CN113193106A - 一种超导纳米线单光子探测器阵列的设计 - Google Patents

一种超导纳米线单光子探测器阵列的设计 Download PDF

Info

Publication number
CN113193106A
CN113193106A CN202110435556.3A CN202110435556A CN113193106A CN 113193106 A CN113193106 A CN 113193106A CN 202110435556 A CN202110435556 A CN 202110435556A CN 113193106 A CN113193106 A CN 113193106A
Authority
CN
China
Prior art keywords
electrode
generating
detector array
nano
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110435556.3A
Other languages
English (en)
Other versions
CN113193106B (zh
Inventor
张蜡宝
吕嘉煜
张笑
涂学凑
贾小氢
康琳
吴培亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202110435556.3A priority Critical patent/CN113193106B/zh
Publication of CN113193106A publication Critical patent/CN113193106A/zh
Application granted granted Critical
Publication of CN113193106B publication Critical patent/CN113193106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/83Element shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种超导纳米线单光子探测器阵列的设计,在基底上生成纳米薄膜,在纳米薄膜上生成第一电极和网格状的第二电极,第二电极包括行列电极和顶层电极,在网格中生成纳米线单元,组成探测器阵列;本发明将三维工艺转化为二维工艺,降低了工艺难度,保持了超大像素,行列电极分次生长,降低了读出电路的难度,行列电极有隔离层,分辨能力强,纳米线的宽度合适,均匀性好,器件性能优,成品率高。

Description

一种超导纳米线单光子探测器阵列的设计
技术领域
本发明属于纳米技术领域,具体涉及一种纳米阵列技术。
背景技术
超导纳米线单光子探测器,简称SNSPD,是一种新型的单光子探测器,具有效率高、暗计数低、探测速度快、响应频谱宽等特点。
超导纳米线单光子探测器的芯片部分由纳米量级厚度的超导材料薄膜构成,例如5~7nm厚度的NbN、MoSi薄膜。
为了提高超导纳米线的光耦合效率,一般将纳米线制作成蜿蜒结构。SNSPD工作在低于4K的温度条件下,外接略小于临界电流的偏置电流。超导纳米线吸收光子后,库珀电子对被破坏,在纳米线上形成热点区域,使得该位置上的纳米线区域从超导态转变为电阻态。
在偏置电流的作用下,失超的纳米线区域产生焦耳热,使得热点区域进一步扩散,最终形成完全的电阻区域。此时,偏置电流流向外部读出电路,检测电路可以产生电压脉冲输出探测信号。
单根纳米线在吸收光子之后存在一段驰豫时间,在这个时间内无法继续吸收光子产生响应。经过一段驰豫时间,热点区域通过向衬底的散热,库珀对重新形成,纳米线恢复超导状态,可以继续吸收光子。
目前国际上主流超导纳米线单光子探测器为单像元器件,不具备光子数分辨能力。由于纳米线面积小,耦合效率不高,限制了响应速度。
超导纳米线单光子探测器阵列器件可以很好的解决上述问题,却存在结构复杂、制备难度高、成品率低等难点。简单复制单元结构,不仅对制备成品率要求更高,而且复杂行列电路需要三维结构布线,对于薄膜厚度只有几纳米厚、线宽只有几十纳米的探测器纳米线,制备工艺要求极高。
发明内容
本发明为了解决现有技术存在的问题,提出了一种超导纳米线单光子探测器阵列的设计,为了实现上述目的,本发明采用了以下技术方案。
在清洗过的基底上采用磁控溅射技术生成纳米薄膜,在纳米薄膜外圈采用光刻工艺生成第一电极,在纳米薄膜内圈采用电子曝光工艺生成网格状的第二电极,在第二电极的网格中采用等离子刻蚀工艺生成蜿蜒状的纳米线,由纳米线并联电阻组成纳米线单元,数个纳米线单元组成探测器阵列的阵元。
第二电极由交错排布的行电极和列电极组成,在相邻列电极之间设置电极隔离层和空隙,在电极隔离层上采用电子曝光工艺生成顶层电极以连接相邻列电极,行电极从空隙通过。
用丙酮和酒精通过超声5至15min去除基底表面附着的杂质,用去离子水冲洗和氮气吹干,生成5至7nm厚的纳米薄膜。
在纳米薄膜表面旋涂正性光刻胶,采用图案化曝光、显影、定影工艺生成电极形状的光刻胶掩膜,在掩膜上采用lift-off工艺生成第一电极。
在纳米薄膜表面旋涂正性电子曝光胶,采用电子曝光工艺生成电极形状的曝光胶掩膜,在掩膜上采用lift-off工艺生成第二电极。
在纳米薄膜表面旋涂负性电子曝光胶,采用电子曝光、显影、定影、氮气吹扫工艺生成纳米线形状的曝光胶掩膜,在掩膜上采用等离子刻蚀工艺生成纳米线。
在纳米薄膜表面旋涂正性电子曝光胶,采用电子曝光工艺生成电极形状的曝光胶掩膜,在掩膜上采用lift-off工艺生成顶层电极。
第一电极采用100nm厚的金电极,第二电极采用40nm厚的金电极。
基底采用硅或硅化物,纳米薄膜和纳米线采用NbN、WSi或NbTiN。
本发明的有益效果:纳米线的宽度合适,均匀性好,器件性能优;制备工艺简单,成品率高;行列电极分次生长,采用行列复用的方式,降低了读出电路的难度;使用电子曝光胶,曝光生成氧化硅作为行列电极的隔离层,简化了工艺,光子数分辨能力强;使用二维工艺制作阵列,像素数目达到了128×128,响应速度快;使纳米线部分面积达到了1.6mm×1.6mm,耦合效率高,是目前公开报道的超导纳米线单光子探测器面积最大的;将国际上的大面积超导单光子探测器阵列的三维工艺转化为二维工艺,很大程度上降低了工艺难度与对设备的要求。
附图说明
图1是纳米线单元,图2是纳米线形状,图3是制备工艺流程,图4是生成第一电极,图5是生成第一电极和第二电极,图6是第二电极网格,图7是纳米线和第二电极连接。
附图标记:1-基底,2-纳米薄膜,3-第一电极,4-第二电极,5-纳米线单元,6-行电极,7-列电极,8-电极隔离层,9-顶层电极。
具体实施方式
以下结合附图对本发明的技术方案做具体的说明。
在高倍度放大镜下,纳米线单元如图1所示,面积达到了1.6mm×1.6mm量级,有4×4个像元,每个边长为50μm,假设探测器阵列有32×32个纳米线单元,则探测器的像素为128×128;继续放大看,纳米线形状如图2所示,宽度为62.2nm,宽度均匀性好。
探测器阵列的制备工艺流程如图3所示:准备清洗过的4寸硅片作为基底1,用丙酮和酒精以超声5min去除表面附着的有机物和其他杂质,用去离子水冲洗干净并用氮气吹干;采用磁控溅射技术,在硅片上生长一层厚度为6nm的NbN纳米薄膜2;在纳米薄膜2的外圈,采用AZ-1500正性光刻胶以4000rpm的速度旋涂2μm厚,经图案化曝光、显影、定影、长金、lift-off工艺生成100μm厚的第一电极3,如图4所示,作为外圈电极;在纳米薄膜2的内圈,采用PMMA A4电子曝光胶以3000rpm的速度旋涂200nm厚,经电子束曝光、显影、定影、长金、lift-off工艺生成40nm厚的网格状的第二电极4,如图5所示,作为内圈电极,与第一电极3共同组成最小精度为2um的底层电极;在纳米薄膜2表面旋涂HSQ电子曝光胶,经电子曝光、显影、定影、等离子刻蚀工艺,在第二电极的网格中生成完整的大面积纳米线单元5,如图6所示,在纳米线区域和行列电极的交叉区域生成二氧化硅的电极隔离层8;继续采用6200.13电子曝光胶以3000rpm的速度旋涂300nm厚,经电子束曝光、显影、定影、长金、lift-off工艺生成100nm厚的顶层电极9,最小精度为4um,连接相邻的两个列电极7,如图7所示,列电极7与行电极6组成完整的行列电极,行列电极构成网格状的第二电极4,第一电极3和第二电极4共同组成电极部分。
上述作为本发明的实施例,并不限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均包含在本发明的保护范围之内。

Claims (7)

1.一种超导纳米线单光子探测器阵列的设计,其特征在于,包括:在清洗过的基底上生成纳米薄膜,在纳米薄膜的外圈生成第一电极、内圈生成第二电极,第二电极由行、列电极交错排布形成网格状,在网格中生成蜿蜒状的纳米线,在相邻列电极之间生成电极隔离层和空隙,在电极隔离层上生成顶层电极以连接相邻列电极,行电极从空隙通过,由纳米线并联电阻形成纳米线单元,由数个纳米线单元组成探测器阵列的阵元。
2.根据权利要求1所述的超导纳米线单光子探测器阵列的设计,其特征在于,所述在清洗过的基底上生成纳米薄膜,包括:用丙酮和酒精以超声5至15min去除硅化物的基底表面附着的杂质,用去离子水冲洗和氮气吹干,采用磁控溅射技术生成5至7nm厚的NbN或WSi或NbTiN纳米薄膜。
3.根据权利要求1所述的超导纳米线单光子探测器阵列的设计,其特征在于,所述在纳米薄膜的外圈生成第一电极,包括:在纳米薄膜表面以4000rpm的速度旋涂2μm厚的AZ-1500正性光刻胶,采用光刻工艺生成电极形状的光刻胶掩膜,在掩膜上生成100μm厚的第一金电极,作为外圈电极。
4.根据权利要求1所述的超导纳米线单光子探测器阵列的设计,其特征在于,所述在纳米薄膜的内圈生成第二电极,包括:在纳米薄膜表面以3000rpm的速度旋涂200nm厚的PMMAA4正性电子曝光胶,采用电子曝光工艺生成电极形状的曝光胶掩膜,在掩膜上生成40nm厚的第二金电极,作为内圈电极。
5.根据权利要求1所述的超导纳米线单光子探测器阵列的设计,其特征在于,所述在网格中生成蜿蜒状的纳米线,包括:在纳米薄膜表面旋涂HSQ负性电子曝光胶,在网格中采用电子曝光工艺生成纳米线形状的曝光胶掩膜,在掩膜上采用等离子刻蚀工艺生成完整的大面积纳米线。
6.根据权利要求5所述的超导纳米线单光子探测器阵列的设计,其特征在于,所述在相邻列电极之间设置电极隔离层,包括:在纳米线区域和行列电极的交叉区域,采用电子曝光工艺生成二氧化硅的电极隔离层。
7.根据权利要求7所述的超导纳米线单光子探测器阵列的设计,其特征在于,所述在电极隔离层上生成顶层电极,包括:在纳米薄膜表面以3000rpm的速度旋涂300nm厚的6200.13正性电子曝光胶,采用电子曝光工艺生成电极形状的曝光胶掩膜,在掩膜上生成100nm厚的顶层电极。
CN202110435556.3A 2021-04-22 2021-04-22 一种超导纳米线单光子探测器阵列的设计方法 Active CN113193106B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110435556.3A CN113193106B (zh) 2021-04-22 2021-04-22 一种超导纳米线单光子探测器阵列的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110435556.3A CN113193106B (zh) 2021-04-22 2021-04-22 一种超导纳米线单光子探测器阵列的设计方法

Publications (2)

Publication Number Publication Date
CN113193106A true CN113193106A (zh) 2021-07-30
CN113193106B CN113193106B (zh) 2024-03-22

Family

ID=76978180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110435556.3A Active CN113193106B (zh) 2021-04-22 2021-04-22 一种超导纳米线单光子探测器阵列的设计方法

Country Status (1)

Country Link
CN (1) CN113193106B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359683A (zh) * 2013-07-10 2013-10-23 华中科技大学 一种mtj纳米柱阵列的制备方法
CN104752534A (zh) * 2015-04-27 2015-07-01 南京大学 超导纳米线单光子探测器及其制备方法
US20180145110A1 (en) * 2016-02-02 2018-05-24 Massachusetts Institute Of Technology Distributed nanowire sensor for single photon imaging
CN111675199A (zh) * 2020-05-15 2020-09-18 南京大学 一种高深宽比超导氮化铌纳米线及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359683A (zh) * 2013-07-10 2013-10-23 华中科技大学 一种mtj纳米柱阵列的制备方法
CN104752534A (zh) * 2015-04-27 2015-07-01 南京大学 超导纳米线单光子探测器及其制备方法
US20180145110A1 (en) * 2016-02-02 2018-05-24 Massachusetts Institute Of Technology Distributed nanowire sensor for single photon imaging
CN111675199A (zh) * 2020-05-15 2020-09-18 南京大学 一种高深宽比超导氮化铌纳米线及其制备方法和应用

Also Published As

Publication number Publication date
CN113193106B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US8519503B2 (en) High speed backside illuminated, front side contact photodiode array
JP6642769B1 (ja) グラフェンを用いた電子デバイスの製造方法
JP2017509142A (ja) 裏面照射型センサのための反射防止層
CN111947794B (zh) 一种超导纳米线单光子探测器的制备方法
CN112424906B (zh) 背照式传感器及制造传感器的方法
CN110416235A (zh) 一种中空表面等离激元结构的二维材料复合多色红外探测芯片
JP2015528206A (ja) 最適形状を有するcmos撮像素子および写真植字によってそのような素子を生産するための方法
US8946839B1 (en) Reduced volume infrared detector
CN110473928A (zh) 多通道全硅基红外光热电探测器及其制作方法
TW202017219A (zh) 半導體結構、光電器件、光探測器及光譜儀
CN115832108A (zh) 一种栅极可调高灵敏偏振探测器的制备方法
Gao et al. Improving the fabrication uniformity of ZnO nanowire UV sensor by step-corner growth mode
EP0211720B1 (fr) Procédé de fabrication d'un détecteur d'image lumineuse, et détecteur matriciel bidimensionnel obtenu par ce procédé
CN113193106B (zh) 一种超导纳米线单光子探测器阵列的设计方法
CN112736158A (zh) 一种高性能硅基锗探测器及其制备方法
CN109950364B (zh) 基于二维硒化亚锗光电探测器的成像元件制备方法
CN111637981A (zh) 一种光子数分辨探测器及其系统
CN108365049B (zh) 大光敏面超导纳米线单光子探测器
CN110310972B (zh) 光电探测器以及制备方法
CN112229510B (zh) 单光子探测器及制备方法
KR101476125B1 (ko) 박막형 태양전지 및 그 제조방법
JP2002198551A (ja) 光電変換素子とそれを用いた光電変換装置及び光電変換素子の製造方法
CN116387332A (zh) 一种AlN基真空紫外光面阵探测器及其制备方法
CN213905369U (zh) 一种铁电畴定义的串联二维光伏电池
WO2023168996A1 (zh) 结构化超导带单光子探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant