CN113183137B - A parameter calibration device and method for a six-degree-of-freedom parallel mechanism - Google Patents
A parameter calibration device and method for a six-degree-of-freedom parallel mechanism Download PDFInfo
- Publication number
- CN113183137B CN113183137B CN202110605493.1A CN202110605493A CN113183137B CN 113183137 B CN113183137 B CN 113183137B CN 202110605493 A CN202110605493 A CN 202110605493A CN 113183137 B CN113183137 B CN 113183137B
- Authority
- CN
- China
- Prior art keywords
- parallel mechanism
- degree
- nominal
- parameter calibration
- coordinate system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000006073 displacement reaction Methods 0.000 claims abstract description 93
- 238000004364 calculation method Methods 0.000 claims abstract description 11
- 230000008602 contraction Effects 0.000 claims description 35
- 230000014509 gene expression Effects 0.000 claims description 12
- 238000013178 mathematical model Methods 0.000 claims description 11
- 238000005457 optimization Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/088—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
本发明涉及一种六自由度并联机构参数标定装置及方法,其中参数标定装置包括位移传感器、传感器座、被测基准块、支架和参数标定计算模块;传感器座包括三个相互正交的平面,三个平面上分别固定有1个、2个和3个位移传感器,且位移传感器的测杆轴线与对应的平面垂直,传感器座通过支架固定在六自由度并联机构的定平台上;被测基准块包括与三个平面一一对应的三个相互正交的基准平面,且位移传感器的触头均与对应的基准平面接触,被测基准块固定在六自由度并联机构的动平台顶部;参数标定计算模块对六自由度并联机构的参数进行标定与补偿。本发明六自由度并联机构参数标定装置具有成本低廉、操作简洁、省时省力、标定效率较高等优点。
The invention relates to a parameter calibration device and method for a six-degree-of-freedom parallel mechanism, wherein the parameter calibration device includes a displacement sensor, a sensor base, a measured reference block, a bracket and a parameter calibration calculation module; the sensor base includes three mutually orthogonal planes, 1, 2 and 3 displacement sensors are respectively fixed on the three planes, and the measuring rod axis of the displacement sensor is perpendicular to the corresponding plane, and the sensor seat is fixed on the fixed platform of the six-degree-of-freedom parallel mechanism through the bracket; the measured reference The block includes three mutually orthogonal reference planes corresponding to the three planes one-to-one, and the contacts of the displacement sensor are all in contact with the corresponding reference planes, and the measured reference block is fixed on the top of the moving platform of the six-degree-of-freedom parallel mechanism; parameters The calibration calculation module calibrates and compensates the parameters of the 6-DOF parallel mechanism. The parameter calibration device of the six-degree-of-freedom parallel mechanism of the invention has the advantages of low cost, simple operation, time-saving and labor-saving, high calibration efficiency and the like.
Description
技术领域technical field
本发明涉及机构学技术领域,特别是涉及一种六自由度并联机构的参数标定装置及方法。The invention relates to the technical field of mechanics, in particular to a parameter calibration device and method of a six-degree-of-freedom parallel mechanism.
背景技术Background technique
六自由度并联机构因具有高精度、高刚度、无累积误差等优点,被广泛用于光学元件精调、超精密加工等领域。The 6-DOF parallel mechanism is widely used in the fields of fine adjustment of optical components and ultra-precision machining due to its advantages of high precision, high stiffness, and no accumulated error.
由于加工及装配误差的存在,六自由度并联机构的实际结构参数与理论结构参数存在一定偏差,这使得根据理论参数建立的运动学模型与实际结构之间存在一定的偏差。采用高精度机床可降低结构件加工误差,但成本高昂,而通过参数标定对误差进行补偿,是一种低成本且行之有效的方法。Due to the existence of machining and assembly errors, there is a certain deviation between the actual structural parameters of the six-degree-of-freedom parallel mechanism and the theoretical structural parameters, which makes a certain deviation between the kinematics model established according to the theoretical parameters and the actual structure. The use of high-precision machine tools can reduce the machining errors of structural parts, but the cost is high. Compensating the errors through parameter calibration is a low-cost and effective method.
在六自由度并联机构标定过程中,需要对其位姿进行测量。目前位姿测量大多采用三坐标测量机、测量臂、激光跟踪仪、激光干涉仪等设备,这些设备虽具有精度高、适应性广等特点,但造价昂贵,操作费时费力、对操作要求高,应用不便,从而导致标定效率较低,尤其是对于大工作空间的并联机构就更明显。由于空间的限制可能造成动平台的某些位姿无法测量,并且当动平台在较大工作空间内变换位姿时,难以获得令人满意的测量数据。因此,考虑其他简洁而高效的位姿测量手段,提升标定效率,是十分有必要的。During the calibration process of the six-degree-of-freedom parallel mechanism, its pose needs to be measured. At present, most of the three-coordinate measuring machines, measuring arms, laser trackers, laser interferometers and other equipment are used for position and orientation measurement. Although these equipments have the characteristics of high precision and wide adaptability, they are expensive, time-consuming and labor-intensive to operate, and have high operational requirements. The application is inconvenient, resulting in low calibration efficiency, especially for the parallel mechanism with large working space. Due to the limitation of space, some poses of the moving platform may not be able to be measured, and it is difficult to obtain satisfactory measurement data when the moving platform changes poses in a large working space. Therefore, it is necessary to consider other simple and efficient pose measurement methods to improve the calibration efficiency.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对现有技术中的六自由度并联机构标定方法存在的成本高、操作费时费力、标定效率低以及标定精度低等问题,提供一种简洁高效的六自由度并联机构参数标定装置及方法,达到降低成本、简化标定过程、提升标定效率的目的。Based on this, it is necessary to provide a simple and efficient 6-DOF parallel mechanism parameter calibration for the problems of high cost, time-consuming and labor-intensive operation, low calibration efficiency and low calibration accuracy of the existing 6-DOF parallel mechanism calibration method. The device and the method achieve the purpose of reducing costs, simplifying the calibration process and improving the calibration efficiency.
为实现上述目的,本发明采取如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种六自由度并联机构参数标定装置,包括位移传感器、传感器座、被测基准块、支架和参数标定计算模块;A six-degree-of-freedom parallel mechanism parameter calibration device, comprising a displacement sensor, a sensor base, a measured reference block, a bracket and a parameter calibration calculation module;
所述传感器座包括三个相互正交的平面,三个所述平面上分别固定有1个、2个和3个所述位移传感器,且所述位移传感器的测杆轴线与对应的平面垂直,所述传感器座通过所述支架固定在六自由度并联机构的定平台上;The sensor base includes three mutually orthogonal planes, and one, two and three displacement sensors are respectively fixed on the three planes, and the measuring rod axis of the displacement sensor is perpendicular to the corresponding plane, The sensor base is fixed on the fixed platform of the six-degree-of-freedom parallel mechanism through the bracket;
所述被测基准块包括与三个所述平面一一对应的三个相互正交的基准平面,且所述位移传感器的触头均与对应的基准平面接触,所述被测基准块固定在六自由度并联机构的动平台顶部;The measured reference block includes three mutually orthogonal reference planes corresponding to the three planes one-to-one, and the contacts of the displacement sensor are all in contact with the corresponding reference planes, and the measured reference block is fixed on the The top of the moving platform of the 6-DOF parallel mechanism;
所述参数标定计算模块获取各个所述位移传感器在六自由度并联机构处于不同位姿下的伸缩量实际值,并根据所述伸缩量实际值确定六自由度并联机构的最优结构参数误差,根据所述最优结构参数误差对六自由度并联机构的参数进行标定与补偿。The parameter calibration calculation module obtains the actual value of the expansion and contraction amount of each of the displacement sensors when the six-degree-of-freedom parallel mechanism is in different poses, and determines the optimal structural parameter error of the six-degree-of-freedom parallel mechanism according to the actual value of the expansion and contraction amount, The parameters of the six-degree-of-freedom parallel mechanism are calibrated and compensated according to the optimal structural parameter error.
本发明还提出一种基于上述六自由度并联机构参数标定装置的参数标定方法,所述参数标定计算模块用于执行所述参数标定方法,所述参数标定方法包括以下步骤:The present invention also proposes a parameter calibration method based on the above-mentioned six-degree-of-freedom parallel mechanism parameter calibration device. The parameter calibration calculation module is used to execute the parameter calibration method, and the parameter calibration method includes the following steps:
S1:预设六自由度并联机构的结构参数的初值,并为六自由度并联机构的结构参数添加对应的结构参数误差;S1: Preset the initial value of the structural parameters of the 6-DOF parallel mechanism, and add the corresponding structural parameter error to the structural parameters of the 6-DOF parallel mechanism;
S2:预设六自由度并联机构参数标定装置的结构参数的初值,并为六自由度并联机构参数标定装置的结构参数添加对应的结构参数误差;S2: Preset the initial values of the structural parameters of the 6-DOF parallel mechanism parameter calibration device, and add the corresponding structural parameter error to the structural parameters of the 6-DOF parallel mechanism parameter calibration device;
S3:预设六自由度并联机构的动平台的名义位姿,且所述名义位姿的数量大于等于下限值;S3: Preset the nominal pose of the moving platform of the 6-DOF parallel mechanism, and the number of the nominal poses is greater than or equal to the lower limit value;
S4:计算各所述名义位姿下各个位移传感器的伸缩量名义值;S4: Calculate the nominal value of the expansion and contraction amount of each displacement sensor under each of the nominal poses;
S5:利用控制器驱动六自由度并联机构,使动平台运动至各所述名义位姿,并记录各所述名义位姿下各个所述位移传感器的伸缩量实际值;S5: use the controller to drive the six-degree-of-freedom parallel mechanism, move the moving platform to each of the nominal poses, and record the actual value of the expansion and contraction of each of the displacement sensors under each of the nominal poses;
S6:将每一所述名义位姿下每一个所述位移传感器的伸缩量实际值与伸缩量名义值做差,得到各所述名义位姿下各个所述位移传感器的示值误差;S6: making a difference between the actual value of the expansion and contraction amount of each of the displacement sensors under each of the nominal poses and the nominal value of the expansion and contraction amount to obtain the indication error of each of the displacement sensors under each of the nominal poses;
S7:以全部所述位移传感器的示值误差的平方和最小为目标函数,以六自由度并联机构和六自由度并联机构参数标定装置的结构参数误差为设计变量,构造最优化问题的数学模型;S7: Taking the minimum sum of squares of the indication errors of all the displacement sensors as the objective function, and taking the structural parameter errors of the 6-DOF parallel mechanism and the parameter calibration device of the 6-DOF parallel mechanism as the design variable, construct a mathematical model of the optimization problem ;
S8:利用先进优化软件搜索出所述数学模型的最优解;S8: Use advanced optimization software to search for the optimal solution of the mathematical model;
S9:将搜索得到的最优解代入六自由度并联机构的数学模型,实现六自由度并联机构的参数标定与补偿。S9: Substitute the optimal solution obtained by the search into the mathematical model of the 6-DOF parallel mechanism to realize the parameter calibration and compensation of the 6-DOF parallel mechanism.
与现有技术相比,本发明具有的有益效果如下:Compared with the prior art, the present invention has the following beneficial effects:
1)成本低廉1) Low cost
六自由度并联机构参数标定装置主要组成部分为:六支高精度位移传感器、被测基准块及传感器座,与三坐标测量机、激光跟踪仪等昂贵仪器相比,成本极其低廉;The main components of the six-degree-of-freedom parallel mechanism parameter calibration device are: six high-precision displacement sensors, measured reference blocks and sensor bases. Compared with expensive instruments such as three-coordinate measuring machines and laser trackers, the cost is extremely low;
2)操作简洁2) Simple operation
标定前,只需将被测基准块固定在六自由度并联机构动平台上,将位移传感器固定在传感器座上,将传感器座通过支架固定在六自由度并联机构定平台上,即可开展参数标定;标定时,只需操作六自由度并联机构的控制器,无需操作六自由度并联机构参数标定装置,整个标定过程操作简洁,省时省力;Before calibration, just fix the measured reference block on the 6-DOF parallel mechanism motion platform, fix the displacement sensor on the sensor base, and fix the sensor base on the 6-DOF parallel mechanism fixed platform through the bracket, then the parameters can be developed. Calibration; when calibrating, only the controller of the 6-DOF parallel mechanism needs to be operated, and there is no need to operate the parameter calibration device of the 6-DOF parallel mechanism. The entire calibration process is simple to operate, saving time and effort;
3)标定效率高3) High calibration efficiency
只要六自由度并联机构末端位姿发生改变,瞬间便可获取位移传感器的实测值即伸缩量实际值,这时无需解算位姿,将位移传感器的伸缩量实际值与伸缩量名义值做差,并代入先进优化软件,短时间内即可计算出六自由度并联机构的最优结构参数误差,极大地提升了参数标定的效率。As long as the position and posture of the end of the six-degree-of-freedom parallel mechanism changes, the measured value of the displacement sensor, that is, the actual value of the expansion and contraction amount can be obtained in an instant. At this time, there is no need to solve the posture and attitude, and the difference between the actual value of the expansion and contraction amount of the displacement sensor and the nominal value of the expansion and contraction amount can be obtained. , and into the advanced optimization software, the optimal structural parameter error of the 6-DOF parallel mechanism can be calculated in a short time, which greatly improves the efficiency of parameter calibration.
附图说明Description of drawings
图1为本发明一个实施例中六自由度并联机构参数标定装置的结构示意图;1 is a schematic structural diagram of a parameter calibration device for a six-degree-of-freedom parallel mechanism in an embodiment of the present invention;
图2为图1隐去传感器座和支架后的结构示意图;FIG. 2 is a schematic structural diagram of FIG. 1 after the sensor seat and the bracket are hidden;
图3为图1中位移传感器与传感器座的关系示意图;FIG. 3 is a schematic diagram of the relationship between the displacement sensor and the sensor base in FIG. 1;
图4为图1中位移传感器与被测基准块的关系示意图;4 is a schematic diagram of the relationship between the displacement sensor and the measured reference block in FIG. 1;
图5为本发明一个实施例中六自由度并联机构参数标定方法的流程示意图。FIG. 5 is a schematic flowchart of a method for calibrating parameters of a six-degree-of-freedom parallel mechanism according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合附图及较佳实施例对本发明的技术方案进行详细描述。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and preferred embodiments.
在一个实施例中,如图1-4所示,本发明公开一种六自由度并联机构参数标定装置,该装置主要包括:六个位移传感器,分别为位移传感器1~位移传感器6,传感器座7,被测基准块8,支架9和参数标定计算模块。In one embodiment, as shown in Figures 1-4, the present invention discloses a parameter calibration device for a six-degree-of-freedom parallel mechanism. The device mainly includes: six displacement sensors, namely displacement sensor 1 to
具体地,传感器座7包括三个相互正交的平面,分别为平面7-1、平面7-2和平面7-3,平面7-1固定有位移传感器1、位移传感器2和位移传感器3,平面7-2固定有位移传感器4和位移传感器5,平面7-3固定有位移传感器6,并且位移传感器1~位移传感器6的测杆轴线与对应的平面垂直。传感器座7通过支架9固定在六自由度并联机构的定平台10上,传感器座7和支架9均不与六自由度并联机构的动平台11接触。Specifically, the
较佳地,本实施例中的位移传感器采用光栅位移传感器,具有检测范围大、检测精度高、响应速度快的特点,例如,可以采用捷克ESSA光栅位移传感器SM30系列。Preferably, the displacement sensor in this embodiment adopts a grating displacement sensor, which has the characteristics of large detection range, high detection accuracy and fast response speed. For example, the Czech ESSA grating displacement sensor SM30 series can be used.
可选地,传感器座7为底部开口的空心的长方体或者正方体,长方体或者正方体的内部空心用于容纳被测基准块8。Optionally, the
被测基准块8包括与分别平面7-1、平面7-2和平面7-3一一对应的三个相互正交的基准平面,分别为基准平面8-1、基准平面8-2和基准平面8-3,并且位移传感器的触头均与对应的基准平面接触,即位移传感器1、位移传感器2、位移传感器3的触头与被测基准块8的基准平面8-1接触,位移传感器4、位移传感器5的触头与被测基准块8的基准平面8-2接触,位移传感器6的触头与被测基准块8的基准平面8-3接触。被测基准块8固定在六自由度并联机构的动平台11的顶部。The measured
可选地,被测基准块8为长方体或者正方体,被测基准块8可以为实心结构,也可以为空心结构,此处不做限定。Optionally, the measured
可选地,传感器座7和被测基准块8的材质为铸铁材料,支架9的材质为45号钢,具有强度大、不易形变等优点。Optionally, the material of the
参数标定计算模块获取各个位移传感器在六自由度并联机构处于不同位姿下的伸缩量实际值,并根据伸缩量实际值确定六自由度并联机构的最优结构参数误差,根据最优结构参数误差对六自由度并联机构的参数进行标定与补偿。The parameter calibration calculation module obtains the actual value of the expansion and contraction amount of each displacement sensor in the six-degree-of-freedom parallel mechanism in different poses, and determines the optimal structural parameter error of the six-degree-of-freedom parallel mechanism according to the actual value of the expansion and contraction amount. The parameters of the 6-DOF parallel mechanism are calibrated and compensated.
本实施例所提出的六自由度并联机构参数标定装置具有成本低廉、操作简洁、省时省力、标定效率较高等优点。The device for calibrating parameters of a six-degree-of-freedom parallel mechanism proposed in this embodiment has the advantages of low cost, simple operation, time-saving and labor-saving, and high calibration efficiency.
在另一个实施例中,本发明提供一种六自由度并联机构参数标定方法,该方法基于前述实施例所述的六自由度并联机构参数标定装置实现,六自由度并联机构参数标定装置的结构参见前述实施例,此次不再赘述。参数标定计算模块用于执行本实施例的六自由度并联机构参数标定方法,具体地,参数标定方法包括以下步骤:In another embodiment, the present invention provides a method for calibrating parameters of a 6-DOF parallel mechanism. The method is implemented based on the device for calibrating parameters for a 6-DOF parallel mechanism described in the foregoing embodiments. The structure of the device for calibrating parameters for a 6-DOF parallel mechanism Refer to the foregoing embodiments, which will not be repeated here. The parameter calibration calculation module is used to execute the parameter calibration method of the six-degree-of-freedom parallel mechanism in this embodiment. Specifically, the parameter calibration method includes the following steps:
S1(S100):预设六自由度并联机构的结构参数的初值,并为六自由度并联机构的结构参数添加对应的结构参数误差。S1 (S100): Preset the initial values of the structural parameters of the 6-DOF parallel mechanism, and add corresponding structural parameter errors to the structural parameters of the 6-DOF parallel mechanism.
六自由度并联机构的结构参数包括六自由度并联机构的定平台上六个铰点在定平台坐标系下的坐标、动平台上六个铰点在动平台坐标系下的坐标以及六个支链的长度。具体地,六自由度并联机构的结构参数的数量一共为42个,结构参数分别为XBi,YBi,ZBi,li,XPi,YPi,ZPi(i=1,2,3,4,5,6),其中:The structural parameters of the six-degree-of-freedom parallel mechanism include the coordinates of the six hinge points on the fixed platform of the six-degree-of-freedom parallel mechanism in the fixed platform coordinate system, the coordinates of the six hinge points on the moving platform in the moving platform coordinate system, and the six support the length of the chain. Specifically, the number of structural parameters of the six-degree-of-freedom parallel mechanism is 42 in total, and the structural parameters are X Bi , Y Bi , Z Bi , Li , X Pi , Y Pi , Z Pi ( i =1,2,3 ,4,5,6), where:
(1)[XBi YBi ZBi]=[nXBi nYBi nZBi]+[ΔXBi ΔYBi ΔZBi]为六自由度并联机构的定平台上第i个铰点在定平台坐标系(以下简称定系)中的坐标,[nXBi nYBi nZBi]为定平台第i个铰点的坐标名义值,左上角标n是“nominal”(名义的)的缩写(以下相同),[ΔXBi ΔYBiΔZBi]为定平台第i个铰点的坐标误差;(1)[X Bi Y Bi Z Bi ]=[ n X Bi n Y Bin Z Bi ] + [ΔX Bi ΔY Bi ΔZ Bi ] is the i-th hinge point on the fixed platform of the six-degree-of-freedom parallel mechanism on the fixed platform The coordinates in the coordinate system (hereinafter referred to as the fixed system), [ n X B n Y B n Z Bi ] is the nominal value of the coordinates of the i-th hinge point of the fixed platform, and the upper left mark n is the abbreviation of "nominal" (nominal) (the same below), [ΔX Bi ΔY Bi ΔZ Bi ] is the coordinate error of the i-th hinge point of the fixed platform;
(2)[XPi YPi ZPi]=[nXPi nYPi nZPi]+[ΔXPi ΔYPi ΔZPi]为六自由度并联机构的动平台上第i个铰点在动平台坐标系(以下简称动系)中的坐标,[nXPi nYPi nZPi]为动平台第i个铰点的坐标名义值,[ΔXPi AYPi ΔZPi]为动平台第i个铰点的坐标误差;(2)[X Pi Y Pi Z Pi ]=[ n X Pi n Y Pi n Z Pi ]+[ΔX Pi ΔY Pi ΔZ Pi ] is the i-th hinge point on the moving platform of the six-degree-of-freedom parallel mechanism on the moving platform The coordinates in the coordinate system (hereinafter referred to as the dynamic system), [ n X Pi n Y Pi n Z Pi ] is the nominal coordinate value of the i-th hinge point of the moving platform, [ΔX Pi AY Pi ΔZ Pi ] is the i-th moving platform The coordinate error of the hinge point;
(3)li=nli+Δli为六自由度并联机构的第i个支链的长度li,nli为第i个支链的长度名义值,Δli为第i个支链的长度误差。(3) l i = n l i +Δl i is the length l i of the i-th branch of the six-degree-of-freedom parallel mechanism, n l i is the nominal value of the length of the i-th branch, and Δli is the i -th branch Chain length error.
S2(S200):预设六自由度并联机构参数标定装置的结构参数的初值,并为六自由度并联机构参数标定装置的结构参数添加对应的结构参数误差。S2 (S200): Preset the initial value of the structural parameter of the 6-DOF parallel mechanism parameter calibration device, and add the corresponding structural parameter error to the structural parameter of the 6-DOF parallel mechanism parameter calibration device.
可选地,S2预设六自由度并联机构参数标定装置的结构参数的初值包括以下步骤:Optionally, S2 presets the initial values of the structural parameters of the six-degree-of-freedom parallel mechanism parameter calibration device, including the following steps:
S21:构建被测基准块坐标系。S21: Construct the measured reference block coordinate system.
首先将六自由度并联机构参数标定装置模型化。将被测基准块8三平面交点抽象为被测基准块坐标系(以下简称基准块系)的原点,基准平面8-1抽象为基准块系的XOY面,简写为“I面”,基准平面8-1与基准平面8-2的交线抽象为X轴,过X轴且垂直于基准平面8-1的平面定义为XOZ面,简写为“II面”,过原点且垂直于X轴的平面定义为YOZ面,简写为“III面”。至此构建完成被测基准块坐标系。位移传感器1~位移传感器6抽象为空间直线S1~直线S6,其中直线S1、直线S2和直线S3与I面的交点定义为M1、M2、M3,直线S4和直线S5与II面的交点定义为M4、M5,直线S6与III面的交点定义为M6。Firstly, the parameter calibration device of the six-degree-of-freedom parallel mechanism is modeled. The intersection of the three planes of the measured
S22:预设被测基准块坐标系在六自由度并联机构动系下的位姿。S22: Preset the pose of the measured reference block coordinate system under the six-degree-of-freedom parallel mechanism dynamic system.
预设基准块系在六自由度并联机构动系下的位姿为:The pose of the preset reference block system under the six-degree-of-freedom parallel mechanism is:
式中:where:
为基准块系原点在动系中的坐标,为基准块系坐标原点在动系中的坐标名义值,为基准块系坐标原点在动系中的坐标误差; is the coordinate of the origin of the reference block system in the dynamic system, is the nominal value of the coordinate origin of the reference block system in the dynamic system, is the coordinate error of the coordinate origin of the reference block system in the dynamic system;
为基准块系在动系中的姿态角,为基准块系在动系中的姿态角名义值,为基准块系在动系中的姿态角误差。 is the attitude angle of the reference block in the dynamic system, is the nominal value of the attitude angle of the reference block in the dynamic system, is the attitude angle error of the reference block in the dynamic system.
将式(1)写成齐次坐标变换的形式为:The formula (1) can be written in the form of homogeneous coordinate transformation as:
式中,c代表cos,s代表sin。In the formula, c represents cos and s represents sin.
S23:预设动平台坐标系处于零位时被测基准块系在六自由度并联机构定平台坐标系下的位姿,得到动平台坐标系处于零位时被测基准块的XOY面、XOZ面及YOZ面的表达式。S23: Preset the pose of the measured reference block under the fixed platform coordinate system of the six-degree-of-freedom parallel mechanism when the moving platform coordinate system is at the zero position, and obtain the XOY plane and XOZ of the measured reference block when the moving platform coordinate system is at the zero position Expressions for faces and YOZ faces.
在本步骤中,预设动系处于零位时基准块系在六自由度并联机构定系下的位姿,用RPY角表示为:In this step, when the preset dynamic system is at the zero position, the pose of the reference block system under the fixed system of the six-degree-of-freedom parallel mechanism is expressed as the RPY angle:
式中:where:
为基准块系原点在定系中的坐标,为基准块系坐标原点在定系中的坐标名义值,为基准块系坐标原点在定系中的坐标误差; is the coordinate of the origin of the reference block system in the fixed system, is the nominal value of the coordinate origin of the reference block system in the fixed system, is the coordinate error of the coordinate origin of the reference block system in the fixed system;
为基准块系在定系中的姿态角,为基准块系在定系中的姿态角名义值,为基准块系在定系中的姿态角误差。 is the attitude angle of the reference block in the fixed system, is the nominal value of the attitude angle of the reference block in the fixed system, is the attitude angle error of the reference block in the fixed system.
将式(3)写成齐次坐标变换形式为:The equation (3) can be written in the form of homogeneous coordinate transformation as:
式中,c代表cos,s代表sin。In the formula, c represents cos and s represents sin.
根据式(4)可得动系处于零位时被测基准块的I面的表达式:According to formula (4), the expression of the I plane of the measured reference block when the moving system is at zero position can be obtained:
式中,为I面上一点,即基准块系的坐标原点,及为I面内的向量。In the formula, is a point on the I surface, that is, the coordinate origin of the reference block system, and is a vector in the I plane.
以及动系处于零位时被测基准块的II面的表达式:And the expression of the II side of the measured reference block when the dynamic system is in the zero position:
式中,为II面上一点,及为II面内的向量。In the formula, For a point on the II side, and is a vector in the II plane.
以及动系处于零位时被测基准块的III面的表达式:And the expression of the III surface of the measured reference block when the dynamic system is at the zero position:
式中,为III面上一点,及为III面内的向量。In the formula, is a point on face III, and is a vector in plane III.
S24:预设各个位移传感器所在直线的表达式。S24: Preset the expression of the straight line where each displacement sensor is located.
预设位移传感器1~位移传感器6所在直线表达式:The linear expression where the preset displacement sensor 1 to the
Lk=[xk yk zk dxk dyk dzk],k=1,2,3,4,5,6 (8)L k =[x k y k z k dx k dy k dz k ],k=1,2,3,4,5,6 (8)
式中:where:
[xk yk zk]=[nxk nyk nzk]+[Δxk Δyk Δzk]表示直线上一点坐标,[nxk nyk nzk]为直线上一点的坐标名义值,[Δxk Δyk Δzk]为直线上一点的坐标误差;[x k y k z k ]=[ n x k n y k n z k ]+[Δx k Δy k Δz k ] represents the coordinates of a point on a straight line, and [ n x k n y k n z k ] is a point on the straight line The nominal coordinate value of , [Δx k Δy k Δz k ] is the coordinate error of a point on the straight line;
[dxk dyk dzk]=[ndxk ndyk ndzk]+[Δdxk Δdyk Δdzk]表示直线的向量,[ndxk ndyk ndzk]为直线的向量名义值,[Δdxk Δdyk Δdzk]为直线的向量误差。[dx k dy k dz k ]=[ n dx k n dy k n dz k ]+[Δdx k Δdy k Δdz k ] represents the vector of the straight line, [ n dx k n dy k n dz k ] is the nominal vector of the straight line value, [Δdx k Δdy k Δdz k ] is the vector error of the straight line.
通过上述S21至S24,预设完成六自由度并联机构参数标定装置的结构参数,其结构参数共计48个。Through the above S21 to S24, the structural parameters of the six-degree-of-freedom parallel mechanism parameter calibration device are preset, and the structural parameters are 48 in total.
S3(S300):预设六自由度并联机构的动平台的名义位姿,且名义位姿的数量大于等于下限值。S3 (S300): Preset the nominal pose of the moving platform of the six-degree-of-freedom parallel mechanism, and the number of nominal poses is greater than or equal to the lower limit value.
预设六自由度并联机构的动平台的各名义位姿为:The nominal poses of the moving platform of the preset six-degree-of-freedom parallel mechanism are:
式中,为第j个名义位姿下动系的坐标原点在定系中的坐标,为第j个名义位姿下动系在定系中的姿态角,且j≥m,m为名义位姿的数量的下限值,可选地,m=15。In the formula, is the coordinate of the coordinate origin of the moving system under the jth nominal pose in the fixed system, is the attitude angle of the moving system in the fixed system under the jth nominal pose, and j≥m, m is the lower limit of the number of nominal poses, optionally, m=15.
S4(S400):计算各名义位姿下各个位移传感器的伸缩量名义值。S4 (S400): Calculate the nominal value of the expansion and contraction amount of each displacement sensor under each nominal pose.
可选地,S4计算各名义位姿下各个位移传感器的伸缩量名义值包括以下步骤:Optionally, S4 calculating the nominal value of the expansion and contraction amount of each displacement sensor under each nominal pose includes the following steps:
S41:计算动系处于零位时各个位移传感器与基准块系中对应坐标平面的触点在定系中的零位坐标。将式(5),(6),(7),(8)联立,可得触点坐标,记作:S41: Calculate the zero position coordinates in the fixed system of the contact points of each displacement sensor and the corresponding coordinate plane in the reference block system when the dynamic system is at the zero position. Combining equations (5), (6), (7), and (8), the contact coordinates can be obtained, which can be written as:
式中,是动系处于零位时位移传感器k与基准块系中对应坐标平面的触点在定系中的坐标,即为零位坐标。In the formula, It is the coordinate of the contact point of the displacement sensor k and the corresponding coordinate plane in the reference block system in the fixed system when the dynamic system is at the zero position, that is, the zero position coordinate.
S42:计算动系处于名义位姿时各个位移传感器与基准块系中对应坐标平面的触点在定系中的位姿坐标。S42: Calculate the pose coordinates in the fixed system of the contact points of each displacement sensor and the corresponding coordinate plane in the reference block system when the dynamic system is in the nominal pose.
根据S1至S3可推出不同名义位姿的齐次坐标变换的表达式,以及不同名义位姿下坐标平面I、平面II、平面III的平面表达式。将位移传感器的直线表达式与不同名义位姿下坐标平面I、平面II、平面III的平面表达式联立,可求出各位移传感器与基准块系中对应的各坐标平面的触点的坐标,记作:According to S1 to S3, the expressions of homogeneous coordinate transformation of different nominal poses and the plane expressions of coordinate plane I, plane II and plane III under different nominal poses can be derived. By combining the linear expression of the displacement sensor with the plane expressions of the coordinate plane I, plane II, and plane III under different nominal poses, the coordinates of the contact points of each displacement sensor and the corresponding coordinate plane in the reference block system can be obtained. ,Referred to as:
式中,是动系处于各位姿下的位移传感器k与基准块系中对应坐标平面的触点在定系中的坐标,即为位姿坐标。In the formula, It is the coordinate of the contact point in the fixed system between the displacement sensor k of the dynamic system in each pose and the corresponding coordinate plane in the reference block system, that is, the pose coordinate.
S43:根据零位坐标和位姿坐标,计算每一个名义位姿下每一个位移传感器的两个触点之间的直线距离,得到各名义位姿下各个位移传感器的伸缩量名义值。S43: Calculate the straight-line distance between the two contacts of each displacement sensor in each nominal posture according to the zero position coordinates and the posture coordinates, and obtain the nominal value of the expansion and contraction amount of each displacement sensor in each nominal posture.
由式(10)与式(11)计算可得动系处于零位时和动系处于名义位姿下每一个位移传感器的两触点间的直线距离:The straight-line distance between the two contacts of each displacement sensor when the dynamic system is at the zero position and when the dynamic system is in the nominal pose can be calculated from equations (10) and (11):
当动系处于名义位姿时的触点相对于动系处于零位时的触点向参考轴正向移动时,规定位移传感器的伸缩量名义值为正,即When the contact point when the dynamic system is in the nominal pose moves to the positive reference axis relative to the contact point when the dynamic system is in the zero position, the nominal value of the expansion and contraction amount of the displacement sensor is specified to be positive, that is,
hk=|hk| (13)h k = |h k | (13)
当动系处于名义位姿时的触点相对于动系处于零位时的触点向参考轴负向移动时,规定位移传感器的伸缩量名义值为负,即When the contact point when the dynamic system is in the nominal pose moves in the negative direction of the reference axis relative to the contact point when the dynamic system is in the zero position, the nominal value of the expansion and contraction of the specified displacement sensor is negative, that is,
hk=-|hk| (14)h k =-|h k | (14)
其中,参考轴为与位移传感器在基准块系中对应的坐标平面的法线相平行的坐标轴。The reference axis is a coordinate axis parallel to the normal line of the coordinate plane corresponding to the displacement sensor in the reference block system.
由此,计算出每一个名义位姿下每一个位移传感器的伸缩量名义值,记作:From this, the nominal value of the expansion and contraction of each displacement sensor under each nominal pose is calculated, which is recorded as:
nHj=[nhj1 nhj2 nhj3 nhj4 nhj5 nhj6] (15) n H j = [ n h j1 n h j2 n h j3 n h j4 n h j5 n h j6 ] (15)
式中,nhj1,nhj2,nhj3,nhj4,nhj5,nhj6分别为6个位移传感器的伸缩量名义值。In the formula, n h j1 , n h j2 , n h j3 , n h j4 , n h j5 , n h j6 are the nominal values of the expansion and contraction of the six displacement sensors, respectively.
S5(S500):利用控制器驱动六自由度并联机构,使动平台运动至各名义位姿,并记录各名义位姿下各个位移传感器的伸缩量实际值。S5 (S500): Use the controller to drive the six-degree-of-freedom parallel mechanism to move the moving platform to each nominal pose, and record the actual value of the expansion and contraction of each displacement sensor under each nominal pose.
利用控制器驱动六自由度并联机构,使动平台运动至依次运动至名义位姿,利用位移传感器测量不同名义位姿下伸缩量实际值,每一个名义位姿的测量结果记作:The controller is used to drive the six-degree-of-freedom parallel mechanism, so that the moving platform moves to the nominal pose in sequence, and the displacement sensor is used to measure the actual value of the expansion and contraction under different nominal poses. The measurement results of each nominal pose are recorded as:
aHj=[ahj1 ahj2 ahj3 ahj4 ahj5 ahj6] (16) a H j = [ a h j1 a h j2 a h j3 a h j4 a h j5 a h j6 ] (16)
式中,ahj1,ahj2,ahj3,ahj4,ahj5,ahj6分别为6个位移传感器的伸缩量名义值,左上角标a是“actual”(实际的)的缩写。In the formula, a h j1 , a h j2 , a h j3 , a h j4 , a h j5 , and a h j6 are the nominal values of the expansion and contraction of the six displacement sensors, and the upper left mark a is "actual" (actual) abbreviation of.
S6(S600):将每一名义位姿下每一个位移传感器的伸缩量实际值与伸缩量名义值做差,得到各名义位姿下各个位移传感器的示值误差,每一个名义位姿下各个位移传感器的示值误差记作:S6 (S600): Make the difference between the actual value of the telescopic amount of each displacement sensor under each nominal pose and the nominal value of the telescopic amount to obtain the indication error of each displacement sensor under each nominal pose. The indication error of the displacement sensor is recorded as:
ΔHj=[Δhj1 Δhj2 Δhj3 Δhj4 Δhj5 Δhj6] (17)ΔH j =[Δh j1 Δh j2 Δh j3 Δh j4 Δh j5 Δh j6 ] (17)
式中,Δhj1,Δhj2,Δhj3,Δhj4,Δhj5,Δhj6分别为6个位移传感器的伸缩量名义值与伸缩量实际值的差值。In the formula, Δh j1 , Δh j2 , Δh j3 , Δh j4 , Δh j5 , Δh j6 are the difference between the nominal value of the expansion and contraction of the six displacement sensors and the actual value of the expansion and contraction.
S7(S700):以全部位移传感器的示值误差的平方和最小为目标函数,以六自由度并联机构和六自由度并联机构参数标定装置的结构参数误差为设计变量,构造最优化问题的数学模型。S7 (S700): Taking the minimum sum of squares of the indication errors of all displacement sensors as the objective function, and taking the structural parameter error of the 6-DOF parallel mechanism and the parameter calibration device of the 6-DOF parallel mechanism as the design variable, the mathematics of the optimization problem is constructed. Model.
在本步骤中,构造最优化问题的数学模型。以全部位移传感器的示值误差的平方和最小为目标函数,即In this step, a mathematical model of the optimization problem is constructed. Taking the minimum sum of squares of the indication errors of all displacement sensors as the objective function, namely
式中,m为名义位姿的数量。where m is the number of nominal poses.
以六自由度并联机构和六自由度并联机构参数标定装置的结构参数误差为设计变量,即Taking the 6-DOF parallel mechanism and the structural parameter error of the 6-DOF parallel mechanism parameter calibration device as the design variable, that is,
变量的约束条件为现有加工及装配能力下变量的取值范围,取值范围端点的误差取±0.1(mm)。The constraint condition of the variable is the value range of the variable under the existing processing and assembly capabilities, and the error at the end point of the value range is ±0.1 (mm).
S8(S800):利用先进优化软件搜索出数学模型的最优解。本发明中的先进优化软件可以采用现有技术中的软件实现,例如采用OASIS软件,OASIS软件基于先进优化算法实现对数学模型的最优解搜索,得到数学模型的最优解,即得到最优结构参数误差。S8 (S800): Use advanced optimization software to search for the optimal solution of the mathematical model. The advanced optimization software in the present invention can be implemented by the software in the prior art, for example, OASIS software. The OASIS software realizes the search for the optimal solution of the mathematical model based on the advanced optimization algorithm, and the optimal solution of the mathematical model is obtained, that is, the optimal solution is obtained. Structural parameter error.
S9(S900):将搜索得到的最优解代入六自由度并联机构的控制软件中的数学模型,实现六自由度并联机构的参数标定与补偿。S9 (S900): Substitute the optimal solution obtained by the search into the mathematical model in the control software of the 6-DOF parallel mechanism to realize parameter calibration and compensation of the 6-DOF parallel mechanism.
本发明上述实施例所提出的六自由度并联机构参数标定装置即方法具有以下有益效果:The six-degree-of-freedom parallel mechanism parameter calibration device or method proposed by the above embodiments of the present invention has the following beneficial effects:
1)成本低廉1) Low cost
六自由度并联机构参数标定装置主要组成部分为:六支高精度位移传感器、被测基准块及传感器座,与三坐标测量机、激光跟踪仪等昂贵仪器相比,成本极其低廉;The main components of the six-degree-of-freedom parallel mechanism parameter calibration device are: six high-precision displacement sensors, measured reference blocks and sensor bases. Compared with expensive instruments such as three-coordinate measuring machines and laser trackers, the cost is extremely low;
2)操作简洁2) Simple operation
标定前,只需将被测基准块固定在六自由度并联机构动平台上,将位移传感器固定在传感器座上,将传感器座通过支架固定在六自由度并联机构定平台上,即可开展参数标定;标定时,只需操作六自由度并联机构的控制器,无需操作六自由度并联机构参数标定装置,整个标定过程操作简洁,省时省力;Before calibration, just fix the measured reference block on the 6-DOF parallel mechanism motion platform, fix the displacement sensor on the sensor base, and fix the sensor base on the 6-DOF parallel mechanism fixed platform through the bracket, then the parameters can be developed. Calibration; when calibrating, only the controller of the 6-DOF parallel mechanism needs to be operated, and there is no need to operate the parameter calibration device of the 6-DOF parallel mechanism. The entire calibration process is simple to operate, saving time and effort;
3)标定效率高3) High calibration efficiency
只要六自由度并联机构末端位姿发生改变,瞬间便可获取位移传感器的实测值即伸缩量实际值,这时无需解算位姿,将位移传感器的伸缩量实际值与伸缩量名义值做差,并代入先进优化软件,短时间内即可计算出六自由度并联机构的最优结构参数误差,极大地提升了参数标定的效率。As long as the position and posture of the end of the six-degree-of-freedom parallel mechanism changes, the measured value of the displacement sensor, that is, the actual value of the expansion and contraction amount can be obtained in an instant. At this time, there is no need to solve the posture and attitude, and the difference between the actual value of the expansion and contraction amount of the displacement sensor and the nominal value of the expansion and contraction amount can be obtained. , and into the advanced optimization software, the optimal structural parameter error of the 6-DOF parallel mechanism can be calculated in a short time, which greatly improves the efficiency of parameter calibration.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010595602.1A CN111716331A (en) | 2020-06-28 | 2020-06-28 | A device and method for calibrating parameters of a six-degree-of-freedom parallel mechanism |
CN2020105956021 | 2020-06-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113183137A CN113183137A (en) | 2021-07-30 |
CN113183137B true CN113183137B (en) | 2022-07-01 |
Family
ID=72568938
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010595602.1A Pending CN111716331A (en) | 2020-06-28 | 2020-06-28 | A device and method for calibrating parameters of a six-degree-of-freedom parallel mechanism |
CN202110605493.1A Active CN113183137B (en) | 2020-06-28 | 2021-05-31 | A parameter calibration device and method for a six-degree-of-freedom parallel mechanism |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010595602.1A Pending CN111716331A (en) | 2020-06-28 | 2020-06-28 | A device and method for calibrating parameters of a six-degree-of-freedom parallel mechanism |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN111716331A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113091670B (en) * | 2021-04-13 | 2022-02-11 | 上海大学 | Calibration device and calibration method for robot joint stiffness |
CN113514017B (en) * | 2021-05-06 | 2022-08-16 | 南京理工大学 | Parallel driving mechanism moving platform pose measuring method |
CN113532352B (en) * | 2021-06-23 | 2023-09-19 | 中国科学院长春光学精密机械与物理研究所 | A method for detecting the position of a six-degree-of-freedom displacement platform |
CN113865485B (en) * | 2021-09-26 | 2022-10-25 | 西安交通大学 | Precision optimization method and system of six-degree-of-freedom adjustment platform for off-axis aspheric element |
CN113771093B (en) * | 2021-09-28 | 2024-06-11 | 浙江大学湖州研究院 | Mechanical arm calibration and precision measurement device based on linear motion platform |
CN114083530B (en) * | 2021-10-22 | 2023-03-31 | 中国科学院自动化研究所 | Workpiece coordinate system calibration system and method |
CN118061206B (en) * | 2024-04-25 | 2024-06-18 | 中国科学院长春光学精密机械与物理研究所 | Robot TCP calibration device, method, computer equipment and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101788257A (en) * | 2010-01-14 | 2010-07-28 | 哈尔滨工业大学 | Device and method for six degrees of freedom micro pose measurement based on capacitance sensor |
CN102278963A (en) * | 2011-06-30 | 2011-12-14 | 燕山大学 | Self-calibration method of parallel robot |
CN103963032A (en) * | 2014-05-05 | 2014-08-06 | 中国科学院长春光学精密机械与物理研究所 | Large space optical remote sensor four-dimensional regulating device |
CN106112971A (en) * | 2016-07-14 | 2016-11-16 | 南京林业大学 | A kind of pedestal position of articulating point self-adjustable six degree of freedom incidence flexible exoskeleton system |
CN110500990A (en) * | 2019-07-09 | 2019-11-26 | 同济大学 | A six-degree-of-freedom measurement system and method |
WO2020073540A1 (en) * | 2018-10-12 | 2020-04-16 | 北京理工大学 | Magnetic source detection device fixedly connecting external magnet and magnetic sensor array |
CN111024047A (en) * | 2019-12-26 | 2020-04-17 | 北京航空航天大学 | Six-degree-of-freedom pose measurement device and method based on orthogonal binocular vision |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7040033B2 (en) * | 2001-10-05 | 2006-05-09 | Trustees Of Stevens Institute Of Technology | Six degrees of freedom precision measuring system |
CN100484728C (en) * | 2006-12-28 | 2009-05-06 | 山东理工大学 | Three-translation orthogonal decoupling parallel micromotion platform |
CN102294695A (en) * | 2010-06-25 | 2011-12-28 | 鸿富锦精密工业(深圳)有限公司 | Robot calibration method and calibration system |
CN102152307B (en) * | 2011-01-24 | 2012-09-05 | 西安交通大学 | Inclination-angle-constraint-based kinematic calibration method for Stewart parallel robot |
CN103471545A (en) * | 2013-09-25 | 2013-12-25 | 吉林大学 | Measuring system and measuring method for pose with six degrees of freedom |
CN106240849B (en) * | 2016-07-22 | 2020-05-12 | 上海宇航系统工程研究所 | Spacecraft docking system and method |
CN106052570A (en) * | 2016-08-11 | 2016-10-26 | 中国计量科学研究院 | Nanometer-displacement-bench six-degree-of-freedom calibrating device |
CN106813638B (en) * | 2017-03-15 | 2018-05-18 | 吉林大学 | A kind of 3RPS parallel robots geometric parameter discrimination method |
DE102017206025A1 (en) * | 2017-04-07 | 2018-10-11 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Magnetic arrangement for detecting relative movements or relative positions |
-
2020
- 2020-06-28 CN CN202010595602.1A patent/CN111716331A/en active Pending
-
2021
- 2021-05-31 CN CN202110605493.1A patent/CN113183137B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101788257A (en) * | 2010-01-14 | 2010-07-28 | 哈尔滨工业大学 | Device and method for six degrees of freedom micro pose measurement based on capacitance sensor |
CN102278963A (en) * | 2011-06-30 | 2011-12-14 | 燕山大学 | Self-calibration method of parallel robot |
CN103963032A (en) * | 2014-05-05 | 2014-08-06 | 中国科学院长春光学精密机械与物理研究所 | Large space optical remote sensor four-dimensional regulating device |
CN106112971A (en) * | 2016-07-14 | 2016-11-16 | 南京林业大学 | A kind of pedestal position of articulating point self-adjustable six degree of freedom incidence flexible exoskeleton system |
WO2020073540A1 (en) * | 2018-10-12 | 2020-04-16 | 北京理工大学 | Magnetic source detection device fixedly connecting external magnet and magnetic sensor array |
CN110500990A (en) * | 2019-07-09 | 2019-11-26 | 同济大学 | A six-degree-of-freedom measurement system and method |
CN111024047A (en) * | 2019-12-26 | 2020-04-17 | 北京航空航天大学 | Six-degree-of-freedom pose measurement device and method based on orthogonal binocular vision |
Non-Patent Citations (3)
Title |
---|
Calibration of a 6-DOF parallel micromanipulator for nanomanipulation;Lefeng Wang;《Calibration of a 6-DOF parallel micromanipulator for nanomanipulation》;IEEE;20100304;全文 * |
分体式超大口径空间遥感器技术及其发展;杨会生;《分体式超大口径空间遥感器技术及其发展》;光学精密工程;20180615;第26卷(第6期);第1287-1297页 * |
工业机器人绝对定位精度测量的研究;赵建峰;《工业机器人绝对定位精度测量的研究》;机床与液压;20200215;第48卷(第3期);第24-27页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111716331A (en) | 2020-09-29 |
CN113183137A (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113183137B (en) | A parameter calibration device and method for a six-degree-of-freedom parallel mechanism | |
JP4660779B2 (en) | Method for evaluating position error of moving device and method for improving moving accuracy based on the evaluation result | |
CN104390612B (en) | Six-degree-of-freedom parallel robot benchmark pose scaling method for Stewart platform configuration | |
CN108297101B (en) | Detection and dynamic compensation method of terminal pose error of multi-joint arm serial robot | |
CN107042528B (en) | Kinematics calibration system and method for industrial robot | |
CN102825602B (en) | PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device | |
US9797700B2 (en) | Variable modelling of a measuring device | |
CN101842189B (en) | Method and device for preparing error map and numerically controlled machine tool having error map preparation function | |
CN110757504B (en) | Positioning error compensation method of high-precision movable robot | |
CN101866163B (en) | Numerical control machine tool and numerical control device | |
CN107421442A (en) | A kind of robot localization error online compensation method of externally measured auxiliary | |
CN110125455B (en) | Method for optimizing drill bit pose in robot drilling | |
CN108351203B (en) | Method for providing accurate coordinate measurement, independent reference module and coordinate measuring machine | |
TWI601611B (en) | Mechanism parametric calibration method for robotic arm system | |
CN106524908B (en) | A kind of measuring method of lathe total travel space error | |
CN104848826A (en) | Shape measuring apparatus and shape measurement error correction method | |
CN113618738A (en) | Mechanical arm kinematic parameter calibration method and system | |
CN109613889B (en) | Comprehensive Error Compensation Method of On-machine Measurement System of CNC Machine Tool Based on Differential Transformation | |
CN107726982A (en) | A kind of laser range sensor error in mounting position scaling method | |
CN109291051B (en) | A closed-loop control method for terminal attitude of series-parallel robot based on angle sensor | |
CN118922278A (en) | System and method for calibrating an articulated robotic arm | |
Hermann | Generalized Geometric Error Correction in Coordinate Measurement | |
CN107263463B (en) | Mechanism parameter correction method for robotic arm system | |
CN110440721A (en) | A kind of three-dimensional mobile platform movement angle error rapid measurement device and method | |
CN110006378A (en) | A kind of structure detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |