atatcgaatg ccaaaagcca aggtgctact 1080
attctgactg gaggtgttag acctgcgcat cttgagaagg ggttctttat tgaaccaact 1140
attattactg atatcaccac atcaatggaa atctggaggg aggaagtctt tggtccagtc 1200
ctgtgcgtta aagaatttag cactgaagat gaagccatcg aacttgccaa cgatacacag 1260
tatggtttgg ctggtgctgt aatttctggt gatcgggagc gctgccagag gttatctgag 1320
gagattgacg ctggatgcat ctgggtaaac tgctcgcaac cctgcttctg ccaagctccc 1380
tggggcggga acaagcgcag tgaatttgga cgtgagcttg gagaaggggg cattgataac 1440
tacctgagcg tcaagcaagt cacggagtac atctctgatg agccgtgggg atggtaccaa 1500
tccccctcca agctgtaa 1518
<210> 3
<211> 8827
<212> DNA
<213> Artificial Sequence
<400> 3
gagatggctg aataaaaaaa tatgttagtt cgtattgagt tcgagataga gtaatatgat 60
ggcaggaaat tgtactgtat aatatagaat cttgttatat ataatgaaat atttttttag 120
agtatagatg tagagtaata tgagtacgga tagcctaaca gttttacgta gggtgttgac 180
cgaccacctc tgaaaatgtt tcaaaatatc gcatgcaatt tatttgaagt gcattgttat 240
atattattat atactctctc tactcttttt attcaaaaat aaactagcgg acgacaatat 300
ttaagaataa agtatactat gtacctagct acagaatatc atcatactct ccaaccaagc 360
cttgttatat atagagagag tatactttgt agcttgctac ataatatcat atttagtagc 420
caggcgcatg aagccacctg aatatcaacc gcaccacctg aatatcatta gttttggctc 480
tataaagccg gatgttgcaa gcagcatggt tacaagttca atttaatttg tacattgcgg 540
aaactaatta aaatggagca ccaagcatca ccgattcttg gtccttcttc ggcacagtct 600
agctttccaa agggaagctt ccaatttgca tgccgataga gtcgcgtaaa acagctttag 660
ttccatccga tgtctgttta caaaggtgag aaattcaaac ataactgatt tcaattgaaa 720
agttgtcaac tataatgttg tatttcttta ccatatctac aactttagtt tttgtcattt 780
ctacacctga ggtcattaga aaattttata ttctaaattg agaaattcag atatatcttt 840
ttaaataaaa atttcaaaag aaaaatctgt cgactataaa gctgtatact agagatctac 900
aactttaatt tgtcatctct tcatccgaga tcattatttt ttttaatttc aatagtattt 960
taatcttaga ctatccgcag cggttccctc taaatttctc ccctatatca cttttttgcg 1020
tcacatcgtt aacatttcat cctctacatt attttctccc gcaacggttt tccctaaatt 1080
ccccccatac cccacttcaa tataaaatac cattttctat acctattcat catcatttat 1140
ctatttttct ctcaactaac aatactagcg agcacgaaaa tcaatgcaaa ggggctgaca 1200
cagtgatcct cttgatgtgg cgtgcgcgct tgtgcagcaa ggggcaaagg agagagtagc 1260
gttaagcgct gcggcctaag agtacactaa acatctacat ggatagagga gaggatggct 1320
gatggccggc gctccagcta gtcttattta ggacccgcaa atggcttggg atgcaaaaag 1380
gtcatcgatt aattataaag ttgtaaacct catagagatc tacaactttg atcattgtca 1440
tttttttgtt catccgagtt tattaggaca attcaacaga attgaatttt aaaatacaga 1500
cattttgaat agaactttgg ggaccataaa taaatgggtc gaaatgaaaa caagcacagc 1560
tgggatctta ctacaactat aatataaatc cgtcctcatc tgacttaggg tgtgtttggt 1620
ttgacttttg gctttggctt ttgcccccca aaagccaaaa gccaaccaaa gggctggatc 1680
taggaagcag ctttttctaa aagccgactt tctcgtagtg caaatctgaa agcacctctg 1740
aacctgcttt tagtggcttt tcggatggaa ctgtgaaaac atatatcgaa gaatttttaa 1800
cgacttttag tggtttccac caaatggttt ttagcttttt aacagcttac agcctacagc 1860
agctttttcc acagctcaca gcccacaaca acttttttca cagccacagc ccaaccaaac 1920
agactcttac tatcctgacc atggtttatc tgtgtagtat ttccgttaag cctgaatgga 1980
gtcgcggaca gcgtgccgat aaagcgttcc agttatatct gtatctgtat agcctacact 2040
acacagggcc gcagcttgcc gatccctagc gacgaagtcc actgccgagt tgccgactca 2100
ccgactcccc tcgcaagtcg caatctccac tctccagagt ccaaactcca ctcctcaccg 2160
atgatggcct cgcaagcgat ggtaccgctg cggcagctct ttgtcgacgg cgagtggcgc 2220
ccgcccgcgc agggccgccg cctccccgtc gtcaacccta ccactgaggc tcacatcggt 2280
gagtgaccgc cccccgatcg caatcatccc tgttttcttc tattatactt gttgcttggc 2340
ctggcgctga tgcgctaggt ctcgcgtgca cgcgcaggcg agatcccggc gggcacggcg 2400
gaggacgtgg acgccgcggt ggcggcggcg cgcgcggcgc tcaagaggaa ccgcggccgc 2460
gattgggcgc gcgcgccggg ggccgttcgg gccaagtacc tccgcgccat cgccgccaag 2520
gtacgctggt cctctttgct ctagctaatt taattgggtc aaaaacgact ccagtgctgt 2580
gcttctgctt ccaagcattg gtatctactc cctccgcccc aatataaatg tacatctcgc 2640
ttaggaatac taccataatt cggatgtgaa ttcagtgtga gacaactcag tcgcggcatc 2700
tattttttgt gctttgatgg gtatgattgg tgactggatc tgtacttggg gatgctagga 2760
gtgaacttct cagcaccttt gctatatgcg ttttccttac acttcaacac tgttactgtt 2820
ttacatgcac agaggcacag aaagtacaaa ttaagttcct tctattcagg agaagtcctt 2880
atgttccgct tttgttgtga acaagctatt gctttctgcc aatacagggt gttttgacct 2940
ctagtatcaa ctccaaattc aaaacacctt aaaagatctt tctctttaaa cttccatttg 3000
taaagtcttg taacatttgg ttgggtcatc aaagttttgt tgaaatatat ttacacatgt 3060
cacattttgc atgtaaaaat gtcttcttat tcaggtaatt gagaggaaac aagagctagc 3120
taagctagag gcacttgatt gcgggaagcc ttatgatgaa gctgcatggg acatggtatg 3180
tgacacacct tatggaagtg tgcaattttt tttccagttt gcaatgacaa tctgtctggt 3240
attccattta tcaggatgat gttgctgggt gctttgagta cttcgcagat caggcagaag 3300
ctttggacaa aagacaaaat tccccagttt ctcttccgat ggaaactttt aaatgccatc 3360
tccgaagaga gcctattggg gtagttgggc tgataactcc ttggtatttt catacctacc 3420
tcaccttgct gttattcgta tttatgatca aagctcacag gcaagcgacc tgtattcagt 3480
agtacagctt cgtttcctgt aagacctcag agttctatag caaaaaaatc tgcatattct 3540
ctaaccacac aattttctta aactattttt tgacaacttt cctcatcatc gtcctgaaat 3600
atttccagtg ttcatatttg tacttcctat ccagttttta atctcaccta tgatctatat 3660
atccaagtta atgtcaaatt atttgcttgt gtgaatgttt ggccaatgtc aatatgctat 3720
cttggcacaa cgttgtgctt tgtcccagta caactgttgc ttctgctcca taagctcact 3780
attctgctat tatccttttt cacgtatttg ttgggccggg gcatttcact ttattgtgtc 3840
tatatataaa atgttgttga ctaagtaact gatttatcta ttttttcata tgtttttgtt 3900
ttacttattc tgattctaaa gtattatgct ttgtacttgt atttgtattg caggaactat 3960
cctctcctga tggctacatg gaaggtagct cctgctctgg ctgctggttg tgcagctgtg 4020
ctaaagccat ctgaattggc ttctgtgtaa gtattagcat tctatattct catgctagaa 4080
gcaatggcat ttgaagtgcc taccttttga attcccagga cttgcttaga gcttgctgat 4140
atctgtaaag aagtcggtct tcctcccggt gtcttaaaca ttgtgacagg attaggtcct 4200
gatgctggtg ctcctttgtc agcacaccca gatgttgaca aggtaaactg ttctgcatat 4260
aatgacataa tcatgcatgt gcatgacaca tcaatgaaaa cattatttct catatcatgt 4320
gttttctgtg tttgtaggtc gcttttactg ggagttttga aactggtaag aagattatgg 4380
cggctgcagc tcctatggtt aaggtttgtc tgtgaattta tgttttattt caagtaatga 4440
actgtgcatt attcattttg ctctctttta gttgataaat tatcagaagt atgatttgga 4500
taccctacga ttaagaggaa attctattgc attctttaac attgcatttt tcttgacagc 4560
ctgttacact ggaacttggt ggaaaaagtc ctatagtagt atttgatgat gttgacattg 4620
acaaaggtac atgtatattc taaggcttac taaattccta aatttcattg atatttgtgg 4680
attgttgcaa attgcaaaga attgaactga tcacaatgct aaacgcctaa aactcctcaa 4740
agcccttctt ggtatctgag cttttcgtag aaatactcaa ctgagcaggc tactacaaca 4800
agaattgctt tggtattgaa aattgattgt taggatttgt aaaatacagt acataaaatt 4860
gcgggggaaa ctacatgctt gctatggttt tgaccagagt accagacttt gtgttggttg 4920
tctgcatctg acacaaaatt tggagatgca ttatgccagt tgaataaaaa gatgaaatcg 4980
aaagtatttt atgcattatg tacatgttat atgatttcat atttcatcat tgtttttgag 5040
aaatataggg ctgaacttct gtggagaaca taagctttag ttccaagaaa ggggatttta 5100
taaatttact gattctgact tgcttcagtt atgctgatac tttgctcaac atggaattgt 5160
ggattctgat atgcttccat cgttgatcct tctaaataac agctgttgag tggactctgt 5220
ttgggtgctt ttggaccaat ggtcagattt gcagcgcaac atctcgtctt cttgtccatg 5280
taagtgccac atgttattgc ttgtattgtc acttggaata cttctcacac ttaatagttg 5340
tcaaccatga tctatttctt ggagtggtgt cacttagctt gtccttgccc tgatgttaac 5400
ttctgataat cttctgcggg agtgatttta aaattgcctc acagaataaa tagcagcata 5460
tatgtgcttt acgcctgttt tgaataaata gctggtgtgt gtgttgtgtt tcctagtgtt 5520
gttttttcct tacctttgct accttaatga aatgacatgc aactcttgca ttgtttgaga 5580
aaaaaaaaca atatatgcgt tccattgctt aaggtctggg tttgaacttt gaactcttca 5640
atttgcgcac ttaaaaaaaa aagtcttcta tttgctgtga agtgtgtgct tccatctggt 5700
gcatatttag aaatataatc tcaatgactt gattgttttt tactcatctg atacgaaacc 5760
taagatgttt aggacattgc cacggtctcc aatgtaacac tttgacttta gttttgtaag 5820
ttatattatt taaaagggac acacctatat attttatgaa attatttttc atgatgaact 5880
agtaacattg gtcatgcttt actaatctat gcaacttgac atatattgat gagtcaagaa 5940
agaagtttga ccgacttgaa tcgaaaaatg acctacaatt gggaccaaaa ggagtaggtt 6000
aaccatggct atttatcagt ctatattact atttgtctct tccaaatcac atttcagtta 6060
tgaatcagtt atgcactatg ttattgttgt cagtaacata gtaatcaagt tttgccttca 6120
atgaaactgt tgcagacaaa aattgctaaa gaatttaatg agaagatggt tgcatgggcc 6180
aagaatatta aggtttctga tccgcttgaa gagggttgca gacttgggcc agttgttagt 6240
gaagggcagg tattacatgt taacttcatc taaatctaac gtcaccattg acaatgctat 6300
gatttttgtc tcctttctga tttgacagtt cggtacttcc tatttagttg ctatacactc 6360
ttgttctttc tagtttctac gggctacagg accaggatgt agctcccgcc gattttgaga 6420
ggatctattt tgatatgcac tgactgacac cacctttata ttactttgtt atattacagt 6480
atttttgtta cagaaagagc tatggtatag attaatgttt atggtcatat atataacaca 6540
agactgagaa agtggcaccc taatcgccac tatcttggca accatatact ccctccgttt 6600
ctttttatta gtcgctggat agtgcaattt tgcactgtcc agcgactaat aaaaagaaac 6660
ggagggagta catagtttca gattaccttg ttgctttata gttgttcacg agtcttattc 6720
atgtttttgc gttctcagta tgagaagatt aaaaagttca tattgaatgc caaaagcgaa 6780
ggtgctacta ttctgactgg aggtgttaga cctgcggtaa ggcctgcatt tggatttaca 6840
tggaccacat gttatagtga gacataacta atgttttata ttttacagca tcttgagaag 6900
gggttcttta ttgaaccaac aatcattact gatatcacca catcaatgga aatttggagg 6960
gaggaagtct tcggtccagt cctgtgtgtt aaagaattta gcactgaaga tgaagccatt 7020
gaactggcca atgatacaca gtgagctact tatttttagt acaacttcaa tgctcttttg 7080
caggctttgc atctcatgcg tagtcagtag cttaagaatt catgtcacta tcctttcttt 7140
tataggtatg gtttagctgg tgctgtaatt tctggtgatc gtgagcgctg ccagagatta 7200
tctgaggtat gtttagtgaa ggggttcaca gtatttggct cgtggtttga tgactgaatc 7260
agactgatac tcggagtctc tctctctctc tctctctctc ttgctctgtc catgttgcca 7320
cattgacttg ctctcagaac tgtttttggg tactcctact agacatctct aatgaaaact 7380
tgcgcaacag gagattgatg ctggaattat ctgggtaaac tgctcacagc cctgcttctg 7440
ccaggctccc tggggcggta acaagcgtag tggatttgga cgtgagcttg gagaagggtg 7500
ggtaacatgg aacgataaca ttttaagacg tctaacagct atatttggga tctgactgac 7560
actgcctgtt tacctgtagg ggcattgata actacctgag cgtcaagcaa gtcacggagt 7620
acatctctga tgagccgtgg ggatggtatc aatccccctc caagctgtaa actggcatga 7680
aaatttgttt gttccattag aataaatata tctcgatgct atacagaacg aactcgtgta 7740
tcaaatggag tatgacattg tgaaaaaggc acatcagcgg aacaaatgtc agagttgaca 7800
attccctcgt accactccct tgatccggtc agatagatgt ttgcttagtt ggaaaaagac 7860
tgatctacct gtcttctttc gtgctgatct tctttctcaa atcaattgaa atacaacaat 7920
aataatatag ccttttgttc taagcaagtt ggggtagact aaggatgaga ctcacaaaaa 7980
acaaggatat aaaaggaaaa aacaacaacg aaaaggtaaa agaaagtgct gatcttcttt 8040
ctcaaatcaa ttgacataca acaataataa tatagccttt tgttctaagc aagttagggt 8100
agactaagga tgagactcac aaaaaacaag gatataaaag gaaaaaacaa caacgaaaag 8160
gtaaaagaaa gacgataaat ttaagggtaa aaaaaggcaa agattatggt tcgggtattt 8220
tgattgctgg tatctatgtg cacctatctt tagctatttt cttagagatg tttcacacct 8280
taggcctgtt cgtttctgca ggaatgcacc aagaattatt cctgttgctc aaaacttata 8340
caaattagag aagcaatccg gctaggaaca gttccggtac tccattccgt atcaaccgaa 8400
cggaccctta agatatctct taaccgtctc gccctatgtc attttaggtt gatccctctc 8460
tctttttaca ttatcatctt gctctaaaac ccttacgcat tggtgcctga ggaggtctcc 8520
tttggacatg tctaaaccat cttaaaccga tgttgaatca atttctcctc aattggtacc 8580
accctgaccc tgtcttgaat atcatcgttt tagactatcc ctttttttgt gtgcccacaa 8640
aaccaatgta acatgcacat ctctgctaca ctcagttctt ggacatgtcg tcctttttgt 8700
cggccaacat tcagtaacat ataacattgc cgggcgaatc gttgccctat aaaacttacc 8760
tttaagcttt tgcggcaccc tcttgtcaca aaggacgcca gaaggatgat gttatttcaa 8820
ccaacaa 8827
<210> 4
<211> 1521
<212> DNA
<213> Artificial Sequence
<400> 4
atgatggcct cgcaagcgat ggtaccgctg cggcagctct ttgtcgacgg cgagtggcgc 60
ccgcccgcgc agggccgccg cctccccgtc gtcaacccta ccactgaggc tcacatcggc 120
gagatcccgg cgggcacggc ggaggacgtg gacgccgcgg tggcggcggc gcgcgcggcg 180
ctcaagagga accgcggccg cgattgggcg cgcgcgccgg gggccgttcg ggccaagtac 240
ctccgcgcca tcgccgccaa ggtaattgag aggaaacaag agctagctaa gctagaggca 300
cttgattgcg ggaagcctta tgatgaagct gcatgggaca tggatgatgt tgctgggtgc 360
tttgagtact tcgcagatca ggcagaagct ttggacaaaa gacaaaattc cccagtttct 420
cttccgatgg aaacttttaa atgccatctc cgaagagagc ctattggggt agttgggctg 480
ataactcctt ggaactatcc tctcctgatg gctacatgga aggtagctcc tgctctggct 540
gctggttgtg cagctgtgct aaagccatct gaattggctt ctgtgacttg cttagagctt 600
gctgatatct gtaaagaagt cggtcttcct cccggtgtct taaacattgt gacaggatta 660
ggtcctgatg ctggtgctcc tttgtcagca cacccagatg ttgacaaggt cgcttttact 720
gggagttttg aaactggtaa gaagattatg gcggctgcag ctcctatggt taagcctgtt 780
acactggaac ttggtggaaa aagtcctata gtagtatttg atgatgttga cattgacaaa 840
gctgttgagt ggactctgtt tgggtgcttt tggaccaatg gtcagatttg cagcgcaaca 900
tctcgtcttc ttgtccatac aaaaattgct aaagaattta atgagaagat ggttgcatgg 960
gccaagaata ttaaggtttc tgatccgctt gaagagggtt gcagacttgg gccagttgtt 1020
agtgaagggc agtatgagaa gattaaaaag ttcatattga atgccaaaag cgaaggtgct 1080
actattctga ctggaggtgt tagacctgcg catcttgaga aggggttctt tattgaacca 1140
acaatcatta ctgatatcac cacatcaatg gaaatttgga gggaggaagt cttcggtcca 1200
gtcctgtgtg ttaaagaatt tagcactgaa gatgaagcca ttgaactggc caatgataca 1260
cagtatggtt tagctggtgc tgtaatttct ggtgatcgtg agcgctgcca gagattatct 1320
gaggagattg atgctggaat tatctgggta aactgctcac agccctgctt ctgccaggct 1380
ccctggggcg gtaacaagcg tagtggattt ggacgtgagc ttggagaagg gggcattgat 1440
aactacctga gcgtcaagca agtcacggag tacatctctg atgagccgtg gggatggtat 1500
caatccccct ccaagctgta a 1521
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 5
tctccgaaga gagcctattg 20
<210> 6
<211> 28915
<212> DNA
<213> Artificial Sequence
<400> 6
taggtttacc cgccaatata tcctgtcaaa cactgatagt ttaaactgaa ggcgggaaac 60
gacaatctga tcatgagcgg agaattaagg gagtcacgtt atgacccccg ccgatgacgc 120
gggacaagcc gttttacgtt tggaactgac agaaccgcaa cgttgaagga gccactcagc 180
aagctggtac gattgtaata cgactcacta tagggcgaat tgagcgctgt ttaaacgctc 240
ttcaactgga agagcggtta cgctgtttaa acgctcttca actggaagag cggttactac 300
cggttcacta gctagctgct aatcgagcta gttaccctat ggtaccaggc gacccatcgc 360
tgctttgtct acatcatgtt cttcatcatc ctccccaggc gacgcgtgct gctgttctta 420
ttcagactac cgttcgagtg actgcatggc gtacatcttt ctgcatcgac tttgtacggc 480
tacatcgaac atatacacga gatgtctcgt gtgaatagag tcactaatgc cttaagcatc 540
ggttactccg tagggtacat tctgttcttc ttatttgtgc atatttttat tgttgtttac 600
tgattatacg agtagttata catacatgca catacatatc atcacatata tcacaatatt 660
tttctaaatt aaattaaaac taaaaatgac taaatttcta acaccaacga cattgtaatg 720
ttttctccaa caactttacc tattctacat tgttctattt cgaatttcac tctataaaca 780
acatagtcta caatggaaaa cagtgctttg tacgactata tacgcgatgt gtggctacaa 840
cataagacaa tatagtcgtt tgaagattga acctatatat cggtacggtt aatccgtcta 900
tgtacgtggg catgacgaac acccgtgata acgaaggatt aacgtgcaca atcataaatc 960
caaagtagga gcggtgcatg atgagaatcg ctctcagtac tcgacataat gaaccttacg 1020
aggtacaaca ggcaggcagg cagggaccag gggccgcctt tatttcaggc tcgctggccc 1080
cacgggcgtg ctgcgtgcac gaagggcact accccaacct ctcaccgaaa accgcgctgg 1140
atcggcaaat caaacgaggt ggtgccccgt gcccactctc cacgtccacg gcaccatccc 1200
tctgcagccg ctcaccagcc atgccgtgtc gcggaacggc acaaccaccc ccaacccact 1260
cacgaaaccc cgtcccggcc gtgcccgtgt cggtccgcgc tcggcaacga ggcggcccgc 1320
gctgctgagt cccctggaca cccgacaccc tgtcggccct ttgtttattc atcccgaaat 1380
ctcatctgcc cccacggccg actgcgctgc gccgcccgga tatatatacc catcgttatc 1440
gactggggac tctatcagtg atagagtcta gaggatcgct caggaaggcc gctgagatag 1500
aggcatggcg gccaatgcgg gcggcggtgg agcgggagga ggcagcggca gcggcagcgt 1560
ggctgcgccg gcggtgtgcc gccccagcgg ctcgcggtgg acgccgacgc cggagcagat 1620
caggatgctg aaggagctct actacggctg cggcatccgg tcgcccagct cggagcagat 1680
ccagcgcatc accgccatgc tgcggcagca cggcaagatc gagggcaaga acgtcttcta 1740
ctggttccag aaccacaagg cccgcgagcg ccagaagcgc cgcctcacca gcctcgacgt 1800
caacgtgccc gccgccggcg cggccgacgc caccaccagc caactcggcg tcctctcgct 1860
gtcgtcgccg ccgccttcag gcgcggcgcc tccctcgccc accctcggct tctacgccgc 1920
cggcaatggc ggcggatcgg ctgtgctgct ggacacgagt tccgactggg gcagcagcgg 1980
cgctgctatg gccaccgaga catgcttcct gcaggactac atgggcgtga cggacacggg 2040
cagctcgtcg cagtggccac gcttctcgtc gtcggacacg ataatggcgg cggccgcggc 2100
gcgggcggcg acgacgcggg cgcccgagac gctccctctc ttcccgacct gcggcgacga 2160
cggcggcagc ggtagcagca gctacttgcc gttctggggt gccgcgtcca caactgccgg 2220
cgccacttct tccgttgcga tccaacagca acaccagctg caggagcagt acagctttta 2280
cagcaacagc aacagcaccc agctggccgg caccggcaac caagacgtat cggcaacagc 2340
agcagcagcc gccgccctgg agctgagcct cagctcatgg tgctcccctt accctgctgc 2400
agggagtatg tgagagcaac gcgagctgcc actgctcttc actggtaccg ttaacagatc 2460
aattcgacaa agcagcatta gtccgttgat cggtggaaga ccactcgtca gtgttgagtt 2520
gaatgtttga tcaataaaat acggcaatgc tgtaagggtt gttttttatg ccattgataa 2580
tacactgtac tgttcagttg ttgaactcta tttcttagcc atgccaagtg cttttcttat 2640
tttgaataac attacagcaa aaagttgaaa gacaaaaaaa aaaacccccg aacagagtgc 2700
tttgggtccc aagcttcttt agactgtgtt cggcgttccc cctaaatttc tccccctata 2760
tctcactcac ttgtcacatc agcgttctct ttccccctat atctccacgc tctacagcag 2820
ttccacctat atcaaacctc tataccccac cacaacaata ttatatactt tcatcttcaa 2880
ctaactcatg taccttccaa tttttttcta ctaataatta tttacgtgca cagaaactta 2940
gcaaggagag agagagcggg gtgacccacc ttgctagttg gatattacct cttctcttca 3000
aagtatcctt gaacgctcac cggttatcaa atctctacac tatagctctg tagtcttgct 3060
agatagttag ttctttagct ctcggtgacc aagcttggcg cgatcaagct tatcgatacc 3120
gtcgacctcg aagcttggtc acccggtccg ggcctagaag gccagcttca agtttgtaca 3180
aaaaagcagg ctccggccag aatggcccgg accgggttac cgaattctta ccctagctcc 3240
ctgcggctgt tacgcggtcc cccatcaatc ttctgttctt gcggttgtag cctgtgtaac 3300
agtgctagag tatgtatgat aaataggttt taagtctgct tacatgacat tttttattgt 3360
ggaagagaca tataaaaatt agagagagtg gttctcatgc aacggcggac ggcccggtgc 3420
taaaagagct tcaagacaaa ataatgaaac aggaagagag tagatttatc taagagccaa 3480
ctttattata tgaatgtgtt tattgttggc tttagatgat atggtaagga gttagagcta 3540
ataatagata ggctctatta ttattattat taattaaact cgctctaagg aggaaagtgg 3600
gaggaaggga cgaggacgaa gactactgga agcatcgtgc atggatgatg gatgtggtgt 3660
ctcttaatgt aggtggccgg aggatgtacg tgttaattgc gcgataagca ctcagatcca 3720
accgcaaact acctccacac tgacacactg atagagagaa agagagacct ccgacgactg 3780
ccgccgcaga tgagccacgt acgtatacga cgtctgccgg ccggctcagg ctgccgccat 3840
caccctgctc gaaagtcgcg ttaggcggcg ccagctacat aggagtatct agtctagcca 3900
gttagtatac tactactgcg ctgatgatga attaactctg catagatact gtacttgcct 3960
ccctccaaca cccaaccacc tcctgctcgg ctcttaataa cttggacacg gatcgatgcc 4020
atccaaggaa gaacacgacg acgacgacgg aacatccacc atgcaagctt gcatccatac 4080
gccgatacgc gtgcatccat ccatccacca ttatttccat tttccaccga tcacacgtac 4140
acaggcctat ttaaggagcg acatcccact gcaactctcc tcaccactca tcaccagcta 4200
gctctagcaa agcacttgcc atctaccgac cgccgcattc caaacagccc gacgagctag 4260
cagagcggca ggcacctccc tcctcaagga acccatggcc actgtgaaca actggctcgc 4320
tttctccctc tccccgcagg agctgccgcc ctcccagacg acggactcca cactcatctc 4380
ggccgccacc gccgaccatg tctccggcga tgtctgcttc aacatccccc aagattggag 4440
catgagggga tcagagcttt cggcgctcgt cgcggagccg aagctggagg acttcctcgg 4500
cggcatctcc ttctccgagc agcatcacaa ggccaactgc aacatgatac ccagcactag 4560
cagcacagtt tgctacgcga gctcaggtgc tagcaccggc taccatcacc agctgtacca 4620
ccagcccacc agctcagcgc tccacttcgc ggactccgta atggtggctt cctcggccgg 4680
tgtccacgac ggcggtgcca tgctcagcgc ggccgccgct aacggtgtcg ctggcgctgc 4740
cagtgccaac ggcggcggca tcgggctgtc catgattaag aactggctgc ggagccaacc 4800
ggcgcccatg cagccgaggg tggcggcggc tgagggcgcg caggggctct ctttgtccat 4860
gaacatggcg gggacgaccc aaggcgctgc tggcatgcca cttctcgctg gagagcgcgc 4920
acgggcgccc gagagtgtat cgacgtcagc acagggtgga gccgtcgtcg tcacggcgcc 4980
gaaggaggat agcggtggca gcggtgttgc cggcgctcta gtagccgtga gcacggacac 5040
gggtggcagc ggcggcgcgt cggctgacaa cacggcaagg aagacggtgg acacgttcgg 5100
gcagcgcacg tcgatttacc gtggcgtgac aaggcataga tggactggga gatatgaggc 5160
acatctttgg gataacagtt gcagaaggga agggcaaact cgtaagggtc gtcaagtcta 5220
tttaggtggc tatgataaag aggagaaagc tgctagggct tatgatcttg ctgctctgaa 5280
gtactggggt gccacaacaa caacaaattt tccagtgagt aactacgaaa aggagctcga 5340
ggacatgaag cacatgacaa ggcaggagtt tgtagcgtct ctgagaagga agagcagtgg 5400
tttctccaga ggtgcatcca tttacagggg agtgactagg catcaccaac atggaagatg 5460
gcaagcacgg attggacgag ttgcagggaa caaggatctt tacttgggca ccttcagcac 5520
ccaggaggag gcagcggagg cgtacgacat cgcggcgatc aagttccgcg gcctcaacgc 5580
cgtcaccaac ttcgacatga gccgctacga cgtgaagagc atcctggaca gcagcgccct 5640
ccccatcggc agcgccgcca agcgcctcaa ggaggccgag gccgcagcgt ccgcgcagca 5700
ccaccacgcc ggcgtggtga gctacgacgt cggccgcatc gcctcgcagc tcggcgacgg 5760
cggagccctg gcggcggcgt acggcgcgca ctaccacggc gccgcctggc cgaccatcgc 5820
gttccagccg ggcgccgcca gcacaggcct gtaccacccg tacgcgcagc agccaatgcg 5880
cggcggcggg tggtgcaagc aggagcagga ccacgcggtg atcgcggccg cgcacagcct 5940
gcaggacctc caccacctga acctgggcgc ggccggcgcg cacgactttt tctcggcagg 6000
gcagcaggcc gccgccgctg cgatgcacgg cctgggtagc atcgacagtg cgtcgctcga 6060
gcacagcacc ggctccaact ccgtcgtcta caacggcggg gtcggcgaca gcaacggcgc 6120
cagcgccgtc ggcggcagtg gcggtggcta catgatgccg atgagcgctg ccggagcaac 6180
cactacatcg gcaatggtga gccacgagca ggtgcatgca cgggcctacg acgaagccaa 6240
gcaggctgct cagatggggt acgagagcta cctggtgaac gcggagaaca atggtggcgg 6300
aaggatgtct gcatggggga ctgtcgtgtc tgcagccgcg gcggcagcag caagcagcaa 6360
cgacaacatg gccgccgacg tcgggcatgg cggcgcgcag ctcttcagtg tctggaacga 6420
cacttaagcg tacctagtgg tacctgacat cttatagtct gcaacctctc gtgtctgaat 6480
tcctatcttt atcaagtgtt attgcttcca cgactatagg acagctttcg tcgaaaggtt 6540
ttgctcatgt gatctcgaag gattcatcta gtctgatttt tcgtgacttg tatcggtttt 6600
attggattca tccaacatat atcaataaaa aatgagttgt gtttcctttc ttcctagttc 6660
agttaaaatt atttccctcc tgcgcttgtg ctgtaattgt ctgtgtacct gttgtttgtg 6720
actgtgttag ttcccttgga tatgatttcg tatttgatat gtacatggag atagcttagc 6780
ttcattattg gagtatgaag ttagtatgac atagtcactc tcctggaaaa ttgacactgc 6840
aaaccatatt tttattctga accacaaatc ctagtcagtc cgctggcata tgccgtccgt 6900
ttgctgaatc cagaacgtgg gtttggagat gtacggctga gatgcctcta tgcgaagggg 6960
atttcgtggt gaaacgagat gggagtagag caacgcccgt ggaagatgct tcaaacttcc 7020
acacttttga gcaacgatcg gcagtagtaa ggtagacgat ttcaagatca aagcatatga 7080
agataaacaa catcaacaac aaaatttgtt ggggttctat agagagaaac agagctacat 7140
acatacactg ttttgtatct accatctgag atgatgaaaa gatgaaaaac taaagaatgc 7200
cccggcgcca acgccaggac acgccgcgcg cgcgtcaccc gagccatctc ttgacccagc 7260
cggcgctgta tatttacaca cgttgcagca tcgatcacca cctgttcgat cgcgtcgccg 7320
tcaccggtac cgaatgcggc cgccaccgcg gtggagctcg aattccggtc cgaagcttaa 7380
gccatggccc gggaatctta gcggccgcct gcagagttaa cggcgcgcca attggccctt 7440
acaaaatagc tagacgtgca ggtggctgga tgtgcgctcc ctgaatatca acttgtgtct 7500
cctccgattc agtccgcaga tgaaacttgg taataactgc agctgatccg tcgtcattca 7560
tgctatgcag gggattcgat cttcagcatg tgcagtgcag gcaacaacaa tctacgttgt 7620
ctgggcttgc gataggtaca cgaccacgag ggaaggcaac gcgtgatgta tgggccgcgc 7680
ctaagcatcc agcccacgcg ggcgtgcgcg tcgtcgctac ggcttgcggg ggaagggatc 7740
aagggacgaa ccgagaacta gtaccagacc ggccagcgag cattgcagac accggcttat 7800
aagttcagct gcgaccaccg ctccggatcc ttcagagcac cagtggtcta gtggtagaat 7860
agtaccctgc cacggtacag acccgggttc gattcccggc tggtgcatct ccgaagagag 7920
cctattggtt tcagagctat gctggaaaca gcatagcaag ttgaaataag gctagtccgt 7980
tatcaacttg aaaaagtggc accgagtcgg tgcttttttt tttttttttg ttataacaat 8040
ataacacata tttgtacata aattatcatg atattatatg ttaccgttgc aaagcacggg 8100
cactcaccta gtatataata taacatcagt cgtacgtaat gtactgatgg gcgggttaac 8160
aaatgtcact cactatcagc accagcagcg cttagatgca tccggccggg ccaagaccca 8220
ggaccagaaa gcgcgcacgt tcacagcgga tgctgatggg ttagatcgac tgatcgagga 8280
agaggagagc ttaattaaga aacgccctgt tccgctttgc tagcttgcgc cctgactgtc 8340
cagcccacgc gcttcggtcc gattcacatg ctaggctggt gcaagcgagc cgagactttt 8400
ttttagaacc accttgctca gcaaacctta ggaacaccgg cttataagtc gaagcgaagc 8460
gctgtgcact ttcagagcac cagtggtcta gtggtagaat agtaccctgc cacggtacag 8520
acccgggttc gattcccggc tggtgcatgt gctaaagcca tctgaatgtt tcagagctat 8580
gctggaaaca gcatagcaag ttgaaataag gctagtccgt tatcaacttg aaaaagtggc 8640
accgagtcgg tgcttttttt tttttgaagc aacttaaagt tatcaggcat gcatggatct 8700
tggaggaatc agatgtgcag tcagggacca tagcacaaga caggcgtctt ctactggtgc 8760
taccagcaaa tgctggaagc cgggaacact gggtacgttg gaaaccacgt gatgtgaaga 8820
agtaagataa actgtaggag aaaagcattt cgtagtgggc catgaagcct ttcaggacat 8880
gtattgcagt atgggccggc ccattacgca attggacgac aacaaagact agtattagta 8940
ccacctcggc tatccacata gatcaaagct gatttaaaag agttgtgcag atgatccgtg 9000
gcttcagagc accagtggtc tagtggtaga atagtaccct gccacggtac agacccgggt 9060
tcgattcccg gctggtgcac gatgtgagcc tcagtggtag tttcagagct atgctggaaa 9120
cagcatagca agttgaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc 9180
ggtgcttttt tttttttaac ctcgcttgta tagttccttg tgctctaaca cacgatgatg 9240
ataagtcgta aaatagtggt gtccaaagaa tttccaggcc cagttgtaaa agctaaaatg 9300
ctattcgaat ttctactagc agtaagtcgt gtttagaaat tattttttta tatacctttt 9360
ttccttctat gtacagtagg acacagtgtc agcgccgcgt tgacggagaa tatttgcaaa 9420
aaagtaaaag agaaagtcat agcggcgtat gtgccaaaaa cttcgtcaca gagagggcca 9480
taagaaacat ggcccacggc ccaatacgaa gcaccgcgac gaagcccaaa cagcagtccg 9540
taggtggagc aaagcgctgg gtaatacgca aacgttttgt cccaccttga ctaatcacaa 9600
gagtggagcg taccttataa accgagccgc aagcaccgaa ttttcagagc accagtggtc 9660
tagtggtaga atagtaccct gccacggtac agacccgggt tcgattcccg gctggtgcat 9720
atggcggctg cagctcctag tttcagagct atgctggaaa cagcatagca agttgaaata 9780
aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttttttaag 9840
cttctgcagt gcagcgtgac ccggtcgtgc ccctctctag agataatgag cattgcatgt 9900
ctaagttata aaaaattacc acatattttt tttgtcacac ttgtttgaag tgcagtttat 9960
ctatctttat acatatattt aaactttact ctacgaataa tataatctat agtactacaa 10020
taatatcagt gttttagaga atcatataaa tgaacagtta gacatggtct aaaggacaat 10080
tgagtatttt gacaacagga ctctacagtt ttatcttttt agtgtgcatg tgttctcctt 10140
tttttttgca aatagcttca cctatataat acttcatcca ttttattagt acatccattt 10200
agggtttagg gttaatggtt tttatagact aattttttta gtacatctat tttattctat 10260
tttagcctct aaattaagaa aactaaaact ctattttagt ttttttattt aataatttag 10320
atataaaata gaataaaata aagtgactaa aaattaaaca aatacccttt aagaaattaa 10380
aaaaactaag gaaacatttt tcttgtttcg agtagataat gccagcctgt taaacgccgt 10440
cgacgagtct aacggacacc aaccagcgaa ccagcagcgt cgcgtcgggc caagcgaagc 10500
agacggcacg gcatctctgt cgctgcctct ggacccctct cgagagttcc gctccaccgt 10560
tggacttgct ccgctgtcgg catccagaaa ttgcgtggcg gagcggcaga cgtgagccgg 10620
cacggcaggc ggcctcctcc tcctctcacg gcaccggcag ctacggggga ttcctttccc 10680
accgctcctt cgctttccct tcctcgcccg ccgtaataaa tagacacccc ctccacaccc 10740
tctttcccca acctcgtgtt gttcggagcg cacacacaca caaccagatc tcccccaaat 10800
ccacccgtcg gcacctccgc ttcaaggtac gccgctcgtc ctcccccccc ccccctctct 10860
accttctcta gatcggcgtt ccggtccatg gttagggccc ggtagttcta cttctgttca 10920
tgtttgtgtt agatccgtgt ttgtgttaga tccgtgctgc tagcgttcgt acacggatgc 10980
gacctgtacg tcagacacgt tctgattgct aacttgccag tgtttctctt tggggaatcc 11040
tgggatggct ctagccgttc cgcagacggg atcgatttca tgattttttt tgtttcgttg 11100
catagggttt ggtttgccct tttcctttat ttcaatatat gccgtgcact tgtttgtcgg 11160
gtcatctttt catgcttttt tttgtcttgg ttgtgatgat gtggtctggt tgggcggtcg 11220
ttctagatcg gagtagaatt ctgtttcaaa ctacctggtg gatttattaa ttttggatct 11280
gtatgtgtgt gccatacata ttcatagtta cgaattgaag atgatggatg gaaatatcga 11340
tctaggatag gtatacatgt tgatgcgggt tttactgatg catatacaga gatgcttttt 11400
gttcgcttgg ttgtgatgat gtggtgtggt tgggcggtcg ttcattcgtt ctagatcgga 11460
gtagaatact gtttcaaact acctggtgta tttattaatt ttggaactgt atgtgtgtgt 11520
catacatctt catagttacg agtttaagat ggatggaaat atcgatctag gataggtata 11580
catgttgatg tgggttttac tgatgcatat acatgatggc atatgcagca tctattcata 11640
tgctctaacc ttgagtacct atctattata ataaacaagt atgttttata attattttga 11700
tcttgatata cttggatgat ggcatatgca gcagctatat gtggattttt ttagccctgc 11760
cttcatacgc tatttatttg cttggtactg tttcttttgt cgatgctcac cctgttgttt 11820
ggtgttactt ctgcagtacg taagcatgga ctacaaggac cacgacgggg attacaaaga 11880
ccacgacata gactacaagg atgacgatga caaaatggca ccgaagaaaa aaaggaaggt 11940
cggcggctcc ccgaagaaaa aaaggaaggt cggcggctcc ccgaagaaaa aaaggaaggt 12000
cggcggctcc ccgaagaaaa aaaggaaggt cggaatccat ggcgttccag ctgccagcga 12060
gccgccacgg gcggagacat tcgtgttcct ggacctcgag gcaaccggcc tcccgaacat 12120
ggacccggag atcgccgaga tctctctgtt cgcggtccac aggtccagcc tcgagaatcc 12180
tgagcgggac gattccggct ccctggtgct cccacgggtc ctcgacaagc tgacactctg 12240
catgtgccca gagcgccctt tcacggccaa ggcgtccgag atcaccggcc tctcctccga 12300
gagcctcatg cattgcggca aggcgggctt caacggcgcg gtggtgcgca ccctccaggg 12360
cttcctctcc cggcaggagg gacctatctg cctggtggcc cacaatggct tcgactacga 12420
tttcccgctg ctctgcaccg agctccagcg cctcggcgcg catctcccac aggacaccgt 12480
ctgcctcgat acactgccgg cactgagggg cctcgaccgg gcccactctc atggcacgag 12540
ggcacaggga cgcaagagct actctctggc gtcactcttc cacaggtact tccaggccga 12600
gccatcagcc gcgcactcgg ccgagggcga tgtgcatacc ctcctgctca tcttcctgca 12660
cagggccccg gagctgctgg catgggccga cgagcaggca aggtcctggg cccatattga 12720
gcctatgtat gtgccgccgg atggcccgtc cctcgaggcc ggcggcggcg gcagcgaatt 12780
cgacaagaag tactccatcg gcctcgacat cggcaccaac agcgtcggct gggcggtgat 12840
caccgacgag tacaaggtcc cgtccaagaa gttcaaggtc ctgggcaaca ccgaccgcca 12900
ctccatcaag aagaacctca tcggcgccct cctcttcgac tccggcgaga cggcggaggc 12960
gacccgcctc aagcgcaccg cccgccgccg ctacacccgc cgcaagaacc gcatctgcta 13020
cctccaggag atcttctcca acgagatggc gaaggtcgac gactccttct tccaccgcct 13080
cgaggagtcc ttcctcgtgg aggaggacaa gaagcacgag cgccacccca tcttcggcaa 13140
catcgtcgac gaggtcgcct accacgagaa gtaccccact atctaccacc ttcgtaagaa 13200
gcttgttgac tctactgata aggctgatct tcgtctcatc taccttgctc tcgctcacat 13260
gatcaagttc cgtggtcact tccttatcga gggtgacctt aaccctgata actccgacgt 13320
ggacaagctc ttcatccagc tcgtccagac ctacaaccag ctcttcgagg agaaccctat 13380
caacgcttcc ggtgtcgacg ctaaggcgat cctttccgct aggctctcca agtccaggcg 13440
tctcgagaac ctcatcgccc agctccctgg tgagaagaag aacggtcttt tcggtaacct 13500
catcgctctc tccctcggtc tgacccctaa cttcaagtcc aacttcgacc tcgctgagga 13560
cgctaagctt cagctctcca aggataccta cgacgatgat ctcgacaacc tcctcgctca 13620
gattggagat cagtacgctg atctcttcct tgctgctaag aacctctccg atgctatcct 13680
cctttcggat atccttaggg ttaacactga gatcactaag gctcctcttt ctgcttccat 13740
gatcaagcgc tacgacgagc accaccagga cctcaccctc ctcaaggctc ttgttcgtca 13800
gcagctcccc gagaagtaca aggagatctt cttcgaccag tccaagaacg gctacgccgg 13860
ttacattgac ggtggagcta gccaggagga gttctacaag ttcatcaagc caatccttga 13920
gaagatggat ggtactgagg agcttctcgt taagcttaac cgtgaggacc tccttaggaa 13980
gcagaggact ttcgataacg gctctatccc tcaccagatc caccttggtg agcttcacgc 14040
catccttcgt aggcaggagg acttctaccc tttcctcaag gacaaccgtg agaagatcga 14100
gaagatcctt actttccgta ttccttacta cgttggtcct cttgctcgtg gtaactcccg 14160
tttcgcttgg atgactagga agtccgagga gactatcacc ccttggaact tcgaggaggt 14220
tgttgacaag ggtgcttccg cccagtcctt catcgagcgc atgaccaact tcgacaagaa 14280
cctccccaac gagaaggtcc tccccaagca ctccctcctc tacgagtact tcacggtcta 14340
caacgagctc accaaggtca agtacgtcac cgagggtatg cgcaagcctg ccttcctctc 14400
cggcgagcag aagaaggcta tcgttgacct cctcttcaag accaaccgca aggtcaccgt 14460
caagcagctc aaggaggact acttcaagaa gatcgagtgc ttcgactccg tcgagatcag 14520
cggcgttgag gaccgtttca acgcttctct cggtacctac cacgatctcc tcaagatcat 14580
caaggacaag gacttcctcg acaacgagga gaacgaggac atcctcgagg acatcgtcct 14640
cactcttact ctcttcgagg atagggagat gatcgaggag aggctcaaga cttacgctca 14700
tctcttcgat gacaaggtta tgaagcagct caagcgtcgc cgttacaccg gttggggtag 14760
gctctcccgc aagctcatca acggtatcag ggataagcag agcggcaaga ctatcctcga 14820
cttcctcaag tctgatggtt tcgctaacag gaacttcatg cagctcatcc acgatgactc 14880
tcttaccttc aaggaggata ttcagaaggc tcaggtgtcc ggtcagggcg actctctcca 14940
cgagcacatt gctaaccttg ctggttcccc tgctatcaag aagggcatcc ttcagactgt 15000
taaggttgtc gatgagcttg tcaaggttat gggtcgtcac aagcctgaga acatcgtcat 15060
cgagatggct cgtgagaacc agactaccca gaagggtcag aagaactcga gggagcgcat 15120
gaagaggatt gaggagggta tcaaggagct tggttctcag atccttaagg agcaccctgt 15180
cgagaacacc cagctccaga acgagaagct ctacctctac tacctccaga acggtaggga 15240
tatgtacgtt gaccaggagc tcgacatcaa caggctttct gactacgacg tcgaccacat 15300
tgttcctcag tctttcctta aggatgactc catcgacaac aaggtcctca cgaggtccga 15360
caagaacagg ggtaagtcgg acaacgtccc ttccgaggag gttgtcaaga agatgaagaa 15420
ctactggagg cagcttctca acgctaagct cattacccag aggaagttcg acaacctcac 15480
gaaggctgag aggggtggcc tttccgagct tgacaaggct ggtttcatca agaggcagct 15540
tgttgagacg aggcagatta ccaagcacgt tgctcagatc ctcgattcta ggatgaacac 15600
caagtacgac gagaacgaca agctcatccg cgaggtcaag gtgatcaccc tcaagtccaa 15660
gctcgtctcc gacttccgca aggacttcca gttctacaag gtccgcgaga tcaacaacta 15720
ccaccacgct cacgatgctt accttaacgc tgtcgttggt accgctctta tcaagaagta 15780
ccctaagctt gagtccgagt tcgtctacgg tgactacaag gtctacgacg ttcgtaagat 15840
gatcgccaag tccgagcagg agatcggcaa ggccaccgcc aagtacttct tctactccaa 15900
catcatgaac ttcttcaaga ccgagatcac cctcgccaac ggcgagatcc gcaagcgccc 15960
tcttatcgag acgaacggtg agactggtga gatcgtttgg gacaagggtc gcgacttcgc 16020
tactgttcgc aaggtccttt ctatgcctca ggttaacatc gtcaagaaga ccgaggtcca 16080
gaccggtggc ttctccaagg agtctatcct tccaaagaga aactcggaca agctcatcgc 16140
taggaagaag gattgggacc ctaagaagta cggtggtttc gactccccta ctgtcgccta 16200
ctccgtcctc gtggtcgcca aggtggagaa gggtaagtcg aagaagctca agtccgtcaa 16260
ggagctcctc ggcatcacca tcatggagcg ctcctccttc gagaagaacc cgatcgactt 16320
cctcgaggcc aagggctaca aggaggtcaa gaaggacctc atcatcaagc tccccaagta 16380
ctctcttttc gagctcgaga acggtcgtaa gaggatgctg gcttccgctg gtgagctcca 16440
gaagggtaac gagcttgctc ttccttccaa gtacgtgaac ttcctctacc tcgcctccca 16500
ctacgagaag ctcaagggtt cccctgagga taacgagcag aagcagctct tcgtggagca 16560
gcacaagcac tacctcgacg agatcatcga gcagatctcc gagttctcca agcgcgtcat 16620
cctcgctgac gctaacctcg acaaggtcct ctccgcctac aacaagcacc gcgacaagcc 16680
catccgcgag caggccgaga acatcatcca cctcttcacg ctcacgaacc tcggcgcccc 16740
tgctgctttc aagtacttcg acaccaccat cgacaggaag cgttacacgt ccaccaagga 16800
ggttctcgac gctactctca tccaccagtc catcaccggt ctttacgaga ctcgtatcga 16860
cctttcccag cttggtggtg atgacgatga caaaatggca ccgaagaaaa aaaggaaggt 16920
cggcggctcc ccgaagaaaa aaaggaaggt cggcggctcc ccgaagaaaa aaaggaaggt 16980
cggcggctcc ccgaagaaaa aaaggaaggt cggaatccat ggcgttccat agactagtct 17040
gaaatcacca gtctctctct acaaatctat ctctctctat aataatgtgt gagtagttcc 17100
cagataaggg aattagggtt cttatagggt ttcgctcatg tgttgagcat ataagaaacc 17160
cttagtatgt atttgtattt gtaaaatact tctatcaata aaatttctaa ttcctaaaac 17220
caaaatccag tggaagcttg tcgtgcccct ctctagagat aatgagcatt gcatgtctaa 17280
gttataaaaa attaccacat attttttttg tcacacttgt ttgaagtgca gtttatctat 17340
ctttatacat atatttaaac tttactctac gaataatata atctatagta ctacaataat 17400
atcagtgttt tagagaatca tataaatgaa cagttagaca tggtctaaag gacaattgag 17460
tattttgaca acaggactct acagttttat ctttttagtg tgcatgtgtt ctcctttttt 17520
tttgcaaata gcttcaccta tataatactt catccatttt attagtacat ccatttaggg 17580
tttagggtta atggttttta tagactaatt tttttagtac atctatttta ttctatttta 17640
gcctctaaat taagaaaact aaaactctat tttagttttt ttatttaata atttagatat 17700
aaaatagaat aaaataaagt gactaaaaat taaacaaata ccctttaaga aattaaaaaa 17760
actaaggaaa catttttctt gtttcgagta gataatgcca gcctgttaaa cgccgtcgac 17820
gagtctaacg gacaccaacc agcgaaccag cagcgtcgcg tcgggccaag cgaagcagac 17880
ggcacggcat ctctgtcgct gcctctggac ccctctcgag agttccgctc caccgttgga 17940
cttgctccgc tgtcggcatc cagaaattgc gtggcggagc ggcagacgtg agccggcacg 18000
gcaggcggcc tcctcctcct ctcacggcac cggcagctac gggggattcc tttcccaccg 18060
ctccttcgct ttcccttcct cgcccgccgt aataaataga caccccctcc acaccctctt 18120
tccccaacct cgtgttgttc ggagcgcaca cacacacaac cagatctccc ccaaatccac 18180
ccgtcggcac ctccgcttca aggtacgccg ctcgtcctcc cccccccccc tctctacctt 18240
ctctagatcg gcgttccggt ccatggttag ggcccggtag ttctacttct gttcatgttt 18300
gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct 18360
gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga 18420
tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag 18480
ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat 18540
cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta 18600
gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg 18660
tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag 18720
gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg 18780
cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga 18840
atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac 18900
atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt 18960
tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc 19020
taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg 19080
atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca 19140
tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt 19200
tacttctgca ggtcgacatg cagaagctga tcaacagcgt gcagaactac gcctggggca 19260
gcaagaccgc cctgaccgag ctgtacggca tggagaaccc cagcagccag cccatggccg 19320
agctgtggat gggcgcccac cccaagagca gcagccgcgt gcagaacgcc gccggcgaca 19380
tcgtgagcct gcgcgacgtg atcgagagcg acaagagcac cctgctgggc gaggccgtgg 19440
ccaagcgctt cggcgagctg cccttcctgt tcaaggtgct gtgcgccgcc cagcccctga 19500
gcatccaggt gcaccccaac aagcacaaca gcgagatcgg cttcgccaag gagaacgccg 19560
ccggcatccc catggacgcc gccgagcgca actacaagga ccccaaccac aagcccgagc 19620
tggtgttcgc cctgaccccc ttcctggcca tgaacgcctt ccgcgagttc agcgagatcg 19680
tgagcctgct gcagcccgtg gccggcgccc accccgccat cgcccacttc ctgcagcagc 19740
ccgacgccga gcgcctgagc gagctgttcg ccagcctgct gaacatgcag ggcgaggaga 19800
agagccgcgc cctggccatc ctgaagagcg ccctggacag ccagcagggc gagccctggc 19860
agaccatccg cctgatcagc gagttctacc ccgaggacag cggcctgttc agccccctgc 19920
tgctgaacgt ggtgaagctg aaccccggcg aggccatgtt cctgttcgcc gagacccccc 19980
acgcctacct gcagggcgtg gccctggagg tgatggccaa cagcgacaac gtgctgcgcg 20040
ccggcctgac ccccaagtac atcgacatcc ccgagctggt ggccaacgtg aagttcgagg 20100
ccaagcccgc caaccagctg ctgacccagc ccgtgaagca gggcgccgag ctggacttcc 20160
ccatccccgt ggacgacttc gccttcagcc tgcacgacct gagcgacaag gagaccacca 20220
tcagccagca gagcgccgcc atcctgttct gcgtggaggg cgacgccacc ctgtggaagg 20280
gcagccagca gctgcagctg aagcccggcg agagcgcctt catcgccgcc aacgagagcc 20340
ccgtgaccgt gaagggccac ggccgcctgg cccgcgtgta caacaagctg tgataggagc 20400
tccgatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt 20460
gcgatgatta tcatataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa 20520
tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa 20580
tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg cgcggtgtca 20640
tctatgttac tagatcggat cccctaggga gacccctgca gggagctcga attcattccg 20700
attaatcgtg gcctcttgct cttcaggatg aagagctatg tttaaacgtg caagcgctac 20760
tagacaattc agtacattaa aaacgtccgc aatgtgttat taagttgtct aagcgtcaat 20820
ttgtttacac cacaatatat cctgccacca gccagccaac agctccccga ccggcagctc 20880
ggcacaaaat caccactcga tacaggcagc ccatcagtcc gggacggcgt cagcgggaga 20940
gccgttgtaa ggcggcagac tttgctcatg ttaccgatgc tattcggaag aacggcaact 21000
aagctgccgg gtttgaaaca cggatgatct cgcggagggt agcatgttga ttgtaacgat 21060
gacagagcgt tgctgcctgt gatcaccgcg gtttcaaaat cggctccgtc gatactatgt 21120
tatacgccaa ctttgaaaac aactttgaaa aagctgtttt ctggtattta aggttttaga 21180
atgcaaggaa cagtgaattg gagttcgtct tgttataatt agcttcttgg ggtatcttta 21240
aatactgtag aaaagaggaa ggaaataata aatggctaaa atgagaatat caccggaatt 21300
gaaaaaactg atcgaaaaat accgctgcgt aaaagatacg gaaggaatgt ctcctgctaa 21360
ggtatataag ctggtgggag aaaatgaaaa cctatattta aaaatgacgg acagccggta 21420
taaagggacc acctatgatg tggaacggga aaaggacatg atgctatggc tggaaggaaa 21480
gctgcctgtt ccaaaggtcc tgcactttga acggcatgat ggctggagca atctgctcat 21540
gagtgaggcc gatggcgtcc tttgctcgga agagtatgaa gatgaacaaa gccctgaaaa 21600
gattatcgag ctgtatgcgg agtgcatcag gctctttcac tccatcgaca tatcggattg 21660
tccctatacg aatagcttag acagccgctt agccgaattg gattacttac tgaataacga 21720
tctggccgat gtggattgcg aaaactggga agaagacact ccatttaaag atccgcgcga 21780
gctgtatgat tttttaaaga cggaaaagcc cgaagaggaa cttgtctttt cccacggcga 21840
cctgggagac agcaacatct ttgtgaaaga tggcaaagta agtggcttta ttgatcttgg 21900
gagaagcggc agggcggaca agtggtatga cattgccttc tgcgtccggt cgatcaggga 21960
ggatatcggg gaagaacagt atgtcgagct attttttgac ttactgggga tcaagcctga 22020
ttgggagaaa ataaaatatt atattttact ggatgaattg ttttagtacc tagaatgcat 22080
gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat 22140
caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 22200
accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 22260
ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt agccgtagtt 22320
aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 22380
accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 22440
gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt 22500
ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac 22560
gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga 22620
gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 22680
ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa 22740
aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat 22800
gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct ttgagtgagc 22860
tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga 22920
agagcgcctg atgcggtatt ttctccttac gcatctgtgc ggtatttcac accgcatatg 22980
gtgcactctc agtacaatct gctctgatgc cgcatagtta agccagtata cactccgcta 23040
tcgctacgtg actgggtcat ggctgcgccc cgacacccgc caacacccgc tgacgcgccc 23100
tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt ctccgggagc 23160
tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgaggcaggg tgccttgatg 23220
tgggcgccgg cggtcgagtg gcgacggcgc ggcttgtccg cgccctggta gattgcctgg 23280
ccgtaggcca gccatttttg agcggccagc ggccgcgatc ctacaaggta gaatccgcct 23340
gagtcgcaag ggtgacttcg cctatattgg acgacggcgc gcagagggcg acctcttttt 23400
gggttacgat tgtaggatta tcactaaaac aatacatgaa catattcaaa tggcaatctc 23460
tctaaggcat tggaaataaa tacaaataac agttgggtgg agtttttcga cctgagggcg 23520
ttaaccttct gttaacctaa aagctcttgc ccaaacagca gaatcggcgc taattgccag 23580
cggcggaact tttccagttt cgcgaaaaat atcgccactg gcaaggaatg ggtttgagat 23640
ggcgaagtct gtcctaaaag cagcgcctgt agttgtaggg ttgacggcct tgatggagcg 23700
tcatgccgat gccctctcga gccaacttca agcacatcat cttaaggttt tcccgccgca 23760
ttccgagaag ggcattcgaa cattcgggcc atcggaggcg tccaagctgc tcggcgttgg 23820
cgagtcatat ttacggcaga ccgcgtctga gatgccagag ttgaatgtta gcatgagccc 23880
gggtggcagg cgaatgttct caattgaaga tatccatgtg attcggaagt atatggatca 23940
ggtcggccgc gggaaccggc gctacctgcc acatcgtcga ggcggcgagc agcttcaggt 24000
tatctctgtg atgaatttca aaggtgggtc gggtaagacc accaccgccg cgcatctggc 24060
gcagtacctc gctatgcgcg gatatcgagt cttggccatt gatctcgatc ctcaagcgag 24120
cctttctgca ctctttggga gccaaccgga gacggacgtt ggcccgaacg aaacgctcta 24180
cggcgctata aggtatgatg atgagcaggt ggcaatcgaa cgagtcgtcc gagggactta 24240
cattcccgac ctccacctga ttcctggtaa ccttgagctg atggagtttg aacacgatac 24300
gccacgcgcg ctgatgaacc gcaaagaggg cgacacgctc ttttatggtc gcatcagcca 24360
agtaattgaa gatatcgcgg ataactatga cgtcgtggtc atcgactgcc ctccccagct 24420
tgggtatctc acgctatccg cattgactgc ggcgacgtcc attcttgtca cggtccatcc 24480
gcagatgctg gatgtgatgt cgatgaacca gtttctggca atgacatcga accttttgcg 24540
tgaaatcgag aatgctggcg ccaagttcaa gtttaattgg atgcgctatc tgataacccg 24600
tttcgaaccg agcgacggac cacagaacca aatggtaggt tatctgcggt cgatttttgg 24660
cgaaaatgtc ctcaattttc cgatgcttaa aaccaccgcg gtttcggacg ctggcctgac 24720
aaaccagact ctattcgaag tggagcgtgg cctgttcacg cgctcgacct atgatcgagc 24780
cttggaggcg atgaacgccg tcaacgacga gatcgaaaca ctgatcaaaa aagcatgggg 24840
taggcccaca tgagccggaa gcacatcctt ggcgtctcaa ctgacgcccc tgagacgtcg 24900
cccgccgaca ataggacggc aaagaaccgc tccatgccgc tcctcggcgt aacaaggaag 24960
gagcgcgatc cggcaacgaa gctcacagcg aacattggta acgcactgcg agagcaaaac 25020
gatcgtctta gccgtgccga agagatcgag cggcgtctcg ctgaaggtca ggcagtgata 25080
gagttggatg cctcgtcaat agaaccgtct ttcgtgcagg atcgtatgcg aggggacatt 25140
gacgggctcc ttacttcgat ccgggaacaa ggacagcaag tcccaatcct tgtgcgaccg 25200
catccgagcc agccgggccg atatcaggtt gccttcggcc accgccggct acgcgccgtt 25260
tcagaactcg gacttccggt cagagcggtc gttcgcgaac tgacggacga gcaagtggtc 25320
gtagcacagg gtcaggaaaa caatgagcgc gaagatctta ccttcatcga aaaggcgcgc 25380
ttcgcacatc gcctgaacag gcagttttct cgagagattg tcatcgccgc gatgtcgatc 25440
gacaagagca atttgtccaa gatgcttctg ctcgtcgacg ccctcccctc tgaactgacc 25500
gatgctattg gtgccgctcc tggtgttgga cggccgagtt ggcaacaact tgccgagctg 25560
attgagaaag tttcttcacc ggccgacgtg gctaaatatg ctatgtcgga ggaagttcaa 25620
gcgctgccat cggcagaacg attcaaggcg gtgatcgcta gtctgaagcc cagtcgggtt 25680
gcgcgtggac ttcccgaggt catggccacc ccagacggca ccagaattgc acaggtgacg 25740
cagagcaagg ccaaactgga aatcacgatt gacaggaagg cgacgcccga ttttgcgacc 25800
ttcgtgctcg atcatgtgcc agcgctgtat caagcgtacc acgctgagaa ccaacggaaa 25860
cggggagagt aaaccgcaaa agaaaagagc cccctcaacg tcgccgtcgc ggaagccctt 25920
ctgtctctct agcgcgaaca gaatcgcatt tcctcgaatc ctcgtcaaga gtttttagcg 25980
ccgttttggt gagctgattt cctttgcctg ctgaaaggtg aaagatgatg cagacaggaa 26040
gtgtaacgac gccattcggg cggcggccaa tgacgcttgc gcttgtgcgg cgccagacgg 26100
cgctggccga tatcaaacaa ggcaagacag cggacaagtg gaaggtcttt agagacgcgt 26160
ccgcggccat ggaactactt ggaatccagt ccaacagtct tgccgtcctt gatgcgctat 26220
tgagctttca cccggaaacg gagttgcgtc aggaggcaca gctgatcgtc ttcccgtcga 26280
atgctcagct tgcccttcgg gcgcatggga tggctggcgc gactttgcgt aggcacatcg 26340
ccatgctcgt ggagtcaggc ttgatcgtcc ggaaggatag cgccaacgga aagcgttacg 26400
ctcgtaagga tggcgctggt cagatcgagc gcgcgtttgg cttcgatttg tctccgcttc 26460
tcgcgcggtc cgaagagcta gcgatgatgg cacagcaggt gatggccgat cgagcagcat 26520
tcaggatggc caaagaaagt ctgacgattt gccgacggga cgttcggaag ctaattacgg 26580
cagctatgga agagggagcg gagggcgact ggcaagctgt cgaggaagtc tatgtggaac 26640
ttgtgggtag aattccacgc gccccgacgc ttgctgatgt agagtcaatt ctcgaagaga 26700
tgtggatgct ccaggaagag ataatcaacc ggttggaaat tagagacaat tcagaaaata 26760
atagcaccaa tgctgcccag agcgagcagc acatacagaa ttcaaaaccc gaatccgtta 26820
atgaacttga acctcgctct gaaaaggagc agggcgctaa gccgagtgaa atagaccggg 26880
caaggagcga gccgataaaa gcgttccccc tcgggatgat cctgaaagca tgcccgacca 26940
ttggcaatta tgggccgagc ggtgcggttg ctagctggcg tgacctcatg tcggctgcgg 27000
tggtggttcg gtctatgctg ggggtcagcc cgtcggctta ccaagacgcg tgtgaggcaa 27060
tgggaccgga gaatgcggca gcagcgatgg cgtgcatttt ggagcgagcg aacttcatca 27120
attcgcccgg gggctatctc cgagatctga cacggcggag cgagctcggg aagttttcac 27180
ttggcccgat gataatggcg ctcttgaagg ctagcgggca ggggacgttg cggtttggct 27240
agaattagcg agtatggagc aggatggtct gtggtcagct gaccacagac ctaataggtt 27300
gaaaacatga gcgttttttg gatgatcgac agaccatccg attcccggag taccaagcgt 27360
gctctgatgg gagcgataac attactcaac aagcacgaag gccccatgcc gatcgttgat 27420
cgtgaaggag agcctgctct acatgcggcg gtattttgcc ggccgaggca tgtagtcgcg 27480
gagcactgcc tatttactgc cctaggcaca aacgttgact cttggatcga gctggcagac 27540
aaagcaataa cccacacaga ggacgattaa tggctgacga agagatccag aatccgccgg 27600
acggtactgc tgctgccgaa gttgagccgg ctgctcctag aggtagaaga gcaaagaaag 27660
caccagccga aacagcccgc acgggatcgt tcaaatccgt gaagccgaaa acccgcggcc 27720
tcagcaaccg agaaaaactg gagaagatcg gtcaaatcga agctcaggtc gctggcggcg 27780
caaccttgaa ggacgccgtt aagatcgtgg gtatttccgt tcagacctat tatcaatgga 27840
agagagctgc ggttcaacct gtctcacaga atccggccgt gtctgtttca gttgacgatg 27900
aactcggcga gttcatccaa ctcgaggagg aaaatcggcg gctcagaaag ctggccaggg 27960
cgtcggcctc ggtcaatgcg tcctcacgga aggcaccgcg ccgcctggcc tcggtgggcg 28020
tcacttcctc gctgcgctca agtgcgcggt acagggtcga gcgatgcacg ccaagcagtg 28080
cagccgcctc tttcacggtg cggccttcct ggtcgatcag ctcgcgggcg tgcgcgatct 28140
gtgccggggt gagggtaggg cgggggccaa acttcacgcc tcgggccttg gcggcctcgc 28200
gcccgctccg ggtgcggtcg atgattaggg aacgctcgaa ctcggcaatg ccggcgaaca 28260
cggtcaacac catgcggccg gccggcgtgg tggtgtcggc ccacggctct gccaggctac 28320
gcaggcccgc gccggcctcc tggatgcgct cggcaatgtc cagtaggtcg cgggtgctgc 28380
gggccaggcg gtctagcctg gtcactgtca caacgtcgcc agggcgtagg tggtcaagca 28440
tcctggccag ctccgggcgg tcgcgcctgg tgccggtgat cttctcggaa aacagcttgg 28500
tgcagccggc cgcgtgcagt tcggcccgtt ggttggtcaa gtcctggtcg tcggtgctga 28560
cgcgggcata gcccagcagg ccagcggcgg cgctcttgtt catggcgtaa tgtctccggt 28620
tctagtcgca agtattctac tttatgcgac taaaacacgc gacaagaaaa cgccaggaaa 28680
agggcagggc ggcagcctgt cgcgtaactt aggacttgtg cgacatgtcg ttttcagaag 28740
acggctgcac tgaacgtcag aagccgactg cactatagca gcggaggggt tggatcaaag 28800
tactttgatc ccgaggggaa ccctgtggtt ggcatgcaca tacaaatgga cgaacggata 28860
aaccttttca cgccctttta aatatccgat tattctaata aacgctcttt tctct 28915
<210> 7
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 7
tttaaatgtc atctccgaag agagcctttg gggtag 36
<210> 8
<211> 35
<212> DNA
<213> Artificial Sequence
<400> 8
tttaaatgtc atctccgaag agagccttgg ggtag 35
<210> 9
<211> 37
<212> DNA
<213> Artificial Sequence
<400> 9
atgccatctc cgaagagagc ctttggggta gttgggc 37
<210> 10
<211> 39
<212> DNA
<213> Artificial Sequence
<400> 10
atgccatctc cgaagagagc ctaattgggg tagttgggc 39
<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 11
tttaaatgtc atattggggt ag 22
<210> 12
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 12
tttaaatgtc atctccgaag agagcctagg tag 33
<210> 13
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 13
atgccatctc cgaattgggg tagttgggc 29
<210> 14
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 14
agctatgggg tagttgggc 19
<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 15
tttaaatgtc atctccgaaa gagcctattg gggtag 36
<210> 16
<211> 32
<212> DNA
<213> Artificial Sequence
<400> 16
tttaaatgtc atctccgaag agattggggt ag 32
<210> 17
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 17
atgccatctc cgaagagatt ggggtagttg ggc 33
<210> 18
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 18
atgccatctc cgaagagacc tttggggtag ttgggc 36
<210> 19
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 19
tttaaagcct tggggtag 18
<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 20
tttaaatgtc atctccgaag gggtag 26
<210> 21
<211> 35
<212> DNA
<213> Artificial Sequence
<400> 21
atgccatctc cgaagagagc ctggggtagt tgggc 35
<210> 22
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 22
atgccatctc cgaagagagc ctatcttggg gtagttgggc 40

Claims (6)

1. The recombinant vector is applied to any one of the following M1) -M8):
m1) creationZmBADH2-1AndZmBADH2-2a double-gene knockout maize Jing 724 mutant;
m2) preparationZmBADH2-1AndZmBADH2-2the product of the corn Jing 724 mutant with double gene knockout;
m3) cultivating the scented corn;
m4) preparing a product for cultivating fragrant corn;
m5) improving the 2-AP content in the Jing 724 corn grains;
m6) preparing a product for improving the 2-AP content in the Jing 724 corn grains;
m7) improving the fragrance of the Jing 724 corn grains;
m8) preparing a product for improving the fragrance of the Jing 724 corn grains;
the nucleotide sequence of the recombinant vector is sequence 6; wherein, the 495 position 101-495 of the sequence 6 is a ZmU6 promoter sequence, the 578 position 502-578 is a tRNA sequence, the 579-598 position is a target sequence, the 599-684 position is an esgRNA framework sequence, the 685-975 position is an OsU3 terminator sequence, the 982-2695 position is an OsUbq3 promoter sequence, the 2912-7012 position is an SpCas9 encoding gene sequence, the 7169-7423 position is an Nos terminator sequence, the 7452-9423 position is a ZmUbi promoter sequence, the 9430-10608 position is a PMI screening agent resistance gene sequence, and the 10615-10868 position is an Nos terminator sequence;
the describedZmBADH2-1The gene is a genome DNA molecule shown in a sequence 1;
the describedZmBADH2-2The gene is a genome DNA molecule shown in a sequence 3;
the fragrant corns are corns with different fragrance gradients.
2. Creation systemZmBADH2-1AndZmBADH2-2a method for preparing a double knockout corn mutant, comprising the steps of: introducing the recombinant vector of claim 1 into a recipient of Zea mays Pijing 724 to obtainZmBADH2-1AndZmBADH2-2double knockout maize mutants.
3. A method for cultivating fragrant corn comprises the following steps: introducing the recombinant vector of claim 1 into a recipient, maize, Jing 724, to obtain a fragrant maize; the fragrant corns are corns with different fragrance gradients.
4. A method for increasing the 2-AP content in corn kernels comprises the following steps: the recombinant vector of claim 1 is introduced into a receptor corn Jing 724 to improve the 2-AP content in corn grains.
5. A method for improving the aroma of corn kernels comprises the following steps: the recombinant vector of claim 1 is introduced into acceptor corn Jing 724 to raise corn kernel fragrance.
6. A method of maize breeding comprising the steps of: obtained by the method of claim 2ZmBADH2-1AndZmBADH2-2the corn mutant with double knockout genes is used as parent material for breeding.
CN202110510545.7A 2021-05-11 2021-05-11 Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology Active CN113215156B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110510545.7A CN113215156B (en) 2021-05-11 2021-05-11 Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110510545.7A CN113215156B (en) 2021-05-11 2021-05-11 Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology

Publications (2)

Publication Number Publication Date
CN113215156A CN113215156A (en) 2021-08-06
CN113215156B true CN113215156B (en) 2022-07-22

Family

ID=77094778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110510545.7A Active CN113215156B (en) 2021-05-11 2021-05-11 Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology

Country Status (1)

Country Link
CN (1) CN113215156B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032102A1 (en) * 2004-09-22 2006-03-30 Grain Foods Crc Ltd. Method of producing fragrance by inactivation or reduction of a functional protein with betaine aldehyde dehydrogenase (badh) activity
CN110592135A (en) * 2019-09-23 2019-12-20 浙江省农业科学院 Method for editing rice aroma gene Badh2 by CRISPR/Cas9
CN112608937A (en) * 2020-12-17 2021-04-06 北京市农林科学院 Method for cultivating self-compatible cabbage based on CRISPR/Cas9 gene editing method and application thereof

Also Published As

Publication number Publication date
CN113215156A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
CN106998665A (en) The generation of haplophyte
CN107205354A (en) Haploid induction thing
CN111139260B (en) Method for improving whiteness of wheat flour by using gene editing
WO2016057515A2 (en) Genetic control of axillary bud growth in tobacco plants
CN107759676B (en) Plant amylose synthesis related protein Du15, and coding gene and application thereof
CN108822194B (en) Plant starch synthesis related protein OsFLO10, and coding gene and application thereof
CN101942480A (en) The nucleic acid molecule of encoding fatty acid desaturase genes from plants and using method thereof
CN112725348B (en) Gene and method for improving single-base editing efficiency of rice and application of gene
CN113646326A (en) Gene for resisting plant diseases
CN109971763A (en) Florescence control gene C MP1 and relevant carrier and its application
CN106589085B (en) Plant starch synthesis related protein OsFLO8, and coding gene and application thereof
CN113215156B (en) Method for efficiently creating fragrant corn by using CRISPR/Cas9 technology
WO2018196744A1 (en) Transgenic soybean event gc1-1 exogenous insert flanking sequence and application thereof
KR20200136921A (en) Control of amino acid content in plants
KR101760932B1 (en) Molecular Markers related a Restorer-of-Fertility gene and Methods for Selecting of Male-Fertility or Male-Sterility in Onion
CN110407922B (en) Rice cold-resistant gene qSCT11 and application thereof
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
CN110616220A (en) Method for improving hardness of wheat grains
CN111269935B (en) Wheat TaDA2 gene Cas9 vector and application thereof
KR101760931B1 (en) Molecular Markers related a Restorer-of-Fertility gene and Methods for Selecting of Male-Fertility or Male-Sterility in Onion
CN112194713B (en) Protein FSE5 related to rice endosperm starch granule development and encoding gene and application thereof
CN111424044B (en) Wheat TaDCL4 gene and application thereof in pollen fertility
CN111575312B (en) Method for inducing abortion of wheat pollen
CN111269934B (en) Method for improving phosphorus utilization rate of wheat by using gene editing
CN111534522B (en) Wheat TaRDR6 gene and application thereof in male sterility

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant