CN113197543A - 基于矢量像差理论的屈光手术后视觉质量评价方法和系统 - Google Patents

基于矢量像差理论的屈光手术后视觉质量评价方法和系统 Download PDF

Info

Publication number
CN113197543A
CN113197543A CN202110490150.5A CN202110490150A CN113197543A CN 113197543 A CN113197543 A CN 113197543A CN 202110490150 A CN202110490150 A CN 202110490150A CN 113197543 A CN113197543 A CN 113197543A
Authority
CN
China
Prior art keywords
eye
aberration
patient
standard
eye model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110490150.5A
Other languages
English (en)
Other versions
CN113197543B (zh
Inventor
赵星
张帅
王雁
张琳
赵新恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN EYE HOSPITAL
Nankai University
Original Assignee
TIANJIN EYE HOSPITAL
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN EYE HOSPITAL, Nankai University filed Critical TIANJIN EYE HOSPITAL
Priority to CN202110490150.5A priority Critical patent/CN113197543B/zh
Publication of CN113197543A publication Critical patent/CN113197543A/zh
Application granted granted Critical
Publication of CN113197543B publication Critical patent/CN113197543B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了基于矢量像差理论的屈光手术后视觉质量评价方法和系统,本方法包括如下步骤:建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系;通过临床患者全眼像差系数,求解患者眼模型角膜改变量及对应的Zernike系数;获得术后患者眼模型;通过光学软件获得客观评价指标,完成患者术后视觉质量评价。本系统包括标准眼模块、患者临床眼模块、患者眼模块、指标模块。本发明基于光学矢量像差理论,综合运用Zernike多项式和光学成像系统像质评价功能获得客观评价指标,对屈光手术后患者视觉质量进行综合的客观评价,有效克服了对于屈光手术后像差处于较低水平的人眼无法全面、准确、客观地评估其视觉质量的问题。

Description

基于矢量像差理论的屈光手术后视觉质量评价方法和系统
技术领域
本发明属于视光学领域,特别是涉及基于矢量像差理论的屈光手术后视觉质量评价方法和系统。
背景技术
随着物理光学和医学技术的快速发展,屈光手术逐渐成为矫正屈光不正的重要手段。目前屈光手术技术成熟度较高、治疗高效、安全性较高,与传统佩戴框架眼镜相比,屈光手术可以使患者获得较好的裸眼视力,摆脱了眼镜带来的不便,也满足了部分职业对于裸眼视力的要求,屈光手术已成为目前屈光不正的主流矫正方式之一。随着近年来近视等屈光不正患者的快速增加以及屈光手术技术的发展,屈光手术在全世界得到了广泛的应用,目前屈光手术在全球的手术量已超过2亿。
屈光手术的目的是矫正患者的屈光不正,提升患者的裸眼视力,一般采用视力来评价手术的有效性。随着社会发展以及人们生活水平的提高,患者对于视觉质量的要求也相应提高。而视力仅可以反映在高空间频率下患者的视觉质量,无法全面反映日常生活中患者的视觉效果。
对比敏感度曲线(Contrast sensitivity function,CSF)可以反映多种空间频率下的视觉质量,但是这种方式依赖患者主观感知,受心理状态等主观因素影响,无法准确评估人眼这一光学系统实际的成像质量。由于屈光手术后像差处于较低水平,此时像差的均方根(Root Mean Square,RMS)值与视觉质量的对应关系较弱,因此像差均方根也无法准确评价屈光手术后的视觉质量。本发明能够提供一种基于矢量像差理论的新型的能够全面、准确、客观地评价屈光手术后视觉质量的评价方法。
发明内容
为了有效克服对于屈光手术后像差处于较低水平的人眼无法全面、准确、客观地评估其视觉质量的问题,本发明提出基于矢量像差理论的屈光手术后视觉质量评价方法,对屈光手术后患者视觉质量进行综合的客观评价。
为实现上述目的,本发明提供了如下方案:
基于矢量像差理论的屈光手术后视觉质量评价方法,包括如下步骤:
S1.建立标准眼模型,采用Zernike自由曲面表征所述标准眼模型的角膜前表面,对标准眼模型全眼像差进行定量表述,建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系;
S2.获取屈光手术后的临床患者全眼像差系数,所述临床患者全眼像差系数采用临床标准Zernike多项式表示;
利用所述S1建立的定量关系,反向求解患者眼模型的角膜改变量及对应的Zernike系数;
S3.利用S2得到的Zernike系数表征所述标准眼模型的角膜前表面,获得术后患者眼模型;
所述术后患者眼模型具有眼波前像差分布;
S4.使用光学成像系统像质评价方法得到视觉质量客观评价指标,完成对所述术后患者眼模型进行患者手术后视觉质量进行综合的客观评价;所述光学成像系统像质评价方法包括但不限于调制传递函数、点扩散函数、三维图像仿真。
优选的,所述Zernike自由曲面的表达式为:
Figure BDA0003052076970000031
其中,
Figure BDA0003052076970000032
表示二次曲面,c和k分别为二次曲面的顶点曲率和圆锥系数,
Figure BDA0003052076970000033
为Zernike多项式各项子项的叠加式,其中Ki代表Zernike多项式系数,Zi表示第i项Zernike多项式,i对应不同波前像差,ρ、
Figure BDA0003052076970000034
分别为Zernike多项式的径向坐标和方位角,z(x,y)为自由曲面在坐标(x,y)处的矢高。
优选的,对所述标准眼模型全眼像差进行定量表述的过程为:利用光学软件对所述标准眼模型进行真实光线追迹,获取边缘光线在所述标准眼模型的角膜前表面的入射高度h,以及边缘视场主光线在所述标准眼模型的角膜前表面的入射高度
Figure BDA0003052076970000035
将h、
Figure BDA0003052076970000036
和共轴Zernike自由曲面像差结合,完成对所述标准眼模型全眼像差的定量表述;
所述共轴Zernike自由曲面像差,为在共轴Zernike自由曲面光学系统的非光阑处,其Zernike项对应系数K产生的光学系统像差。
优选的,所述标准眼模型全眼像差通过所述标准眼模型的瞳孔放缩比例因子a、光束孔径离心因子b、视场矢量H、Zernike项对应系数K进行定量表述,其中:
Figure BDA0003052076970000041
Figure BDA0003052076970000042
R为共轴Zernike自由曲面的归一化半径。
优选的,所述步骤S2还包括:
在获取由上述临床标准Zernike多项式表示的所述临床患者全眼像差系数后,将所述临床标准Zernike多项式转换为矢量像差理论使用的Fringe Zernike多项式,获取屈光手术后的术后患者全眼像差系数。
优选的,所述步骤S4包括如下步骤:
S4.1获取所述术后患者眼模型的调制传递函数,求取调制传递函数曲线下的归一化面积;将所述归一化面积作为屈光手术后视觉质量评价的量化指标;
S4.2获取所述术后患者眼模型的点扩散函数分析图;
S4.3获取所述术后患者眼模型的二维图像仿真分析图;
S4.4基于所述调制传递函数及所述归一化面积、所述点扩散函数分析图、所述二维图像仿真分析图,完成患者屈光手术后视觉质量综合的客观评价。
优选的,所述步骤S4.1还包括:
S4.1.1通过光学软件,得到所述术后患者眼模型调制传递函数的曲线参数;
S4.1.2利用梯形积分法求取调制传递函数曲线下归一化面积。
优选的,利用梯形积分法求取调制传递函数曲线下归一化面积的过程为:将调制传递函数曲线f(X)沿着离散等间隔空间频率Xm(m=1,2,...,n)进行积分,调制传递函数曲线下归一化面积S的公式为:
Figure BDA0003052076970000051
其中,Δh为采样空间频率间隔,Smax=nΔh,为调制传递函数曲线最大归一化面积。
本发明还提供了基于矢量像差理论的屈光手术后视觉质量评价系统,所述系统包括:标准眼模块、患者临床眼模块、患者眼模块、指标模块;
所述标准眼模块用于使用Zernike自由曲面表征所述标准眼模型的角膜前表面,对所述标准眼模型全眼像差进行定量表述,建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系;
所述患者临床眼模块用于获取采用临床标准Zernike多项式表示的临床患者全眼像差系数,根据所述标准眼模块建立的定量关系,得到患者眼模型的角膜改变量及对应的Zernike系数;
所述患者眼模块用于根据所述患者临床眼模块得到的Zernike系数,建立术后患者眼模型;
所述指标模块用于根据所述患者眼模块建立的所述术后患者眼模型,得到调制传递函数曲线以及曲线下的归一化面积、点扩散函数分析图和二维图像仿真分析图。
本发明的有益效果为:
本发明基于矢量像差理论,从光学经典像质评价的角度出发,通过标准眼模型光线追迹参数和共轴Zernike自由曲面像差,建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系,再通过患者眼模型角膜改变量,建立术后患者眼模型,最后基于调制传递函数曲线下的归一化面积、点扩散函数分析图和二维图像仿真分析图,对屈光手术后患者视觉质量进行综合的客观评价。本发明有效克服了因过多的主观因素影响导致的无法准确评价患者术后视觉质量改善程度,以及无法明确手术是否达到预期效果等问题,对分析患者术后视觉质量具有重要的意义和广阔的应用前景。
附图说明
为了更清楚地说明本发明的技术方案,下面对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的方法流程图;
图2为本发明实施例中标准眼模型示意图;
图3为本发明实施例中标准眼模型角膜改变量与标准眼模型全眼像差值分布;
图4为本发明实施例中临床全眼像差分布;
图5为本发明实施例中临床标准Zernike多项式与Fringe Zernike多项式的对应关系;
图6为本发明实施例中反向求解出的眼模型角膜改变量对应的Fringe Zernike系数;
图7为本发明实施例中患者眼模型的调制传递函数MTF分析图;
图8为本发明实施例中梯形积分法原理图;
图9为本发明实施例中术后患者眼模型的调制传递函数MTF参数以及求解出的归一化MTF曲线下面积;
图10为本发明实施例中术后患者眼模型的点扩散函数PSF分析图;
图11为本发明实施例中术后患者眼模型的二维图像仿真分析图;
图12为本发明实施例系统组成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例以一位接收飞秒激光辅助的准分子激光原位角膜磨镶术(FemtosecondLaser-Assisted Laser in situ keratomileusis,FS-LASIK)的患者为例,说明术后视觉质量评价的过程。
在本实施例中,采用的光学软件为Code V。
如图1所示,本发明提供基于矢量像差理论的屈光手术后视觉质量评价方法,包括如下步骤:
S1.建立标准眼模型,采用Zernike自由曲面表征所述标准眼模型的角膜前表面,对所述标准眼模型全眼像差进行定量表述,建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系;
在光学软件Code V中,按照表1所示的结构参数建立标准眼模型。
表1
Figure BDA0003052076970000081
对于如图2所示的标准人眼模型,对其复杂的角膜前表面,采用由Zernike多项式表示的自由曲面(Zernike自由曲面)进行表征,Zernike自由曲面的面型表达式如下,
Figure BDA0003052076970000091
其中,
Figure BDA0003052076970000092
表示二次曲面,c和k分别为二次曲面的顶点曲率和圆锥系数,
Figure BDA0003052076970000093
为Zernike多项式各项子项的叠加式,其中Ki代表Zernike多项式系数,Zi表示第i项Zernike多项式,i对应不同波前像差,ρ、
Figure BDA0003052076970000094
分别为Zernike多项式的径向坐标和方位角,z(x,y)为自由曲面在坐标(x,y)处的矢高。
在本实施例中,利用Code V光学软件对标准眼模型进行真实光线追迹,获取边缘光线在角膜前表面的入射高度h为3mm,边缘视场主光线在角膜前表面的入射高度
Figure BDA0003052076970000095
为0,结合h与
Figure BDA0003052076970000096
和共轴Zernike自由曲面像差,对标准眼模型角膜改变量产生的眼模型全眼像差定量表述,得到标准眼模型角膜改变量与产生的标准眼模型全眼像差的定量关系,如图3所示。
其中,标准眼模型全眼像差为标准眼模型的角膜发生改变后产生的对应像差;共轴Zernike自由曲面像差,为在共轴Zernike自由曲面光学系统的非光阑处,其Zernike项对应系数K产生的光学系统像差。
图3中,
Figure BDA0003052076970000097
为眼模型视场矢量,a和b分别为标准眼模型的瞳孔放缩比例因子和光束孔径离心因子,标准眼模型全眼像差通过所述标准眼模型的瞳孔放缩比例因子a、光束孔径离心因子b、视场矢量H、Zernike项对应系数K进行定量表述,其中:
Figure BDA0003052076970000101
Figure BDA0003052076970000102
R为自由曲面的归一化半径。
定量关系建立过程具体为:设置Zernike自由曲面的归一化半径为3mm,则根据式(2)和式(3)可得图3中的a和b的大小分别为1和0,带入共轴Zernike自由曲面光学系统非光阑处自由曲面的Zernike项产生的光学系统像差表达式中,得到眼模型角膜改变量与产生的眼模型全眼像差的定量关系。
S2.获取屈光手术后的临床患者全眼像差系数,所述临床患者全眼像差系数采用临床标准Zernike多项式表示;
在本实施例中,通过波前像差测量获取由临床标准Zernike多项式表示的临床患者全眼像差系数Keye,全眼波前像差数据的测量与收集采用美国强生idesign波前像差测量系统完成,瞳孔直径均标化为6mm。临床认为高阶像差中对于视觉质量影响较大的垂直彗差、水平彗差和初级球差的全眼像差分布如图4所示。
根据图4中的全眼像差,将临床标准Zernike多项式转换为矢量像差理论利用的Fringe Zernike多项式,从而获取屈光手术术后患者的全眼Fringe Zernike像差系数Kfringe。两种Zernike多项式的对应关系如图5所示。在本实施例中,这里的像差类型为临床认为对视觉质量最具影响的离焦、像散、初级彗差、初级球差和三叶像差。
本实施例以初级球差为例,说明临床标准Zernike多项式与Fringe Zernike多项式之间的转换方法。临床标准Zernike项和Fringe Zernike多项式表示的初级球差表达式分别为
Figure BDA0003052076970000111
Zfringe sphere=6ρ4-6ρ2+1………………(5)
其中ρ为光瞳径向坐标,因此为保证总测量值不变,即,
Weye sphere=Wfringe sphere…………………(6)
其中Weye sphere和Wfringe sphere分别表示初级球差在临床标准Zernike多项式和Fringe Zernike多项式表征下的总测量值,他们可表示为以下形式,
Weye sphere=Keye sphereZeye sphere……………(7)
Wfringe sphere=Kfringe sphereZfringe sphere………(8)
其中Keye sphere和Kfringe sphere分别为临床测量的临床标准Zernike初级球差系数和对应的FringeZernike初级球差系数,因此根据式(6),在转换过程中,Keye sphere与Kfringe sphere之间需满足以下关系,
Keye sphereZeye sphere=Kfringe sphereZfringe sphere
Figure BDA0003052076970000112
因此可根据临床测量得到的初级球差系数Keye sphere计算得出其对应的FringeZernike初级球差系数Kfringe sphere
利用图3所示的标准眼模型角膜改变量与标准眼模型全眼像差的定量关系,按照图4所示,反向求解需要产生患者全眼像差Wfringe的患者眼模型角膜改变量,及对应的Zernike系数Ki,i代表第i项Zernike系数,计算结果如图6所示。本实施例以在标准眼模型中心视场(零视场)处测量得到的彗差为例,说明对角膜改变量对应Zernike系数Ki的反向求解过程。根据图3可知,对应彗差的角膜改变量对应Zernike系数
Figure BDA0003052076970000121
在零视场产生的彗差系数
Figure BDA0003052076970000122
为,
Figure BDA0003052076970000123
而通过临床测量手段已经获得患者眼的彗差系数
Figure BDA0003052076970000124
同时,缩放因子a可通过光线追迹获得,因此可通过反向求解式(10),得到角膜改变量对应Zernike系数
Figure BDA0003052076970000125
Figure BDA0003052076970000126
从而可得对应水平彗差和垂直彗差的角膜改变量Zernike系数K7和K8分别为,
Figure BDA0003052076970000127
Figure BDA0003052076970000128
S3.利用步骤S2求解得到的Zernike系数Ki表征标准眼模型的角膜前表面,即将Ki带入式(1)的Zernike多项式系数中,从而获得含有图5中实际波前像差分布Wfringe的术后患者眼模型;
S4.使用调制传递函数、点扩散函数和二维图像仿真,通过所述术后患者眼模型完成患者手术后视觉质量综合的客观评价。
在本实施例中,通过Code V光学软件,利用经典的像质评价功能对患者眼模型进行调制传递函数MTF分析,患者眼模型的MTF分析结果如图7所示。利用软件导出MTF曲线的离散坐标值,采用梯形积分法求取MTF曲线下归一化面积,梯形积分法原理如图8所示,将MTF曲线f(X)沿着离散等间隔空间频率Xm(m=1,2,...,n)进行积分,得到MTF曲线下归一化面积为:
Figure BDA0003052076970000131
其中,Δh为采样空间频率间隔,Smax=nΔh,为MTF曲线最大归一化面积。本实施例以S作为患者视觉质量评价指标,并规定MTF曲线下面积较大的患者眼具有较好的光学成像质量。MTF曲线参数以及求得的MTF下归一化面积如图9所示。同时对患者眼模型进行点扩散函数PSF和二维图像仿真分析,患者眼模型的PSF和二维图像仿真分析结果分别如图10和图11所示。根据归一化面积S、点扩散函数PSF分析图、二维图像仿真分析图,对屈光手术术后患者视觉质量进行综合的客观评价。
如图12所示,本发明基于矢量像差理论的屈光手术后视觉质量评价系统包括标准眼模块、患者临床眼模块、患者眼模块、指标模块;
所述标准眼模块用于使用Zernike自由曲面表征所述标准眼模型的角膜前表面,对所述标准眼模型全眼像差进行定量表述,建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系;
所述患者临床眼模块用于获取采用临床标准Zernike多项式表示的临床患者全眼像差系数,根据所述标准眼模块建立的定量关系,得到患者眼模型的角膜改变量及对应的Zernike系数;
所述患者眼模块用于根据所述患者临床眼模块得到的Zernike系数,建立术后患者眼模型;
所述指标模块用于根据所述患者眼模块建立的所述术后患者眼模型,得到调制传递函数曲线下的归一化面积、点扩散函数分析图和二维图像仿真分析图。
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

1.基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,包括如下步骤:
S1.建立标准眼模型,采用Zernike自由曲面表征所述标准眼模型的角膜前表面,对标准眼模型全眼像差进行定量表述,建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系;
S2.获取屈光手术后的临床患者全眼像差系数,所述临床患者全眼像差系数采用临床标准Zernike多项式表示;
利用所述S1建立的所述定量关系,反向求解患者眼模型的角膜改变量及对应的Zernike系数;
S3.利用S2得到的所述Zernike系数表征所述标准眼模型的角膜前表面,获得术后患者眼模型;
所述术后患者眼模型具有眼波前像差分布;
S4.使用光学成像系统像质评价方法得到视觉质量客观评价指标,完成对所述术后患者眼模型进行患者手术后视觉质量综合的客观评价;所述光学成像系统像质评价方法包括但不限于调制传递函数、点扩散函数、三维图像仿真。
2.根据权利要求1手术的基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,所述Zernike自由曲面的表达式为:
Figure FDA0003052076960000011
其中,
Figure FDA0003052076960000012
表示二次曲面,c和k分别为二次曲面的顶点曲率和圆锥系数,
Figure FDA0003052076960000021
为Zernike多项式各项子项的叠加式,其中Ki代表Zernike多项式系数,Zi表示第i项Zernike多项式,i对应不同波前像差,ρ、
Figure FDA0003052076960000022
分别为Zernike多项式的径向坐标和方位角,z(x,y)为自由曲面在坐标(x,y)处的矢高。
3.根据权利要求1所述的基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,对所述标准眼模型全眼像差进行定量表述的过程为:利用光学软件对所述标准眼模型进行真实光线追迹,获取边缘光线在所述标准眼模型的角膜前表面的入射高度h,以及边缘视场主光线在所述标准眼模型的角膜前表面的入射高度
Figure FDA0003052076960000025
将h、
Figure FDA0003052076960000026
和共轴Zernike自由曲面像差相结合,完成对所述标准眼模型全眼像差的定量表述;
所述共轴Zernike自由曲面像差,为在共轴Zernike自由曲面光学系统的非光阑处,其Zernike项对应系数K产生的光学系统像差。
4.根据权利要求3所述的基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,所述标准眼模型全眼像差通过所述标准眼模型的瞳孔放缩比例因子a、光束孔径离心因子b、视场矢量H、Zernike项对应系数K进行定量表述,其中:
Figure FDA0003052076960000023
Figure FDA0003052076960000024
R为共轴Zernike自由曲面的归一化半径。
5.根据权利要求1所述的基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,所述S2还包括:
在获取由所述临床标准Zernike多项式表示的所述临床患者全眼像差系数后,将所述临床标准Zernike多项式转换为矢量像差理论使用的Fringe Zernike多项式,获取屈光手术后的所述术后患者全眼像差系数。
6.根据权利要求1所述的基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,所述S4包括如下步骤:
S4.1.获取所述术后患者眼模型的调制传递函数,求取调制传递函数曲线下的归一化面积;将所述归一化面积作为屈光手术后视觉质量评价的量化指标;
S4.2.获取所述术后患者眼模型的点扩散函数分析图;
S4.3.获取所述术后患者眼模型的二维图像仿真分析图;
S4.4.基于所述调制传递函数及所述归一化面积、所述点扩散函数分析图、所述二维图像仿真分析图,完成患者屈光手术后视觉质量客观综合评价。
7.根据权利要求6所述的基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,所述S4.1还包括:
S4.1.1通过光学软件,得到所述术后患者眼模型调制传递函数的曲线参数;
S4.1.2利用梯形积分法求取调制传递函数曲线下归一化面积。
8.根据权利要求7所述的基于矢量像差理论的屈光手术后视觉质量评价方法,其特征在于,利用梯形积分法求取调制传递函数曲线下归一化面积的过程为:将调制传递函数曲线f(X)沿着离散等间隔空间频率Xm(m=1,2,...,n)进行积分,调制传递函数曲线下归一化面积S的公式为:
Figure FDA0003052076960000041
其中,Δh为采样空间频率间隔,Smax=nΔh,为调制传递函数曲线最大归一化面积。
9.根据权利要求1-8任一项所述的基于矢量像差理论的屈光手术后视觉质量评价系统,其特征在于,
所述系统包括:标准眼模块、患者临床眼模块、患者眼模块、指标模块;
所述标准眼模块用于使用Zernike自由曲面表征所述标准眼模型的角膜前表面,对所述标准眼模型全眼像差进行定量表述,建立标准眼模型角膜改变量与标准眼模型全眼像差的定量关系;
所述患者临床眼模块用于获取采用临床标准Zernike多项式表示的所述临床患者全眼像差系数,根据所述标准眼模块建立的定量关系,得到患者眼模型的角膜改变量及对应的Zernike系数;
所述患者眼模块用于根据所述患者临床眼模块得到的Zernike系数,建立所述术后患者眼模型;
所述指标模块用于根据所述患者眼模块建立的所述术后患者眼模型,得到调制传递函数曲线以及曲线下的归一化面积、点扩散函数分析图和二维图像仿真分析图。
CN202110490150.5A 2021-05-06 2021-05-06 基于矢量像差理论的屈光手术后视觉质量评价方法和系统 Active CN113197543B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110490150.5A CN113197543B (zh) 2021-05-06 2021-05-06 基于矢量像差理论的屈光手术后视觉质量评价方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110490150.5A CN113197543B (zh) 2021-05-06 2021-05-06 基于矢量像差理论的屈光手术后视觉质量评价方法和系统

Publications (2)

Publication Number Publication Date
CN113197543A true CN113197543A (zh) 2021-08-03
CN113197543B CN113197543B (zh) 2023-02-28

Family

ID=77030109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110490150.5A Active CN113197543B (zh) 2021-05-06 2021-05-06 基于矢量像差理论的屈光手术后视觉质量评价方法和系统

Country Status (1)

Country Link
CN (1) CN113197543B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114580915A (zh) * 2022-03-07 2022-06-03 南京新生医疗科技有限公司 一种新微针技术植发效果的智能评价方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481227A (zh) * 2000-12-22 2004-03-10 �������Ÿ��������ɷ����޹�˾ 获得能减少眼像差的眼科透镜的方法
CN1512861A (zh) * 2001-06-01 2004-07-14 ��ʽ������¿� 角膜切除数据确定设备和角膜切除数据确定程序
WO2005048819A2 (en) * 2003-11-14 2005-06-02 Tracey Technologies, Llc Method and device for determining refractive components and visual function of the eye for vision correction
CN101224103A (zh) * 2008-02-01 2008-07-23 上海理工大学 一种人眼像差测量装置及其测量方法
CN102036598A (zh) * 2008-04-22 2011-04-27 阿默发展有限公司 角膜激光外科手术期间的高阶光学校正
WO2012092584A1 (en) * 2010-12-30 2012-07-05 AMO Wavefront Sciences LLC. Improved treatment planning method and system for controlling laser refractive surgery
CN102914879A (zh) * 2012-11-06 2013-02-06 天津宇光光学公司 基于波前技术的自由曲面眼镜的设计方法
CN103006177A (zh) * 2012-12-20 2013-04-03 南京航空航天大学 基于Zernike共轭组合模型的人眼像差补偿方法
CN104271030A (zh) * 2012-07-10 2015-01-07 威孚莱有限公司 用于确定眼睛的光学像差的方法及设备
CN104298815A (zh) * 2014-09-23 2015-01-21 南京邮电大学 一种人眼平均模型的逆向构建方法
CN109512380A (zh) * 2018-11-02 2019-03-26 爱尔眼科医院集团股份有限公司 基于波前传感技术制作全视网膜屈光地形图的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481227A (zh) * 2000-12-22 2004-03-10 �������Ÿ��������ɷ����޹�˾ 获得能减少眼像差的眼科透镜的方法
CN1512861A (zh) * 2001-06-01 2004-07-14 ��ʽ������¿� 角膜切除数据确定设备和角膜切除数据确定程序
WO2005048819A2 (en) * 2003-11-14 2005-06-02 Tracey Technologies, Llc Method and device for determining refractive components and visual function of the eye for vision correction
CN101224103A (zh) * 2008-02-01 2008-07-23 上海理工大学 一种人眼像差测量装置及其测量方法
CN102036598A (zh) * 2008-04-22 2011-04-27 阿默发展有限公司 角膜激光外科手术期间的高阶光学校正
WO2012092584A1 (en) * 2010-12-30 2012-07-05 AMO Wavefront Sciences LLC. Improved treatment planning method and system for controlling laser refractive surgery
CN104271030A (zh) * 2012-07-10 2015-01-07 威孚莱有限公司 用于确定眼睛的光学像差的方法及设备
CN102914879A (zh) * 2012-11-06 2013-02-06 天津宇光光学公司 基于波前技术的自由曲面眼镜的设计方法
CN103006177A (zh) * 2012-12-20 2013-04-03 南京航空航天大学 基于Zernike共轭组合模型的人眼像差补偿方法
CN104298815A (zh) * 2014-09-23 2015-01-21 南京邮电大学 一种人眼平均模型的逆向构建方法
CN109512380A (zh) * 2018-11-02 2019-03-26 爱尔眼科医院集团股份有限公司 基于波前传感技术制作全视网膜屈光地形图的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114580915A (zh) * 2022-03-07 2022-06-03 南京新生医疗科技有限公司 一种新微针技术植发效果的智能评价方法及系统

Also Published As

Publication number Publication date
CN113197543B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN100353907C (zh) 获得客观式显然验光的装置
JP4856277B2 (ja) 眼の視力異常の必要矯正値を決定するための装置および方法
US7562982B2 (en) Generalized presbyopic correction methodology
EP2309916B1 (en) System and method for prescription of visual aids
US20060244916A1 (en) Method for designing custom lenses for improved vision and correspondence lenses
US11561413B2 (en) Population of an eye model using measurement data in order to optimize spectacle lenses
Bakaraju et al. Finite schematic eye models and their accuracy to in-vivo data
Faria-Ribeiro et al. Morphology, topography, and optics of the orthokeratology cornea
Richdale et al. BCLA CLEAR–Contact lens optics
KR102001808B1 (ko) 눈의 보다 고차의 수차를 고려하여 프로그레시브 렌즈를 위한 개선된 설계를 결정하기 위한 방법
Tan et al. How keratoconus influences optical performance of the eye
Zhu et al. Tomography-based customized IOL calculation model
Langenbucher et al. Customized aspheric IOL design by raytracing through the eye containing quadric surfaces
Langenbucher et al. Theoretical image performance with customized aspheric and spherical IOLs–when do we get a benefit from customized aspheric design?
CN113197543B (zh) 基于矢量像差理论的屈光手术后视觉质量评价方法和系统
CN105339833B (zh) 用于确定镜片验光单的方法和系统
Zhu et al. Iteratively re-weighted bi-cubic spline representation of corneal topography and its comparison to the standard methods
US10613347B2 (en) Population of an eye model for optimizing spectacle lenses with measurement data
Li et al. A method to design aspheric spectacles for correction of high-order aberrations of human eye
CN108066006A (zh) 视力矫正效果模拟系统及方法
WO2022156826A1 (zh) 一种屈光测试卡及其测量方法
Ferrer-Blasco et al. Repeatability of in-vitro optical quality measurements of intraocular lenses with a deflectometry technique effect of the toricity
Leube et al. Prediction of progressive lens performance from neural network simulations
Li Optical Eye Modelling for Myopia Control
Xu et al. Information fusion method for ocular aberrations measurement based on subjective visual compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant