CN113206201B - A method for optimizing lead-free perovskite solar cell thin films - Google Patents
A method for optimizing lead-free perovskite solar cell thin films Download PDFInfo
- Publication number
- CN113206201B CN113206201B CN202110522687.5A CN202110522687A CN113206201B CN 113206201 B CN113206201 B CN 113206201B CN 202110522687 A CN202110522687 A CN 202110522687A CN 113206201 B CN113206201 B CN 113206201B
- Authority
- CN
- China
- Prior art keywords
- perovskite
- solar cell
- mandelic acid
- lead
- optimizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000010409 thin film Substances 0.000 title claims abstract description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 22
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 claims abstract description 16
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229960002510 mandelic acid Drugs 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 230000005525 hole transport Effects 0.000 claims abstract description 13
- 239000010408 film Substances 0.000 claims abstract description 11
- 238000004528 spin coating Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 22
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 18
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 18
- 238000000137 annealing Methods 0.000 claims description 7
- QPBYLOWPSRZOFX-UHFFFAOYSA-J tin(iv) iodide Chemical compound I[Sn](I)(I)I QPBYLOWPSRZOFX-UHFFFAOYSA-J 0.000 claims description 6
- 239000012046 mixed solvent Substances 0.000 claims description 5
- YUOWTJMRMWQJDA-UHFFFAOYSA-J tin(iv) fluoride Chemical compound [F-].[F-].[F-].[F-].[Sn+4] YUOWTJMRMWQJDA-UHFFFAOYSA-J 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 14
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- -1 oxygen ion Chemical class 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000003638 chemical reducing agent Substances 0.000 abstract description 2
- 238000002425 crystallisation Methods 0.000 abstract description 2
- 230000008025 crystallization Effects 0.000 abstract description 2
- 150000001261 hydroxy acids Chemical class 0.000 abstract description 2
- 229910021645 metal ion Inorganic materials 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 25
- 238000002360 preparation method Methods 0.000 description 23
- 230000000903 blocking effect Effects 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000001035 drying Methods 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 229920000144 PEDOT:PSS Polymers 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000007738 vacuum evaporation Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 229910008449 SnF 2 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000012296 anti-solvent Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000002608 ionic liquid Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- IWYDHOAUDWTVEP-ZETCQYMHSA-N (S)-mandelic acid Chemical compound OC(=O)[C@@H](O)C1=CC=CC=C1 IWYDHOAUDWTVEP-ZETCQYMHSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N N-butylamine Natural products CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 241000220304 Prunus dulcis Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 229940061720 alpha hydroxy acid Drugs 0.000 description 1
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- JTDNNCYXCFHBGG-UHFFFAOYSA-L tin(ii) iodide Chemical compound I[Sn]I JTDNNCYXCFHBGG-UHFFFAOYSA-L 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开一种优化无铅钙钛矿太阳能电池薄膜的方法,在制备有源层的时,先将钙钛矿前驱体溶液旋涂到空穴传输层上,旋涂时间为50 s,在旋涂12 s时滴涂掺杂手性扁桃酸的乙醚溶液,之后再进行退火处理以得到有源层;扁桃酸中羟基酸分子中的氧离子存在孤对电子,能与金属离子形成配位键,减缓控制钙钛矿结晶过程,同时由于扁桃酸是一种还原剂,可以抑制二价锡的氧化,进而可提高钙钛矿薄膜的结晶度,两相结合可显著改善薄膜质量,提高锡基钙钛矿太阳能电池的功率转换效率;手性材料扁桃酸本身具有的圆偏振光发光会增强钙钛矿薄膜的吸收,进而有效提升器件功率转换效率;且扁桃酸主要从植物中提取而来,来源广泛,使用安全。
The invention discloses a method for optimizing a lead-free perovskite solar cell thin film. When preparing the active layer, the perovskite precursor solution is first spin-coated on the hole transport layer, and the spin-coating time is 50 s. The diethyl ether solution doped with chiral mandelic acid was drop-coated for 12 s, and then annealed to obtain the active layer; the oxygen ion in the hydroxy acid molecule in mandelic acid has lone pair electrons, which can form coordination with metal ions bond, slow down and control the crystallization process of perovskite, and because mandelic acid is a reducing agent, it can inhibit the oxidation of divalent tin, thereby improving the crystallinity of perovskite films. The power conversion efficiency of perovskite-based solar cells; the circularly polarized light emission of the chiral material mandelic acid itself will enhance the absorption of the perovskite film, thereby effectively improving the power conversion efficiency of the device; and mandelic acid is mainly extracted from plants , widely sourced and safe to use.
Description
技术领域technical field
本发明属于太阳能电池技术领域,具体涉及一种优化无铅钙钛矿太阳能电池薄膜的方法。The invention belongs to the technical field of solar cells, and particularly relates to a method for optimizing a lead-free perovskite solar cell thin film.
背景技术Background technique
伴随着科技的飞速发展,全球化石能源总量日益减少,寻找可代替传统能源的绿色无污染的新能源极有必要。太阳能以其便于获取,存量丰富且洁净无污染的优势成为人们关注的热点,而太阳能电池是利用太阳能的一个十分重要的途径。其中,硅基太阳能电池是目前发展最迅速、应用最广泛的一类电池材料,但是,由于制备过程中必须使用昂贵的高纯硅,其所带来的成本高、能耗高的问题严重制约了硅基太阳能电池的广泛应用。With the rapid development of science and technology, the total amount of fossil energy in the world is decreasing day by day. It is extremely necessary to find green and pollution-free new energy sources that can replace traditional energy sources. Solar energy has become a hot spot of people's attention because of its advantages of easy access, abundant stock, clean and pollution-free, and solar cells are a very important way to utilize solar energy. Among them, silicon-based solar cells are the most rapidly developed and widely used type of battery materials. However, due to the use of expensive high-purity silicon in the preparation process, the problems of high cost and high energy consumption are seriously restricted. Widespread application of silicon-based solar cells.
Pb基钙钛矿的光学和电学性质对太阳电池来说几乎是完美的。然而,铅基钙钛矿型太阳能电池也存在两大问题:稳定性差和毒性高。因此寻求一种无毒且稳定性高的非铅钙钛矿电池十分重要。The optical and electrical properties of Pb-based perovskites are almost perfect for solar cells. However, lead-based perovskite solar cells also suffer from two major problems: poor stability and high toxicity. Therefore, it is very important to seek a non-lead perovskite battery with non-toxic and high stability.
在非铅钙钛矿太阳能电池中,锡基钙钛矿太阳能电池以其高吸收系数、小激子结合能和高电荷载流子迁移率等优异的光学和电学性能成为各种无铅钙钛矿中最有前途的材料。但是在锡基钙钛矿太阳能电池中,由于Sn空位形成能很低,所以Sn2+非常容易氧化成Sn4+,且钙钛矿前驱体之一的碘化亚锡(SnI2)与有机胺盐之间反应速率过快,这使得钙钛矿的结晶速率非常快,以至于很难得到均匀致密的晶体薄膜,这严重阻碍了太阳能电池的效率和稳定性的提高。Among lead-free perovskite solar cells, tin-based perovskite solar cells have become a variety of lead-free perovskite due to their excellent optical and electrical properties such as high absorption coefficient, small exciton binding energy, and high charge carrier mobility. The most promising material in the mine. However, in tin - based perovskite solar cells, Sn 2+ is easily oxidized to Sn 4+ due to the low formation energy of Sn vacancies. The reaction rate between amine salts is too fast, which makes the crystallization rate of perovskite so fast that it is difficult to obtain uniform and dense crystalline thin films, which seriously hinders the improvement of the efficiency and stability of solar cells.
中国专利CN 111952455 A公开一种离子液体型有机大体积胺分子盐制备低维锡基钙钛矿薄膜及其太阳能电池和应用,其是利用特殊的离子液体型有机大体积胺分子盐丁胺乙酸盐配制低维锡基钙钛矿的前驱液,并利用反溶剂法在沉积有空穴传输材料的ITO透明导电玻璃上制备得到低维锡基钙钛矿薄膜,经过退火处理后,薄膜表面平整性提升,所制备的太阳能电池的光电转化效率和器件稳定性都有所提高,但是该方案无法阻止Sn2+的氧化,且前驱液的配制较为繁琐,所用离子液体型有机大体积胺分子盐丁胺乙酸盐来源窄,使用安全性也有待提高,影响整体制备效率,不利于大规模的生产应用。Chinese patent CN 111952455 A discloses an ionic liquid type organic bulk amine molecular salt to prepare low-dimensional tin-based perovskite thin film and its solar cell and application, which is the use of a special ionic liquid type organic bulk amine molecular salt butylamine ethyl The precursor liquid of low-dimensional tin-based perovskite was prepared with acid salt, and the low-dimensional tin-based perovskite film was prepared on the ITO transparent conductive glass deposited with hole transport material by anti-solvent method. After annealing treatment, the surface of the film was The flatness is improved, and the photoelectric conversion efficiency and device stability of the prepared solar cells are improved, but this scheme cannot prevent the oxidation of Sn 2+ , and the preparation of the precursor solution is cumbersome, and the ionic liquid type organic bulky amine molecules used are used. The source of salt butylamine acetate is narrow, and the safety of use needs to be improved, which affects the overall preparation efficiency and is not conducive to large-scale production and application.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种优化无铅钙钛矿太阳能电池薄膜的方法,具体是以扁桃酸作添加剂,乙醚作反溶剂,以PEDOT:PSS做空穴传输层,C60为电子传输层设计了一种锡基钙钛矿太阳能电池,改善了薄膜形貌,提高了钙钛矿薄膜的结晶度并且取得了良好的功率转换效率和稳定性。The object of the present invention is to provide a method for optimizing a lead-free perovskite solar cell thin film, specifically using mandelic acid as an additive, diethyl ether as an anti-solvent, using PEDOT:PSS as a hole transport layer, and C 60 as an electron transport layer. A tin-based perovskite solar cell has improved film morphology, increased crystallinity of perovskite films and achieved good power conversion efficiency and stability.
本发明的技术方案为:一种优化无铅钙钛矿太阳能电池薄膜的方法,在制备有源层的时,先将钙钛矿前驱体溶液旋涂到空穴传输层上,旋涂时间为50 s,在旋涂12 s时滴涂掺杂手性扁桃酸的乙醚溶液,之后再进行退火处理以得到有源层;前驱体溶液为碘化锡(SnI2)、甲酰胺(FAI)、甲基胺(MAI)及氟化锡(SnF2)溶于N,N-二甲基甲酰胺(DMF)和二甲亚砜(DMSO)的混合溶剂中后形成的。The technical scheme of the invention is as follows: a method for optimizing a lead-free perovskite solar cell thin film. When preparing the active layer, the perovskite precursor solution is first spin-coated on the hole transport layer, and the spin-coating time is For 50 s, the ether solution doped with chiral mandelic acid was drop-coated for 12 s, and then annealed to obtain the active layer; the precursor solutions were tin iodide (SnI 2 ), formamide (FAI), It is formed by dissolving methylamine (MAI) and tin fluoride (SnF 2 ) in a mixed solvent of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO).
进一步地,乙醚溶液中手性扁桃酸的浓度为0.01-0.05 mg/mL。Further, the concentration of chiral mandelic acid in the ether solution is 0.01-0.05 mg/mL.
进一步地,碘化锡、甲酰胺、甲基胺和氟化锡的摩尔比为1:0.75:0.25:0.1。Further, the molar ratio of tin iodide, formamide, methylamine and tin fluoride is 1:0.75:0.25:0.1.
进一步地,旋涂过程是在充满N2的手套箱中进行的,旋涂转速为3500-5000 rpm。Further, the spin-coating process was carried out in a glove box filled with N at a spin - coating speed of 3500–5000 rpm.
进一步地,退火温度为65-70℃,退火时间为10-15 min。Further, the annealing temperature is 65-70° C., and the annealing time is 10-15 min.
进一步地,N,N-二甲基甲酰胺(DMF)和二甲亚砜(DMSO)的体积比为4:1。Further, the volume ratio of N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO) was 4:1.
相比于现有技术,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
1. 本申请在制备有源层时使用手性材料扁桃酸作为添加剂,扁桃酸中羟基酸分子中的氧离子存在孤对电子,能与金属离子形成配位键,减缓控制钙钛矿形成过程中的结晶过程,此外扁桃酸是一种还原剂,可以抑制二价锡的氧化,进而可提高钙钛矿薄膜的结晶度,得到低缺陷态密度、表面光滑致密的钙钛矿薄膜,改善薄膜质量,提高锡基钙钛矿太阳能电池的功率转换效率;1. The application uses the chiral material mandelic acid as an additive when preparing the active layer. The oxygen ion in the hydroxy acid molecule in the mandelic acid has a lone pair of electrons, which can form coordination bonds with metal ions and slow down and control the formation process of perovskite. In addition, mandelic acid is a reducing agent, which can inhibit the oxidation of divalent tin, thereby improving the crystallinity of the perovskite film, resulting in a perovskite film with a low density of defect states and a smooth and dense surface, improving the film quality and improve the power conversion efficiency of tin-based perovskite solar cells;
2.本申请在制备有源层时所用的添加剂扁桃酸为手性材料,手性材料本身具有的圆偏振光发光会增强钙钛矿薄膜的吸收,进而有效提升器件功率转换效率;2. The additive mandelic acid used in the preparation of the active layer is a chiral material, and the circularly polarized light emission of the chiral material itself can enhance the absorption of the perovskite film, thereby effectively improving the power conversion efficiency of the device;
3.本申请在制备有源层时所用的添加剂扁桃酸是一种来自杏仁的α-羟基酸,其主要从植物中提取而来,来源广泛,成本低廉,使用安全,不会在使用过程中造成二次污染。3. The additive mandelic acid used in the preparation of the active layer in the present application is an α-hydroxy acid derived from almonds, which is mainly extracted from plants, has a wide range of sources, low cost, and is safe to use, and will not be used during use. cause secondary pollution.
附图说明Description of drawings
图1是对比例1和实施例1、2所制备的钙钛矿太阳能电池器件的结构图,1 is a structural diagram of the perovskite solar cell devices prepared in Comparative Example 1 and Examples 1 and 2,
其中,1-透明阳极,2-空穴传输层,3-钙钛矿有源层,4-电子传输层,5-空穴阻挡层,6-金属阴极;Among them, 1-transparent anode, 2-hole transport layer, 3-perovskite active layer, 4-electron transport layer, 5-hole blocking layer, 6-metal cathode;
图2是对比例1和实施例1、2所制备的钙钛矿太阳能电池器件的J-V曲线图;2 is a J-V curve diagram of the perovskite solar cell devices prepared in Comparative Example 1 and Examples 1 and 2;
图3是对比例1和实施例1、2所制备的有源层FA0.75MA0.25SnI3薄膜的XRD图;3 is the XRD pattern of the active layer FA 0.75 MA 0.25 SnI 3 thin films prepared in Comparative Example 1 and Examples 1 and 2;
图4中从左至右三个小图分别是对比例1和实施例1、2所制备的有源层FA0.75MA0.25SnI3薄膜的SEM图。The three panels from left to right in FIG. 4 are SEM images of the active layer FA 0.75 MA 0.25 SnI 3 thin films prepared in Comparative Example 1 and Examples 1 and 2, respectively.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings, but are not limited thereto. Any modification or equivalent replacement of the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention shall be included in the present invention. within the scope of protection.
对比例1和实施例1、2中所制备的电池器件结构均如图1所示,自下至上分别包括透明阳极,空穴传输层,钙钛矿有源层,电子传输层,电子阻挡层,金属阴极。The structures of the battery devices prepared in Comparative Example 1 and Examples 1 and 2 are shown in Figure 1. From bottom to top, they respectively include a transparent anode, a hole transport layer, a perovskite active layer, an electron transport layer, and an electron blocking layer. , the metal cathode.
对比例1Comparative Example 1
1. 前驱体溶液的配制:将碘化锡SnI2、甲酰胺FAI、甲基胺MAI按1:0.75:0.25的摩尔比溶于N,N-二甲基甲酰胺DMF和二甲亚砜DMSO溶液的混合溶剂中(DMF和DMSO的体积比为4:1),并加入10%摩尔比的SnF2,混合后的溶液在室温下搅拌48小时,制得浓度为1mol/L的钙钛矿前驱体溶液,待用;1. Preparation of precursor solution: tin iodide SnI 2 , formamide FAI and methylamine MAI were dissolved in N,N-dimethylformamide DMF and dimethyl sulfoxide DMSO in a molar ratio of 1:0.75:0.25 In the mixed solvent of the solution (the volume ratio of DMF and DMSO is 4:1), 10% molar ratio of SnF 2 was added, and the mixed solution was stirred at room temperature for 48 hours to prepare perovskite with a concentration of 1 mol/L Precursor solution, ready to use;
2. 阳极处理:依次用洗液溶液、去离子水、丙酮、乙醇清洗ITO导电玻璃片各两次,将ITO基片放入80℃恒温烘箱中进行半小时以上烘干处理,烘干以后进行2 min的Plasma处理;2. Anode treatment: wash the ITO conductive glass sheet twice with washing solution, deionized water, acetone and ethanol in turn, put the ITO substrate in a constant temperature oven at 80°C for more than half an hour for drying treatment, and then perform drying after drying. 2 min of Plasma treatment;
3. 空穴传输层的制备:使用旋涂仪将Plasma处理好的ITO导电玻璃以4000rpm的转速旋涂PEDOT:PSS,旋涂时间为60 s,然后在空气中130℃退火20 min处理,形成空穴传输层;3. Preparation of hole transport layer: The ITO conductive glass treated with Plasma was spin-coated with PEDOT:PSS at 4000 rpm using a spin coater for 60 s, and then annealed at 130 °C for 20 min in air to form hole transport layer;
4. 钙钛矿有源层的制备:将退完火的片子放入手套箱中,以4000 rpm的转速将钙钛矿前驱体溶液旋涂到PEDOT:PSS层上,旋涂时间为50 s,在旋涂12 s时迅速滴涂乙醚,然后在70℃下退火10 min,形成钙钛矿有源层;4. Preparation of perovskite active layer: put the annealed sheet into the glove box, spin-coat the perovskite precursor solution onto the PEDOT:PSS layer at 4000 rpm for 50 s , rapidly drop-coating ether during spin coating for 12 s, and then annealing at 70 °C for 10 min to form the perovskite active layer;
5. 电子传输层的制备:利用真空蒸镀设备在钙钛矿有源层上蒸镀C60,C60厚度为20 nm,蒸镀速率为0.1 Å/s,其蒸镀的气压环境小于4×10-4Pa;5. Preparation of electron transport layer:
6. 空穴阻挡层的制备:利用真空蒸镀设备在C60上蒸镀有机小分子材料BCP,形成空穴阻挡层,空穴阻挡层的厚度为5.5 nm,蒸镀的速率为0.4 Å/s,其蒸镀的气压环境小于4×10-4Pa;6. Preparation of hole blocking layer: The organic small molecule material BCP was evaporated on C 60 using vacuum evaporation equipment to form a hole blocking layer, the thickness of the hole blocking layer was 5.5 nm, and the evaporation rate was 0.4 Å/ s, the vapor deposition pressure environment is less than 4×10 -4 Pa;
7. 金属阴极的制备:在空穴阻挡层上蒸镀金属Ag,形成金属阴极层,金属阴极层的厚度为100 nm,蒸镀速率为0.8 Å/s,其蒸镀的气压环境小于4×10-4Pa;7. Preparation of metal cathode: metal Ag was evaporated on the hole blocking layer to form a metal cathode layer, the thickness of the metal cathode layer was 100 nm, the evaporation rate was 0.8 Å/s, and the vapor deposition pressure environment was less than 4× 10-4Pa ;
8. 制备的器件涂抹环氧树脂材料,紫外光照射10 min,进行封装。8. The prepared device was coated with epoxy resin material, and irradiated with ultraviolet light for 10 min for encapsulation.
在室温环境下测器件的J-V曲线,如图2所示,从图中可以得知器件的开路电压为0.323 V,短路电流为13.19 mA cm-2,填充因子为0.562,效率为2.39%。The JV curve of the device was measured at room temperature, as shown in Figure 2. It can be seen from the figure that the open circuit voltage of the device is 0.323 V, the short circuit current is 13.19 mA cm -2 , the fill factor is 0.562, and the efficiency is 2.39%.
实施例1Example 1
1. 前驱体溶液的配制:将碘化锡、甲酰胺、甲基胺按1:0.75:0.25的摩尔比溶于N,N-二甲基甲酰胺DMF和二甲亚砜DMSO溶液的混合溶剂中(DMF和DMSO的体积比为4:1),并加入10%摩尔比的SnF2,混合后的溶液在室温下搅拌48小时,制得浓度为1mol/L的钙钛矿前驱体溶液,待用;1. Preparation of precursor solution: dissolve tin iodide, formamide and methylamine in a mixed solvent of N,N-dimethylformamide DMF and dimethyl sulfoxide DMSO solution at a molar ratio of 1:0.75:0.25 (The volume ratio of DMF and DMSO is 4:1), and 10% molar ratio SnF 2 was added. The mixed solution was stirred at room temperature for 48 hours to obtain a perovskite precursor solution with a concentration of 1 mol/L. stand-by;
2. 阳极处理:依次用洗液溶液、去离子水、丙酮、乙醇清洗ITO导电玻璃片各两次,将ITO基片放入80℃恒温烘箱中进行半小时以上烘干处理,烘干以后进行2 min的Plasma处理;2. Anode treatment: wash the ITO conductive glass sheet twice with washing solution, deionized water, acetone and ethanol in turn, put the ITO substrate in a constant temperature oven at 80°C for more than half an hour for drying treatment, and then perform drying after drying. 2 min of Plasma treatment;
3. 空穴传输层的制备:使用旋涂仪将Plasma处理好的ITO导电玻璃以4000rpm的转速旋涂PEDOT:PSS,旋涂时间为60 s,然后在空气中130℃退火20 min,形成空穴传输层;3. Preparation of hole transport layer: The ITO conductive glass treated with Plasma was spin-coated with PEDOT:PSS at 4000 rpm using a spin coater for 60 s, and then annealed at 130 °C for 20 min in air to form a void. hole transport layer;
4. 钙钛矿有源层的制备:将退完火的片子放入手套箱中,以4000 rpm的转速将钙钛矿前驱体溶液旋涂到PEDOT:PSS层上,旋涂时间为50 s,在旋涂12 s时迅速滴涂掺杂0.03mg/mL 右旋扁桃酸(R-(-)-MA)的乙醚溶液,然后在70℃下退火10 min,形成钙钛矿有源层;4. Preparation of perovskite active layer: put the annealed sheet into the glove box, spin-coat the perovskite precursor solution onto the PEDOT:PSS layer at 4000 rpm for 50 s , the ether solution doped with 0.03 mg/mL dextromandelic acid (R-(-)-MA) was rapidly drop-coated during spin coating for 12 s, and then annealed at 70 °C for 10 min to form the perovskite active layer;
5. 电子传输层的制备:利用真空蒸镀设备在钙钛矿有源层上蒸镀C60,C60厚度为20 nm,蒸镀速率为0.1 Å/s,其蒸镀的气压环境小于4×10-4Pa;5. Preparation of electron transport layer:
6. 空穴阻挡层的制备:利用真空蒸镀设备在C60上蒸镀有机小分子材料BCP,形成空穴阻挡层,空穴阻挡层的厚度为5.5 nm,蒸镀的速率为0.4 Å/s,其蒸镀的气压环境小于4×10-4Pa;6. Preparation of hole blocking layer: The organic small molecule material BCP was evaporated on C 60 using vacuum evaporation equipment to form a hole blocking layer, the thickness of the hole blocking layer was 5.5 nm, and the evaporation rate was 0.4 Å/ s, the vapor deposition pressure environment is less than 4×10 -4 Pa;
7. 金属阴极的制备:在空穴阻挡层上蒸镀金属Ag,形成金属阴极层,金属阴极层的厚度为100 nm,蒸镀速率为0.8 Å/s,其蒸镀的气压环境小于4×10-4Pa。7. Preparation of metal cathode: metal Ag was evaporated on the hole blocking layer to form a metal cathode layer, the thickness of the metal cathode layer was 100 nm, the evaporation rate was 0.8 Å/s, and the vapor deposition pressure environment was less than 4× 10-4Pa .
8. 制备的器件涂抹环氧树脂材料,紫外光照射10 min,进行封装。8. The prepared device was coated with epoxy resin material, and irradiated with ultraviolet light for 10 min for encapsulation.
在室温环境下,测器件的J-V曲线,如图2所示,从图中可以得知器件的开路电压为0.327 V,短路电流为17.9 mA cm-2,填充因子为0.626,效率为3.67%。At room temperature, the JV curve of the device was measured, as shown in Figure 2. From the figure, it can be seen that the open circuit voltage of the device is 0.327 V, the short circuit current is 17.9 mA cm -2 , the fill factor is 0.626, and the efficiency is 3.67%.
实施例2Example 2
1. 前驱体溶液的配制:将碘化锡、甲酰胺、甲基胺按1:0.75:0.25的摩尔比溶于N,N-二甲基甲酰胺DMF和二甲亚砜DMSO溶液的混合溶剂中(DMF和DMSO的体积比为4:1),并加入10%摩尔比的SnF2,混合后的溶液在室温下搅拌48小时,制得浓度为1 mol/L的钙钛矿前驱体溶液,待用;1. Preparation of precursor solution: dissolve tin iodide, formamide and methylamine in a mixed solvent of N,N-dimethylformamide DMF and dimethyl sulfoxide DMSO solution at a molar ratio of 1:0.75:0.25 (The volume ratio of DMF and DMSO is 4:1), and 10% molar ratio of SnF 2 was added. The mixed solution was stirred at room temperature for 48 hours to obtain a perovskite precursor solution with a concentration of 1 mol/L. ,stand-by;
2. 阳极处理:依次用洗液溶液、去离子水、丙酮、乙醇清洗ITO导电玻璃片各两次,将ITO基片放入80 ℃恒温烘箱中进行半小时以上烘干处理,烘干以后进行2 min的Plasma处理;2. Anode treatment: wash the ITO conductive glass sheet twice with washing solution, deionized water, acetone and ethanol in turn, put the ITO substrate in a constant temperature oven at 80 °C for more than half an hour for drying treatment, and then perform drying after drying. 2 min of Plasma treatment;
3. 空穴传输层的制备:使用旋涂仪将Plasma处理好的ITO导电玻璃以4000rpm的转速旋涂PEDOT:PSS,旋涂时间为60 s,然后在空气中130℃退火处理20 min,形成空穴传输层;3. Preparation of hole transport layer: The ITO conductive glass treated with Plasma was spin-coated with PEDOT:PSS at 4000 rpm using a spin coater for 60 s, and then annealed at 130 °C for 20 min in air to form hole transport layer;
4. 钙钛矿有源层的制备:将退完火的片子放入手套箱中,以4000 rpm的转速将钙钛矿前驱体溶液旋涂到PEDOT:PSS层上,旋涂时间为50 s,在旋涂12 s时迅速滴涂掺杂0.03mg/mL 左旋扁桃酸(S-(+)-MA)的乙醚溶液,然后在70℃下退火处理10 min,形成钙钛矿吸光层;4. Preparation of perovskite active layer: put the annealed sheet into the glove box, spin-coat the perovskite precursor solution onto the PEDOT:PSS layer at 4000 rpm for 50 s , 0.03 mg/mL L-mandelic acid (S-(+)-MA) in ether solution was rapidly drop-coated during spin coating for 12 s, and then annealed at 70 °C for 10 min to form a perovskite light-absorbing layer;
5. 电子传输层的制备:利用真空蒸镀设备在钙钛矿吸光层上蒸镀C60,C60厚度为20 nm,蒸镀速率为0.1 Å/s,其蒸镀的气压环境小于4×10-4Pa;5. Preparation of electron transport layer:
6. 空穴阻挡层的制备:利用真空蒸镀设备在C60上蒸镀有机小分子材料BCP,形成空穴阻挡层,空穴阻挡层的厚度为5.5 nm,蒸镀的速率为0.4 Å/s,其蒸镀的气压环境小于4×10-4Pa;6. Preparation of hole blocking layer: The organic small molecule material BCP was evaporated on C 60 using vacuum evaporation equipment to form a hole blocking layer, the thickness of the hole blocking layer was 5.5 nm, and the evaporation rate was 0.4 Å/ s, the vapor deposition pressure environment is less than 4×10 -4 Pa;
7. 金属阴极的制备:在空穴阻挡层上蒸镀金属,形成金属阴极层,金属阴极层的厚度为100 nm,蒸镀速率为0.8 Å/s,其蒸镀的气压环境小于4×10-4Pa;7. Preparation of metal cathode: metal is evaporated on the hole blocking layer to form a metal cathode layer, the thickness of the metal cathode layer is 100 nm, the evaporation rate is 0.8 Å/s, and the vapor deposition pressure environment is less than 4 × 10 -4 Pa;
8. 制备的器件涂抹环氧树脂材料,紫外光照射10 min,进行封装。8. The prepared device was coated with epoxy resin material, and irradiated with ultraviolet light for 10 min for encapsulation.
在室温环境下,测器件的J-V曲线,如图2所示,从图中可以得知器件的开路电压为0.316V,短路电流为17.58 mA cm-2,填充因子为0.634,效率为3.52%。At room temperature, the JV curve of the device was measured, as shown in Figure 2. From the figure, it can be seen that the open-circuit voltage of the device is 0.316V, the short-circuit current is 17.58 mA cm -2 , the fill factor is 0.634, and the efficiency is 3.52%.
对比例1和实施例1、2所制备的钙钛矿层的SEM图如图4所示,从图中可以看出,在乙醚反溶剂中添加手性材料扁桃酸作为添加剂后,可显著减少晶界缺陷,使得制备出的钙钛矿吸光层具有高结晶度,低缺陷密度,得到高质量的吸光层,有利于电子的提取,平衡载流子的传输,进而提高器件的光电性能,最终提升钙钛矿太阳能电池的转换效率。The SEM images of the perovskite layers prepared in Comparative Example 1 and Examples 1 and 2 are shown in Figure 4. It can be seen from the figure that the addition of the chiral material mandelic acid as an additive in the ether anti-solvent can significantly reduce the crystallinity. Boundary defects make the prepared perovskite light-absorbing layer have high crystallinity and low defect density, resulting in a high-quality light-absorbing layer, which is conducive to the extraction of electrons and balances the transport of carriers, thereby improving the optoelectronic properties of the device, and ultimately improving Conversion efficiency of perovskite solar cells.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are only the embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied to other related technologies Fields are similarly included in the scope of patent protection of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110522687.5A CN113206201B (en) | 2021-05-13 | 2021-05-13 | A method for optimizing lead-free perovskite solar cell thin films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110522687.5A CN113206201B (en) | 2021-05-13 | 2021-05-13 | A method for optimizing lead-free perovskite solar cell thin films |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113206201A CN113206201A (en) | 2021-08-03 |
CN113206201B true CN113206201B (en) | 2022-09-06 |
Family
ID=77031096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110522687.5A Active CN113206201B (en) | 2021-05-13 | 2021-05-13 | A method for optimizing lead-free perovskite solar cell thin films |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113206201B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113725364A (en) * | 2021-08-19 | 2021-11-30 | 华南师范大学 | Hydriodic acid modified tin-lead mixed perovskite solar cell and preparation method thereof |
CN113707810B (en) * | 2021-09-24 | 2024-05-17 | 嘉兴学院 | Tin-containing perovskite solar cell with AuNCs doped PEDOT:PSS as hole transport layer and preparation method thereof |
KR102717454B1 (en) * | 2022-03-29 | 2024-10-15 | 서울대학교 산학협력단 | Perovskite composite compring chiral dopnat and method of manufacturing same |
CN115286939B (en) * | 2022-08-01 | 2024-02-23 | 昆山协鑫光电材料有限公司 | Lead-free tin-based halide perovskite film, preparation composition, preparation method and application |
CN119275704A (en) * | 2024-12-06 | 2025-01-07 | 浙江大学 | Continuous wave three-dimensional chiral perovskite laser and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1624948A (en) * | 2003-12-04 | 2005-06-08 | 诺瓦莱德有限公司 | Method of doping organic semiconductors with quinonediimine derivatives |
CN109378386A (en) * | 2018-10-16 | 2019-02-22 | 南京邮电大学 | A method for regulating the morphology of lead-free perovskite solar cells and the prepared solar cell device |
CN110299455A (en) * | 2019-06-27 | 2019-10-01 | 南京邮电大学 | It is a kind of regulate and control unleaded perovskite solar cell surface pattern preparation method |
-
2021
- 2021-05-13 CN CN202110522687.5A patent/CN113206201B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1624948A (en) * | 2003-12-04 | 2005-06-08 | 诺瓦莱德有限公司 | Method of doping organic semiconductors with quinonediimine derivatives |
CN109378386A (en) * | 2018-10-16 | 2019-02-22 | 南京邮电大学 | A method for regulating the morphology of lead-free perovskite solar cells and the prepared solar cell device |
CN110299455A (en) * | 2019-06-27 | 2019-10-01 | 南京邮电大学 | It is a kind of regulate and control unleaded perovskite solar cell surface pattern preparation method |
Non-Patent Citations (1)
Title |
---|
有机-无机卤化物钙钛矿薄膜形貌调控研究及太阳能电池器件优化;李志;《工程科技Ⅱ辑》;20210315;第39-47页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113206201A (en) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113206201B (en) | A method for optimizing lead-free perovskite solar cell thin films | |
CN107482122B (en) | perovskite solar cell and preparation method | |
CN111952456B (en) | Efficient and stable perovskite solar cell and preparation method and application thereof | |
CN109216557B (en) | Based on citric acid/SnO2Perovskite solar cell of electron transport layer and preparation method thereof | |
CN104218109B (en) | A kind of high efficiency perovskite thin film solar cell and preparation method thereof | |
CN109802041B (en) | Non-fullerene perovskite planar heterojunction solar cell and preparation method thereof | |
CN111987222A (en) | Solar cells based on double perovskite materials and preparation methods | |
CN104979494A (en) | Perovskite thin film as well as preparation method and application thereof | |
CN109728169B (en) | Perovskite solar cell doped with functional additive and preparation method thereof | |
CN107240643A (en) | Bromo element doping methylamine lead iodine perovskite solar cell and preparation method thereof | |
CN109786555B (en) | Perovskite solar cell and preparation method | |
CN111081883B (en) | A high-efficiency and stable planar heterojunction perovskite solar cell and preparation method | |
CN108389969A (en) | A kind of green solvent system and mixed solution being used to prepare perovskite solar cell calcium titanium ore bed | |
CN109585661B (en) | Preparation method of interface-enhanced highlight-thermal stable perovskite film | |
CN111261745A (en) | Perovskite battery and preparation method thereof | |
CN113130762B (en) | Light absorption layer material of solar cell, ternary cation perovskite solar cell and preparation method thereof | |
CN110299455A (en) | It is a kind of regulate and control unleaded perovskite solar cell surface pattern preparation method | |
CN113421975A (en) | Method for modifying tin dioxide by ammonium hexafluorophosphate and application of tin dioxide in perovskite solar cell | |
CN106920880A (en) | A kind of perovskite solar cell and preparation method thereof | |
CN116847670A (en) | Perovskite solar cell of passivation composite hole transport layer | |
CN107170894B (en) | A kind of perovskite solar cell and preparation method thereof | |
CN114824103A (en) | A kind of perovskite solar cell and its production method | |
CN114583061A (en) | Lead-free tin-based perovskite thin film with three-dimensional structure and preparation method of solar cell thereof | |
CN114678472A (en) | A FAPbI3 perovskite thin film and method for efficient perovskite solar cells | |
CN108198939A (en) | A kind of organic solar batteries of zinc oxide composite film based on multi-layer doping magnalium as electron transfer layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |