CN113186491A - 一种红外发射率连续可调的复合层及其应用 - Google Patents

一种红外发射率连续可调的复合层及其应用 Download PDF

Info

Publication number
CN113186491A
CN113186491A CN202110506345.4A CN202110506345A CN113186491A CN 113186491 A CN113186491 A CN 113186491A CN 202110506345 A CN202110506345 A CN 202110506345A CN 113186491 A CN113186491 A CN 113186491A
Authority
CN
China
Prior art keywords
layer
thin film
film layer
composite layer
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110506345.4A
Other languages
English (en)
Other versions
CN113186491B (zh
Inventor
周明
杨名扬
张之勋
俞剑文
张毅博
程文俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110506345.4A priority Critical patent/CN113186491B/zh
Publication of CN113186491A publication Critical patent/CN113186491A/zh
Application granted granted Critical
Publication of CN113186491B publication Critical patent/CN113186491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种红外发射率连续可调的复合层及其应用,所述红外发射率连续可调的复合层,包括基底层和包覆于所述基底层表面的薄膜层;所述基底层的厚度大于1mm,所述薄膜层的厚度在1~1000nm范围内可调。本发明基于红外辐射在不同材料中的穿透深度不同,通过控制表面薄膜层的厚度小于3‑5μm和8‑14μm波段红外线的穿透深度,使得薄膜层材料在该波段对红外的吸收受厚度变化的控制,从而通过改变表面薄膜层的厚度获得红外发射率连续可调的复合层。使用该复合层调节红外发射率,相较于传统的在物体表面制作不同发射率的涂层,成本更低,且易于控制和实现,对节能减排、红外隐身等应用具有重要意义。

Description

一种红外发射率连续可调的复合层及其应用
技术领域
本发明涉及功能材料技术领域,尤其涉及一种红外发射率连续可调的复合层及其应用。
背景技术
自红外辐射被英国天文学家威廉〃赫谢尔通过测量手段证实以来,红外物理与技术受到各国学者的重视并不断发展,在安全生产工程、军事以及日常生活等方面得到了广泛应用。如红外辐射节能涂料通过提高炉膛的辐射率,强化炉内辐射传热作用,有效改善传热过程,达到节能的作用。
根据应用方向的不同,需要对物体红外辐射出射度进行调控。由斯蒂芬-玻尔兹曼定律:M=εσT4(其中ε为物体发射率,σ为斯蒂芬-玻尔兹曼常数,T为物体绝对温度)可知,红外辐射出射度与ε和T的4次方成正比,因此通过调节物体的温度与发射率可以实现对辐射出射度的调节。现有改变辐射出射度最常用的方法是在物体表面制作不同发射率的涂层。
目前的红外涂料主要是通过改变涂料中颜料与粘结剂的比例来实现对涂料发射率的调节,但这种调节方式是不连续的,且需要大量前期实验来得到满足发射率要求的涂料,成本较高。
发明内容
针对现有技术存在的不足,本发明提供一种红外发射率连续可调的复合层及其应用。
本发明采用以下技术方案:
本发明提供一种红外发射率连续可调的复合层,包括基底层和包覆于所述基底层表面的薄膜层;所述基底层的厚度大于1mm,所述薄膜层的厚度在1~1000nm范围内可调。
本发明基于红外辐射在不同材料中的穿透深度不同,通过控制表面薄膜层的厚度小于3-5μm和8-14μm波段红外线的穿透深度,使得薄膜层材料在该波段对红外的吸收受厚度变化的控制,从而通过改变表面薄膜层的厚度即可获得红外发射率连续可调的复合层。具体应用中,可根据应用方向的不同,对薄膜层的厚度进行控制。
本发明中,穿透深度的定义为电磁波辐射强度降至入射到材料表面时辐射强度的1/e时,电磁波在材料中传播的距离。
进一步地,所述基底层与所述薄膜层在3-5μm和8-14μm波段的红外发射率相差0.6以上,可以使复合层调节红外发射率的范围更大。理论分析结果表明,本发明的复合层在3~5μm和8~14μm波段可实现红外发射率0.1~0.9的连续可调。
在本发明的一个优选实施方式中,所述基底层为聚氨酯海绵、蜜胺泡绵等弹性多孔材料,所述薄膜层为金属。优选地,所述金属为金、银、铜或铂,所述薄膜层的厚度为1~450nm。
本发明发现,基底层选用聚氨酯海绵或蜜胺泡绵,薄膜层选用金属,则复合层整体实现红外发射率调节时,薄膜层的厚度可调范围比较宽,也就是说,通过调节薄膜层厚度实现红外发射率调节的制备条件不苛刻,即更容易实现红外发射率的连续可调。
在本发明的另一个优选实施方式中,所述基底层为金属,所述薄膜层为石墨或硼。
本发明发现,基底层选用金属,薄膜层选用石墨或硼,不仅基底层与薄膜层之间具有较好的结合强度,不易互相脱落,而且可以实现红外发射率的上调,以便应用于辐射散射方面,同时,红外发射率变化速度与薄膜层厚度变化速度相协调,从而更易实现红外发射率的连续可调。
上述技术方案中,优选地,采用沉积法在所述基底层的表面包覆所述薄膜层。
进一步地,所述薄膜层选用金属材料时,采用磁控溅射法或电子束蒸发的方式进行沉积;
所述薄膜层选用非金属材料时,采用热蒸发、电子束蒸发或磁控溅射的方式进行沉积。
进一步地,进行沉积前,对所述基底层进行清洗,所述清洗包括依次使用丙酮、乙醇以及去离子水超声清洗。
本发明还提供上述红外发射率连续可调的复合层在红外领域中的应用。具体应用领域包括红外隐身、辐射散热、节能门窗等方面。即在需要进行红外发射率调控时,可将该复合层单独应用,或将该复合层设置在物体表面后连同物体一起应用。例如,需要利用辐射散热时,则需将目标的红外发射率控制在0.9以上,此时可利用上述的复合层,基底层采用不锈钢,薄膜层采用石墨,然后通过调节薄膜层的厚度,达到目标发射率,即得到所需的辐射散热能力。
进一步地,将所述复合层设置在所述物体表面的方法包括焊接、铆接等固定连接方式,也可为铰接等可拆卸连接方式。
本发明提供了一种红外发射率连续可调的复合层及其应用,本发明基于红外辐射在不同材料中的穿透深度不同,通过控制表面薄膜层的厚度小于3-5μm和8-14μm波段红外线的穿透深度,使得薄膜层材料在该波段对红外的吸收受厚度变化的控制,从而通过改变表面薄膜层的厚度获得红外发射率连续可调的复合层。使用该复合层调节红外发射率,相较于传统的在物体表面制作不同发射率的涂层,成本更低,且易于控制和实现,对节能减排、红外隐身等应用具有重要意义。
附图说明
图1为本发明实施例中红外发射率连续可调的复合层的结构示意图;
图2为实施例1中实际测得的复合层整体结构在3-5μm和8-14μm波段发射率的调节范围;
图3为实施例2中实际测得的复合层整体结构在3-5μm和8-14μm波段发射率的调节范围;
图4为实施例3中实际测得的复合层整体结构在3-5μm和8-14μm波段发射率的调节范围。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种红外发射率连续可调的复合层,其结构示意图如图1所示,由基底层和包覆于基底层表面的薄膜层组成。
其中,基底层为聚氨酯海绵,厚度为5mm。
薄膜层为金属铜,厚度为1~450nm。
本实施例中薄膜层通过磁控溅射的方式沉积在基底层表面。
沉积过程中,逐渐增加薄膜层厚度,从而实现复合层的红外发射率连续调节。当复合层的应用方向明确时,可根据应用方向确定目标红外发射率,从而在调节薄膜层厚度过程中,一旦达到目标红外发射率则停止改变薄膜层厚度。或者,也可以先获得该复合层的红外发射率与薄膜层厚度之间的关系曲线图,之后在应用过程中,根据目标红外发射率获知相应薄膜层厚度,再行制备。
根据本实施例中使用的复合层整体结构,测试其在薄膜层金属铜厚度变化时3-5μm和8-14μm波段的红外发射率(采用便携式红外光谱发射率仪测试),结果如图2所示,可以看出,本实施例最终实现的红外发射率调节范围为0.3~0.9。
本实施例提供的红外发射率连续可调的复合层,相较于传统的在物体表面制作不同发射率的涂层,成本更低,且易于控制和实现。具体来说,传统的在物体表面制作不同发射率的涂层,需要不断改变颜料和粘结剂的比例甚至是选用种类来实现发射率的改变,实验过程繁琐且重复性差,而且很难实现发射率的连续调节。而本实施例设置好适当的磁控溅射参数,只需调节磁控溅射时间即可获得红外发射率连续可调的复合层,而且本实施例中选用了较为匹配的基底层和薄膜层,使得薄膜层厚度可调范围较宽,从而在实际应用中为获取目标红外发射率时,薄膜层的厚度可在一定范围内浮动,而不是必须为某一个纳米级的点值,这使目标红外发射率的获得易于实现和控制,降低了对制备条件和设备的苛刻要求。
实施例2
本实施例提供一种红外发射率连续可调的复合层,由基底层和包覆于基底层表面的薄膜层组成。
其中,基底层为304不锈钢,厚度为2mm。
薄膜层为石墨,厚度为1~10nm。
本实施例中薄膜层通过电子束蒸发的方式沉积在基底层表面。沉积过程中,随着薄膜层厚度的逐渐增加,从而实现复合层的红外发射率连续调节。
根据本实施例中使用的复合层整体结构,测试其在石墨层厚度变化时3-5μm和8-14μm波段的红外发射率,结果如图3所示,可以看出,本实施例最终实现的红外发射率调节范围为3-5μm的0.16~0.25和8-14μm的0.08~0.11。
需要说明的是,本实施例中调节范围偏小的主要原因是表面石墨层厚度变化范围较小。实际操作中,石墨层的厚度可继续变厚,本实施例中发明人主要为论证其可行性,故只做了厚度为1~10nm的情形。
实施例3
本实施例提供一种红外发射率连续可调的复合层,由基底层和包覆于基底层表面的薄膜层组成。
其中,基底层为蜜胺泡绵,厚度为5mm。
薄膜层为金属金,厚度为1~160nm。
本实施例中薄膜层通过磁控溅射的方式沉积在基底层表面。
沉积过程中,逐渐增加薄膜层厚度,从而实现复合层的红外发射率连续调节。当复合层的应用方向明确时,可根据应用方向确定目标红外发射率,从而在调节薄膜层厚度过程中,一旦达到目标红外发射率则停止改变薄膜层厚度。或者,也可以先获得该复合层的红外发射率与薄膜层厚度之间的关系曲线图,之后在应用过程中,根据目标红外发射率获知相应薄膜层厚度,再行制备。
根据本实施例中使用的复合层整体结构,测试其在薄膜层金属金厚度变化时3-5μm和8-14μm波段的红外发射率,结果如图4所示,可以看出,本实施例最终实现的红外发射率调节范围为0.62~0.95。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种红外发射率连续可调的复合层,其特征在于,包括基底层和包覆于所述基底层表面的薄膜层;所述基底层的厚度大于1mm,所述薄膜层的厚度在1~1000nm范围内可调。
2.根据权利要求1所述的红外发射率连续可调的复合层,其特征在于,所述基底层与所述薄膜层在3-5μm和8-14μm波段的红外发射率相差0.6以上。
3.根据权利要求2所述的红外发射率连续可调的复合层,其特征在于,所述基底层为金属,所述薄膜层为石墨或硼。
4.根据权利要求2所述的红外发射率连续可调的复合层,其特征在于,所述基底层为弹性多孔材料,所述薄膜层为金属。
5.根据权利要求4所述的红外发射率连续可调的复合层,其特征在于,所述金属为金、银、铜或铂,所述薄膜层的厚度为1~450nm。
6.根据权利要求1~5任一项所述的红外发射率连续可调的复合层,其特征在于,采用沉积法在所述基底层的表面包覆所述薄膜层。
7.根据权利要求6所述的红外发射率连续可调的复合层,其特征在于,所述薄膜层选用金属材料时,采用磁控溅射法或电子束蒸发的方式进行沉积;
所述薄膜层选用非金属材料时,采用热蒸发、电子束蒸发或磁控溅射的方式进行沉积。
8.根据权利要求6所述的红外发射率连续可调的复合层,其特征在于,进行沉积前,对所述基底层进行清洗,所述清洗包括依次使用丙酮、乙醇以及去离子水超声清洗。
9.权利要求1~8任一项所述的红外发射率连续可调的复合层在红外领域中的应用,其特征在于,包括将所述复合层单独或设置在物体表面后进行红外发射率调控。
10.根据权利要求9所述的红外发射率连续可调的复合层在红外领域中的应用,其特征在于,将所述复合层设置在所述物体表面的方法包括焊接或铆接。
CN202110506345.4A 2021-05-10 2021-05-10 一种红外发射率连续可调的复合层及其应用 Active CN113186491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110506345.4A CN113186491B (zh) 2021-05-10 2021-05-10 一种红外发射率连续可调的复合层及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110506345.4A CN113186491B (zh) 2021-05-10 2021-05-10 一种红外发射率连续可调的复合层及其应用

Publications (2)

Publication Number Publication Date
CN113186491A true CN113186491A (zh) 2021-07-30
CN113186491B CN113186491B (zh) 2022-11-08

Family

ID=76988759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110506345.4A Active CN113186491B (zh) 2021-05-10 2021-05-10 一种红外发射率连续可调的复合层及其应用

Country Status (1)

Country Link
CN (1) CN113186491B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137641A (zh) * 2021-11-08 2022-03-04 武汉大学 一种用于可见与红外双波段伪装的微流控薄膜及其制备方法
CN114987004A (zh) * 2022-05-16 2022-09-02 中国人民解放军国防科技大学 一种气致变红外发射率器件及其制备方法、应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180822A (zh) * 1996-10-25 1998-05-06 北京清华大学太阳能电子厂 可控热发射率的太阳选择性吸收涂层及制造方法
US20160060753A1 (en) * 2014-08-26 2016-03-03 H&H-T Co., Ltd. Infrared surface light source generating device and method of manufacturing same
JP2018083743A (ja) * 2016-11-25 2018-05-31 国立研究開発法人宇宙航空研究開発機構 赤外線放射率制御デバイス、赤外線放射率制御装置および宇宙機
KR20190110828A (ko) * 2018-03-21 2019-10-01 한국화학연구원 위조방지필름 및 적외선 방사도 조절 방법
CN111077603A (zh) * 2019-12-30 2020-04-28 哈尔滨工业大学 一种红外发射率可调柔性薄膜及其制备方法
CN111208589A (zh) * 2019-12-26 2020-05-29 中国人民解放军国防科技大学 一种耐高温选择性发射红外隐身材料及其制备方法
CN112764286A (zh) * 2021-01-29 2021-05-07 哈尔滨工业大学 一种智能调控红外发射率的热控器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180822A (zh) * 1996-10-25 1998-05-06 北京清华大学太阳能电子厂 可控热发射率的太阳选择性吸收涂层及制造方法
US20160060753A1 (en) * 2014-08-26 2016-03-03 H&H-T Co., Ltd. Infrared surface light source generating device and method of manufacturing same
JP2018083743A (ja) * 2016-11-25 2018-05-31 国立研究開発法人宇宙航空研究開発機構 赤外線放射率制御デバイス、赤外線放射率制御装置および宇宙機
KR20190110828A (ko) * 2018-03-21 2019-10-01 한국화학연구원 위조방지필름 및 적외선 방사도 조절 방법
CN111208589A (zh) * 2019-12-26 2020-05-29 中国人民解放军国防科技大学 一种耐高温选择性发射红外隐身材料及其制备方法
CN111077603A (zh) * 2019-12-30 2020-04-28 哈尔滨工业大学 一种红外发射率可调柔性薄膜及其制备方法
CN112764286A (zh) * 2021-01-29 2021-05-07 哈尔滨工业大学 一种智能调控红外发射率的热控器件及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
史月艳 等: "光谱选择性吸收涂层中的衬底金属", 《太阳能学报》, vol. 8, no. 4, 31 October 1987 (1987-10-31), pages 341 - 345 *
朱方辉 等: "聚乙烯薄膜发射率的影响因素研究", 《中国塑料》, vol. 21, no. 8, 31 August 2007 (2007-08-31), pages 62 - 65 *
顾孟扬 等: "热像法研究基底材料与薄膜的发射率变化关系", 《大学物理实验》, vol. 24, no. 4, 31 August 2011 (2011-08-31), pages 22 - 25 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137641A (zh) * 2021-11-08 2022-03-04 武汉大学 一种用于可见与红外双波段伪装的微流控薄膜及其制备方法
CN114137641B (zh) * 2021-11-08 2024-01-30 武汉大学 一种用于可见与红外双波段伪装的微流控薄膜及其制备方法
CN114987004A (zh) * 2022-05-16 2022-09-02 中国人民解放军国防科技大学 一种气致变红外发射率器件及其制备方法、应用
CN114987004B (zh) * 2022-05-16 2023-04-07 中国人民解放军国防科技大学 一种气致变红外发射率器件及其制备方法、应用

Also Published As

Publication number Publication date
CN113186491B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN113186491B (zh) 一种红外发射率连续可调的复合层及其应用
Nunes et al. Graded selective coatings based on chromium and titanium oxynitride
Khamlich et al. Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers
Yin et al. Direct current reactive sputtering Cr–Cr2O3 cermet solar selective surfaces for solar hot water applications
CN111158069B (zh) 一种光谱选择性辐射红外隐身材料及其制备方法
CN105002469B (zh) 一种陶瓷‑金属纳米线复合薄膜及其制备方法
Fan Selective-black absorbers using sputtered cermet films
Nunes et al. Deposition of PVD solar absorber coatings for high-efficiency thermal collectors
Hutchins Selective thin film coatings for the conversion of solar radiation
CN114047565A (zh) 一种具有超高红外透射调制性能的相变材料及其制备方法
Thornton et al. Sputter-deposited Pt Al2O3 graded cermet selective absorber coatings
CN105242334B (zh) 一种宽谱超快非线性光学响应性能的多层金属陶瓷薄膜及其制备方法
Gogna et al. Selective black nickel coatings on zinc surfaces by chemical conversion
CN105779926A (zh) 制备用于大气环境下高温太阳能选择性吸收涂层的新工艺
CN102403411A (zh) 一种柔性薄膜太阳电池金属背电极及其制备方法
Harding Absorptance and emittance of metal carbide selective surfaces sputter deposited onto glass tubes
CN109972090B (zh) 一种完美吸收体涂层及其制备方法
CN113281916B (zh) 连续调节物体红外发射率的方法和基于此的红外功能表面
CN105444443A (zh) 太阳能选择性吸收涂层及其制备方法
CN104697210B (zh) 一种原位自生长的太阳光谱选择性吸收膜及其制备方法
CN109786951A (zh) 一种热电防护一体化薄膜结构
Window et al. Selective absorber design
Peixoto et al. Electrolytic deposition of ni/nio on stainless steel for production of selective surfaces
CN204165260U (zh) 太阳能选择性吸收涂层
by Solar et al. PA 16802, USA jqw5965@ psu. edu

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant