CN113191077B - 一种基于连续纤维复材3d打印的变纤维含量拓扑优化方法 - Google Patents

一种基于连续纤维复材3d打印的变纤维含量拓扑优化方法 Download PDF

Info

Publication number
CN113191077B
CN113191077B CN202110450381.3A CN202110450381A CN113191077B CN 113191077 B CN113191077 B CN 113191077B CN 202110450381 A CN202110450381 A CN 202110450381A CN 113191077 B CN113191077 B CN 113191077B
Authority
CN
China
Prior art keywords
fiber
fiber content
printing
variable
topological optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110450381.3A
Other languages
English (en)
Other versions
CN113191077A (zh
Inventor
田小永
郑子琪
黄一鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110450381.3A priority Critical patent/CN113191077B/zh
Publication of CN113191077A publication Critical patent/CN113191077A/zh
Application granted granted Critical
Publication of CN113191077B publication Critical patent/CN113191077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites

Landscapes

  • Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,先建立连续纤维复合材料拓扑优化模型,再建立伪密度与纤维含量的映射关系,定义材料属性,然后建立有限元分析模型,计算目标函数及其灵敏度,再优化更新设计变量,判断迭代是否满足收敛条件,若不满足收敛条件则继续迭代,若满足则停止循环得到最终拓扑优化结构;最后完成3D打印样件制备;本发明在已有的连续纤维角度拓扑优化算法基础上,采用将结构伪密度与纤维含量一一对应的转换方法,实现同时调控单元密度、纤维角度、纤维含量三个变量,进而使连续纤维增强复材拥有其最优的结构拓扑和与之相适应的最适合的材料分布。

Description

一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法
技术领域
本发明涉及连续纤维增强复合材料3D打印技术领域,具体涉及一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法。
背景技术
纤维增强复合材料作为一种各向异性材料,与金属合金材料相比,具有高比强度、高比模量、可设计强及多功能融合等优点,被广泛应用于航空航天、高速列车等领域,成为制备高性能结构的先进材料之一。在航空航天领域中,复合材料具有的高比强度、高比模量的特点,在降低飞机的整体重量,进而降低飞机的燃油消耗,同时降低碳排放的能力上大大优于传统的金属材料,是航空航天领域的理想材料,对于实现航空航天领域方面的结构高性能化、轻量化、高使用性能以及成本检索等具有至关重要的作用,是航天航空等领域发展的重要方向。为了实现上述需求,有学者提出变刚度层合板,即连续纤维增强复合材料中每个单层中的纤维方向、纤维含量等属性可变的层合板,以更好地提高结构的刚度、强度等性能;同时也有很多学者追求结构构型设计,通过拓扑优化等结构设计方法在保证性能的同时达到轻量化的效果。
然而,单方面进行材料研究并不能满足完全航空航天的严苛要求,纯粹的创新结构构型在近几年的研究中也显示一定局限性。因而结构 /材料多尺度并行设计作为新的设计理念,即在宏观结构进行拓扑结构设计,同时在微观材料进行纤维角度与纤维含量设计理念,逐渐引起了学者的关注和重视。不仅如此,宏观拓扑与微观材料的多尺度一体化设计,为进一步开展结构功能一体化设计和多功能协同设计提供了更广阔的发展空间和可能性,未来更高效的设计势必是考虑宏观拓扑和微观材料选择的设计。因此,考虑结构与材料的耦合,基于宏观结构与微观材料多尺度并行设计的理念实现复合材料结构的优化与制造,成为实现航空航天运载装备高性能与轻量化设计的新途径。
然而,受制于设计手段与制造工艺的限制,连续纤维复材的结构 /材料并行设计方法与自动化制造技术长时间处于探索阶段,主要缺点在于:
(1)尽管已有较为成熟的连续纤维角度拓扑优化求解算法,但是该算法并未将纤维含量作为设计变量求解。同时已有的将结构密度与纤维角度、纤维含量同时作为设计变量的求解算法,不仅耗费很大的时间成本,而且难以达到全局最优解。
(2)拓扑优化结果多呈树枝状结构,目前少有针对连续纤维增强复合材料拓扑优化结果的路径规划方法。并且受制于制造手段,针对连续纤维增强复材的拓扑优化结果无法被制造应用,导致设计方法无法得到实验验证。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,在已有的连续纤维角度拓扑优化算法基础上,采用将结构伪密度与纤维含量一一对应的转换方法,实现同时调控单元密度、纤维角度、纤维含量三个变量,进而使连续纤维增强复材拥有其最优的结构拓扑和与之相适应的最适合的材料分布。
为了达到上述目的,本发明采取的技术方案为:
一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,包括以下步骤:
1)建立连续纤维复合材料拓扑优化模型:根据优化目标,确定设计域,并将设计域离散为n个有限元单元;同时初始化设计变量,定义ρi为第i个单元对应的伪密度,θi为第i个单元对应的纤维角度,将单元伪密度ρi和纤维角度θi同时作为设计变量;
2)建立伪密度与纤维含量的映射关系,定义材料属性:对离散后的有限元结构进行前处理,建立伪密度与纤维含量的映射关系,得到每个单元的纤维含量值,并结合纤维角度,带入各向异性材料本构模型中,得到每个单元的材料属性,包括材料的纵向和横向弹性模量、泊松比和面内剪切模量;
3)建立有限元分析模型:对步骤2)得到的每个单元结构刚度进行叠加与变密度惩罚,得到节点的虚拟刚度,对结构进行有限元分析求解,得到结构节点位移;
4)计算目标函数及其灵敏度:根据步骤2)得到的结构刚度和步骤3)得到的结构节点位移,利用数值计算软件求解拓扑优化结构的目标函数,即结构应变能;以及结构灵敏度,即目标函数对设计变量的导数,并对密度灵敏度进行过滤;
5)优化更新设计变量:选择拓扑优化求解方法,根据步骤4) 计算出的目标函数及其灵敏度的值,迭代更新设计变量,得到新的单元伪密度ρi'和纤维角度θi';
6)判断迭代是否满足收敛条件:分别判断步骤5)中的单元伪密度和纤维角度是否同时满足收敛条件 max(ρi'-ρi)<0.001&max(θi'-θi)<0.001,即前后两次单元伪密度和纤维角度变化同时小于阈值0.001;若不满足收敛条件则继续迭代,若满足则停止循环得到最终拓扑优化结构;
7)完成3D打印样件制备:将步骤6)得到的最终拓扑优化结构按生成的纤维角度连起来,生成3D打印路径,同时将步骤2)得到的纤维含量值结合连续纤维增强3D打印工艺,计算出打印时的各项工艺参数,得到3D打印指令文件,最终完成变纤维含量的连续纤维拓扑优化结构的制备。
所述的步骤1)、步骤2)、步骤3)中有限元求解采用的软件为ANSYS、ABAQUS、MATLAB、COMSOL、icepark、flotherm、 MicroWave Studio、HFSS或Mafia。
所述的步骤2)中伪密度与纤维含量的映射关系为最小-最大规范化映射关系、零-均值规范化映射关系或Sigmoid函数映射关系。
所述的步骤4)、步骤5)、步骤6)中数值计算采用的软件为 MATLAB、C#、C++或Fortran。
所述的步骤5)中拓扑优化求解方法为优化准则法、移动渐进线法、序列线性规划法、序列二次规划法、内点法、有效集法或信赖域有效算法。
所述的步骤7)中所选用的连续纤维增强复合材料的树脂基体中,包括聚乳酸(PLA)、ABS、尼龙、聚酰亚胺(PI)或聚醚醚酮(PEEK) 的热塑性树脂材料;所选用的连续纤维增强复合材料的纤维增强相包括碳纤维、芳纶纤维、玻璃纤维、玄武岩纤维的连续纤维材料及铜丝、银丝的金属丝束。
本发明的有益效果为:本发明提出的一种基于连续纤维复材3D 打印的变纤维含量拓扑优化方法,打破原有连续纤维增强复材结构拓扑优化的局限,将单元伪密度与纤维含量合并为一个设计变量,提高了求解效率;对连续纤维复合材料即正交各向异性材料进行结构与材料的同步设计,使宏观和微观结构相互耦合,实现了结构与材料的多尺度一体化设计;优化后的拓扑结构纤维角度连续程度高,不仅大大降低了连续纤维复材拓扑优化结构路径规划的难度,提高了制造水平,而且相比于之前的较为广泛使用的轮廓偏置路径规划手段,能够使承载力更多的通过纤维方向,提高制件的承载性能。
附图说明
图1是本发明的流程图。
图2是本发明实施例连续纤维增强复合材料拓扑优化的设计域、边界条件、载荷等结构示意图。
图3是本发明实施例连续纤维增强复合材料拓扑优化结果效果图。
图4是本发明实施例连续纤维增强复合材料拓扑优化后的单元纤维角度效果图。
具体实施方式
以下结合附图和实施例对本发明做进一步的详细说明。
本实施例采用连续纤维复合材料3D打印机作为制备装置, Matlab为有限元求解软件及数值计算软件,选用熔融挤出成形工艺,以悬臂梁为例进行详细说明,其中悬臂梁长宽比为3:1,在其左端添加x,y方向的固定约束,在右端底部施加向下的集中力载荷F。
参照图1,一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,包括以下步骤:
1)建立连续纤维复合材料拓扑优化模型:使用固体各向异性材料惩罚模型(SOMP)作为拓扑优化模型,将图2所示结构定义为设计域,并将其离散为n个矩形有限元单元,离散后,定义ρi为第i个离散单元对应的伪密度,θi为第i个离散单元的纤维角度,vi为第i 个离散单元的体积,并以单元伪密度ρi和纤维角度θi作为设计变量;根据设计要求,给定设计的体积约束分数α,初始化设计变量与体积约束分数,ρi=0.5,θi=0,α=0.5;以结构的应变能最小为目标函数,约束条件为材料的使用量小于体积上限αV0,优化的目标函数如下,其中,U为位移矩阵,F为外部载荷,C为结构的应变能函数,V0为结构初始体积;
Find θii(i=1,2,....,n)
Min C(θ,ρ)=FTU
Figure BDA0003038417610000061
0≤ρmin≤ρi≤1
θmin≤θi≤θmax
2)建立伪密度与纤维含量的映射关系,定义材料属性:选用最大-最小规范化映射关系,建立伪密度与纤维含量的映射关系,其中纤维含量的最大与最小值根据拓扑优化结果与3D打印工艺约束确定,然后根据每个单元的纤维含量与纤维角度,确定该单元的材料属性,包括材料的纵向和横向弹性模量、泊松比和面内剪切模量;
3)建立有限元分析模型:对步骤2)得到的单元结构刚度Ki进行变密度惩罚得到节点的虚拟刚度
Figure BDA0003038417610000071
然后根据有限元刚度叠加准则对单元刚度进行叠加得到节点刚度,根据有限元方程KU=F,对悬臂梁结构进行有限元分析求解,得到结构节点位移,其中K是刚度矩阵,U是位移矩阵,F是外部载荷;
4)计算目标函数及其灵敏度:根据步骤2)得到的结构刚度和步骤3)得到的结构节点位移,利用数值计算软件求解拓扑优化结构的目标函数,即结构应变能;以及结构灵敏度,即目标函数对设计变量的导数,并对密度灵敏度进行过滤,以平顺优化结果,避免密度0、 1突变引起的“棋盘格”现象;
5)优化更新设计变量:选用Matlab中fmincon函数自带的内点法作为拓扑优化求解方法,求解优化后的单元伪密度ρi'和单元纤维角度θi',同时更新设计变量,采用求解得到的ρi'和θi'作为下一次迭代使用的ρi+1和θi+1;
6)判断迭代是否满足收敛条件:分别判断步骤5)中的伪密度和纤维角度是否同时满足收敛条件 max(ρi'-ρi)<0.001&max(θi'-θi)<0.001,即前后两次伪密度和纤维角度变化同时小于阈值0.001;若不满足收敛条件则继续迭代,若满足则停止循环得到最终拓扑优化结构;
7)完成3D打印样件制备:将步骤6)得到的最终拓扑优化结构按生成的纤维角度连起来,生成3D打印路径,同时将步骤2)得到的纤维含量值结合连续纤维增强3D打印工艺,计算出打印时的各项工艺参数,得到3D打印指令文件,导入到3D打印机中;选择聚乳酸(PLA)为基体,芳纶纤维为增强材料,完成变纤维含量的连续纤维拓扑优化结构的制备。
参照图3和图4,图3是本实施例连续纤维增强复合材料拓扑优化结果效果图,图中拓扑优化后的结构用灰度单元表示,其中灰度代表单元的伪密度值,即网格单元颜色越浅,伪密度值越小,纤维含量越低,网格单元颜色越深,伪密度值越大,纤维含量越高;图4是本实施例连续纤维增强复合材料拓扑优化后的单元纤维角度效果图,其中单元网格中短线方向代表优化后的纤维角度方向,从图中可以看出纤维基本连续且沿着受力方向。

Claims (5)

1.一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,其特征在于,包括以下步骤:
1)建立连续纤维复合材料拓扑优化模型:根据优化目标,确定设计域,并将设计域离散为n个有限元单元;同时初始化设计变量,定义ρi为第i个单元对应的伪密度,θi为第i个单元对应的纤维角度,将单元伪密度ρi和纤维角度θi同时作为设计变量;
2)建立伪密度与纤维含量的映射关系,定义材料属性:对离散后的有限元结构进行前处理,建立伪密度与纤维含量的映射关系,得到每个单元的纤维含量值,并结合纤维角度,带入各向异性材料本构模型中,得到每个单元的材料属性,包括材料的纵向和横向弹性模量、泊松比和面内剪切模量;
3)建立有限元分析模型:对步骤2)得到的每个单元结构刚度进行叠加与变密度惩罚,得到节点的虚拟刚度,对结构进行有限元分析求解,得到结构节点位移;
4)计算目标函数及其灵敏度:根据步骤2)得到的结构刚度和步骤3)得到的结构节点位移,利用数值计算软件求解拓扑优化结构的目标函数,即结构应变能;以及结构灵敏度,即目标函数对设计变量的导数,并对密度灵敏度进行过滤;
5)优化更新设计变量:选择拓扑优化求解方法,根据步骤4)计算出的目标函数及其灵敏度的值,迭代更新设计变量,得到新的单元伪密度ρi'和纤维角度θi';
6)判断迭代是否满足收敛条件:分别判断步骤5)中的单元伪密度和纤维角度是否同时满足收敛条件max(ρi'-ρi)<0.001&max(θi'-θi)<0.001,即前后两次单元伪密度和纤维角度变化同时小于阈值0.001;若不满足收敛条件则继续迭代,若满足则停止循环得到最终拓扑优化结构;
7)完成3D打印样件制备:将步骤6)得到的最终拓扑优化结构按生成的纤维角度连起来,生成3D打印路径,同时将步骤2)得到的纤维含量值结合连续纤维增强3D打印工艺,计算出打印时的各项工艺参数,得到3D打印指令文件,最终完成变纤维含量的连续纤维拓扑优化结构的制备。
2.根据权利要求1所述的一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,其特征在于:所述的步骤1)、步骤2)、步骤3)中采用的软件为ANSYS、ABAQUS、MATLAB、COMSOL、icepark、flotherm、MicroWave Studio、HFSS或Mafia。
3.根据权利要求1所述的一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,其特征在于:所述的步骤2)中伪密度与纤维含量的映射关系为最小-最大规范化映射关系、零-均值规范化映射关系或Sigmoid函数映射关系。
4.根据权利要求1所述的一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,其特征在于:所述的步骤4)、步骤5)、步骤6)中数值计算采用的软件为MATLAB、C#、C++或Fortran。
5.根据权利要求1所述的一种基于连续纤维复材3D打印的变纤维含量拓扑优化方法,其特征在于:所述的步骤5)中拓扑优化求解方法为优化准则法、移动渐进线法、序列线性规划法、序列二次规划法、内点法、有效集法或信赖域有效算法。
CN202110450381.3A 2021-04-25 2021-04-25 一种基于连续纤维复材3d打印的变纤维含量拓扑优化方法 Active CN113191077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110450381.3A CN113191077B (zh) 2021-04-25 2021-04-25 一种基于连续纤维复材3d打印的变纤维含量拓扑优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110450381.3A CN113191077B (zh) 2021-04-25 2021-04-25 一种基于连续纤维复材3d打印的变纤维含量拓扑优化方法

Publications (2)

Publication Number Publication Date
CN113191077A CN113191077A (zh) 2021-07-30
CN113191077B true CN113191077B (zh) 2022-12-09

Family

ID=76978693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110450381.3A Active CN113191077B (zh) 2021-04-25 2021-04-25 一种基于连续纤维复材3d打印的变纤维含量拓扑优化方法

Country Status (1)

Country Link
CN (1) CN113191077B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114274500B (zh) * 2021-12-23 2022-09-30 西安交通大学 一种基于绝对零刚度结构的隔振鞋中底的3d打印制作方法
CN114407350B (zh) * 2022-01-11 2023-07-21 西北工业大学 连续纤维增强复合材料3d打印填充路径规划方法和装置
CN115107139B (zh) * 2022-07-26 2022-11-04 河北工业大学 非标准结构构件混凝土模板3d打印路径的规划方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789533A (zh) * 2012-07-31 2012-11-21 西北工业大学 基于密度阈值的结构拓扑优化设计灵敏度过滤方法
CN107433713A (zh) * 2017-09-04 2017-12-05 西安交通大学 一种基于连续纤维复材3d打印的功能调控结构制备方法
WO2018094758A1 (zh) * 2016-11-24 2018-05-31 浙江大学 一种面向三维打印的自支撑结构设计方法
CN112100774A (zh) * 2020-09-16 2020-12-18 哈尔滨理工大学 一种基于变密度法的应力和应变能双约束的拓扑优化方法
WO2021055543A1 (en) * 2019-09-20 2021-03-25 University Of Miami Additive manufacturing of composites with short-fiber reinforcement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232605B2 (en) * 2003-07-17 2007-06-19 Board Of Trustees Of Michigan State University Hybrid natural-fiber composites with cellular skeletal structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789533A (zh) * 2012-07-31 2012-11-21 西北工业大学 基于密度阈值的结构拓扑优化设计灵敏度过滤方法
WO2018094758A1 (zh) * 2016-11-24 2018-05-31 浙江大学 一种面向三维打印的自支撑结构设计方法
CN107433713A (zh) * 2017-09-04 2017-12-05 西安交通大学 一种基于连续纤维复材3d打印的功能调控结构制备方法
WO2021055543A1 (en) * 2019-09-20 2021-03-25 University Of Miami Additive manufacturing of composites with short-fiber reinforcement
CN112100774A (zh) * 2020-09-16 2020-12-18 哈尔滨理工大学 一种基于变密度法的应力和应变能双约束的拓扑优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于面光滑有限元的复杂三维结构拓扑优化;何智成等;《中国机械工程》;20150410(第07期);864-870 *
高性能树脂基复合材料轻质结构3D打印与性能研究;田小永等;《航空制造技术》;20170515(第10期);34-39 *

Also Published As

Publication number Publication date
CN113191077A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN113191077B (zh) 一种基于连续纤维复材3d打印的变纤维含量拓扑优化方法
Barnes et al. Structural optimisation of composite wind turbine blade structures with variations of internal geometry configuration
CN107433713B (zh) 一种基于连续纤维复材3d打印的功能调控结构制备方法
WO2020211012A1 (zh) 一种面向混杂纤维复合材料板壳结构的快速协同优化方法
CN106874573B (zh) 一种分区变厚度复合材料层合板的设计方法
Huang et al. Progressive concurrent topological optimization with variable fiber orientation and content for 3D printed continuous fiber reinforced polymer composites
CN112989648B (zh) 一种协同拓扑构型与纤维路径的柔性机构优化设计方法
Duan et al. Concurrent multi-material and multi-scale design optimization of fiber-reinforced composite material and structures for minimum structural compliance
Ding et al. A novel discrete–continuous material orientation optimization model for stiffness-based concurrent design of fiber composite
Wang et al. Aeroelastic and local buckling optimisation of a variable-angle-tow composite wing-box structure
Eckrich et al. Structural topology optimization and path planning for composites manufactured by fiber placement technologies
Nasab et al. A level-set-based strategy for thickness optimization of blended composite structures
CN103678763A (zh) 复合材料机翼气动弹性剪裁方法及其遗传/敏度混合优化方法
Airoldi et al. Design of a motorcycle composite swing-arm by means of multi-objective optimisation
Liu et al. Topology optimization of support structure of telescope skin based on bit-matrix representation NSGA-II
CN115295097A (zh) 一种考虑增材制造的纤维增强复合材料多材料多尺度变刚度优化设计方法
CN111597641B (zh) 一种适用于热塑性编织复合材料航天承力构件的材料-结构-制造一体化优化设计方法
CN112765731B (zh) 一种考虑局部屈曲的曲线纤维复材结构气动弹性优化方法
Malakhov et al. Three-dimensional printing of biomimetic variable stiffness composites with controlled orientations and volume fraction of fibers
Jin et al. Structure optimization of large composite wing box with parallel genetic algorithm
CN111737908B (zh) 一种基于动载荷静力等效的蒙皮桁条结构快速动态优化设计方法
Tian et al. Buckling optimization of curvilinear fiber-reinforced composite structures using a parametric level set method
Sun et al. Reliability-based optimization design of carbon fiber reinforced plastics crossbeam of twist-beam suspension
Hu A review on the topology optimization of the fiber-reinforced composite structures
CN116118196A (zh) 一种基于力流管载荷路径的连续纤维3d打印路径设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant