CN113176232A - 一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒 - Google Patents

一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒 Download PDF

Info

Publication number
CN113176232A
CN113176232A CN202010724424.8A CN202010724424A CN113176232A CN 113176232 A CN113176232 A CN 113176232A CN 202010724424 A CN202010724424 A CN 202010724424A CN 113176232 A CN113176232 A CN 113176232A
Authority
CN
China
Prior art keywords
water
rhodamine
soluble
nanocrystalline
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010724424.8A
Other languages
English (en)
Inventor
王伟丽
王兆安
郭文胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Meidi Biomedical Technology Development Co ltd
Original Assignee
Hangzhou Meidi Biomedical Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Meidi Biomedical Technology Development Co ltd filed Critical Hangzhou Meidi Biomedical Technology Development Co ltd
Priority to CN202010724424.8A priority Critical patent/CN113176232A/zh
Publication of CN113176232A publication Critical patent/CN113176232A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本申请涉及生物医学荧光检测领域,尤其涉及一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒。一种比率型荧光检测用的水溶性纳米晶材料,该水溶性纳米晶材料的纳米晶结构式为NaBiF4:20Yb/1Tm。该水溶性纳米晶材料通过敏化离子与激活离子浓度调控,得到了最佳离子掺杂浓度,最后利用Tm3+离子蓝光到罗丹明B的有效能量传递,得到了Tm3+离子蓝光与罗丹明B荧光强度比随溶液中罗丹明B浓度变化的关系曲线,能够很好地应用于罗丹明B的定量检测。

Description

一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的 检测试剂盒
技术领域
本申请涉及生物医学荧光检测领域,尤其涉及一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒。
背景技术
罗丹明B,又称玫瑰红B或碱性玫瑰精,俗称红花粉,会引起皮下组织生肉瘤,属于第三类致癌物质。由于罗丹明B价格低廉,呈鲜红色,性质稳定,常被非法用于调味品的染色剂,因此,食品中罗丹明B的检测具有重要的科学研究价值。目前罗丹明B的检测方法是采用反相高效液相色谱仪-紫外/可见光检测器或电化学法进行定性定量检测,检测工艺复杂,耗时长,成本高【1-3】。荧光检测方法具有非接触式、快响应、高空间分辨率的特点,其中比率型荧光检测由于不受外界环境的干扰,具有非常高的精确度,被广泛应用于pH、温度、压力以及生物蛋白等的检测【4-6】
稀土掺杂上转换氟化物纳米晶具有高光化学稳定性,激发波长位于近红外区域,具有较深的穿透深度,无背景荧光,低生物毒性,被广泛应用于荧光防伪,温度传感以及生物医学等领域【7-10】
发明内容
为了解决上述的技术问题上述的技术问题,本申请的第一个目的是提供一种比率型荧光检测用的水溶性纳米晶材料,该水溶性纳米晶材料通过敏化离子与激活离子浓度调控,得到了最佳离子掺杂浓度,最后利用Tm3+离子蓝光到罗丹明B的有效能量传递,得到了Tm3+离子蓝光与罗丹明B荧光强度比随溶液中罗丹明B浓度变化的关系曲线,能够很好地应用于罗丹明B的定量检测。
为了实现上述的目的,本申请采用了以下的技术方案:
一种比率型荧光检测用的水溶性纳米晶材料,该水溶性纳米晶材料的纳米晶分子式为Na0.7Li0.3BiF4: 20Yb/1Tm。
作为进一步改进,该水溶性纳米晶材料为柠檬酸配体包覆Na0.7Li0.3BiF4: 20Yb/1Tm纳米晶。
进一步,本申请另外还提供了上述的水溶性纳米晶材料的制备方法,该方法包括以下的步骤:2毫摩尔硝酸钠(NaNO3),0.79毫摩尔硝酸铋(Bi(NO3)3∙5H2O),0.2毫摩尔硝酸镱(Yb(NO3)3∙5H2O),0.01毫摩尔硝酸铥(Tm(NO3)3∙5H2O)以及4毫摩尔柠檬酸溶于2毫升去离子水中,搅拌5分钟后,加入10毫摩尔氟化铵(NH4F)和30毫升聚乙二醇,搅拌1小时后,在油浴锅100℃条件下,加热12小时。产物用乙醇和去离子水的混合液洗涤3-5次。
进一步,本申请另外还提供了上述的水溶性纳米晶材料用于罗丹明B比率型荧光检测。
进一步,本申请另外还提供了罗丹明B比率型荧光检测试剂盒,该试剂盒包括所述的水溶性纳米晶材料。
本申请首先通过羧基包覆使纳米晶成水溶性,然后通过敏化离子与激活离子浓度调控,得到了最佳离子掺杂浓度,最后利用Tm3+离子蓝光到罗丹明B的有效能量传递,得到了Tm3+离子蓝光与罗丹明B荧光强度比随溶液中罗丹明B浓度变化的关系曲线,能够很好地应用于罗丹明B的定量检测。
附图说明
图1(a)和(b)分别为产物的XRD图谱和透射电子显微镜图。
图2 (a)产物在980纳米激光器激发条件下的上转换发光强度随激活离子Tm3+(b)与敏化离子Yb3+的关系。
图3(a)不掺锂离子NaBiF4: 20Yb/1Tm产物的XRD图谱,(b)NaBiF4: 20Yb/1Tm和Na0.7Li0.3BiF4: 20Yb/1Tm产物的上转换发光光谱图。
图4 (a)NaBiF4: 20Yb/1Tm纳米晶溶液中加入罗丹明B后的发射谱图,(b)Tm3+离子和罗丹明的发光强度与溶液中罗丹明B浓度的关系曲线,(c)罗丹明B与Tm3+离子荧光强度比随溶液中罗丹明B浓度变化的关系曲线,(d)NaBiF4: 20Yb/1Tm纳米晶与罗丹明B之前的能量传递过程示意图。
图5 (a)无柠檬酸配体产物的透射电子显微镜图,(b)罗丹明B与Tm3+离子荧光强度比随溶液中罗丹明B浓度变化关系曲线。
具体实施方式
1.1 主要仪器和试剂:
硝酸钠(99.0%),氯化锂(99.0%),硝酸铋(98.0%),硝酸镱(99.9%),硝酸镱(99.9%),柠檬酸(99.5%),氟化铵(99.99%)、乙二醇(99.8%)、无水乙醇和罗丹明B(99.5%)购买于Sigma-Aldrich公司。
1.2 Na0.7Li0.3BiF4: 20Yb/1Tm纳米晶的制备
2毫摩尔硝酸钠(NaNO3),0.79毫摩尔硝酸铋(Bi(NO3)3∙5H2O),0.2毫摩尔硝酸镱(Yb(NO3)3∙5H2O),0.01毫摩尔硝酸铥(Tm(NO3)3∙5H2O)以及4毫摩尔柠檬酸溶于2毫升去离子水中,搅拌5分钟后,加入10毫摩尔氟化铵(NH4F)和30毫升聚乙二醇,搅拌1小时后,在油浴锅100℃条件下,加热12小时。产物用乙醇和去离子水的混合液洗涤3-5次。
1.3 表征仪器
X射线衍射图谱 (Bruker D8 Advance,Cu-Kα (λ=1.5405 Å)),透射电子显微镜 (TEM,FEI Tecnai G2 F20) ,光谱仪(FLUROHUB-B, HORIBA JOBIN YVON) 。
X射线衍射样品的制备:将烘干的纳米晶铺满样品支架的凹槽;
透射电子显微镜样品的制备:将每次合成的全部纳米晶溶于4毫升乙醇溶液中,超声5分钟后,滴3-6滴液体于超薄碳膜上。
罗丹明B的检测方法:将纳米晶溶于水溶液中,分成若干组,将不同浓度的罗丹明B等体积的加入到纳米晶水溶液中,通过荧光光谱仪表征其荧光变化性能。
1.4. 数据分析与讨论
Na0.7Li0.3BiF4: 20Yb/1Tm产物的X射线衍射图谱如图1a所示,所有衍射峰均与标准PDF卡片JCPDS 41-0796号一一对应,且无多余的衍射峰,表明本申请得到的产物为纯六方相NaBiF4。透射电子显微镜分析结果表明产物为无规则花瓣状,分散性良好。
如图1a所示,在980nm激光器激发条件下,产物在蓝光区域表现出明亮的上转换发光,随着激活离子Tm3+掺杂浓度从0.5 mol%增加到1mol%,发光强度显著增强,主要是由于能量利用效率增大,当Tm3+掺杂浓度超过1mol%,上转换发光强度逐渐减弱,主要是由于浓度猝灭效应引起的无辐射弛豫几率增大所致。与之类似,Yb3+离子的最佳掺杂浓度约为30 mol%。
相比而言,当前驱溶液中没有加入LiCl原料时,所得产物为非晶状,无明显X射线衍射峰 (图3a)。且在980纳米激光器激发条件下,NaBiF4: 20Yb/1Tm产物的上转换发光强度明显弱于Na0.7Li0.3BiF4: 20Yb/1Tm。以上研究结果表明,锂离子掺杂有利于促进产物在低温条件下的形核与生长,进而提高Tm3+离子的上转换发光强度。
如图4a所示,当溶液中加入一定量的罗丹明B后,在980纳米激光激发条件下,发射谱中出现了罗丹明B的宽谱带荧光峰。随着罗丹明B的浓度从0.1逐渐增加到1微摩尔/升,Tm3+离子的上转换发光强度逐渐减弱,而罗丹明B的荧光强度逐渐增强(图4b)。这一现象是由于Tm的蓝光能够激发罗丹明B,促使其发射本征的红光(图4d)。如图4c所示,罗丹明B与Tm3+的荧光强度比随着罗丹明B的浓度增大而逐渐增强,能够很好地应用于罗丹明B的定量检测(图4c)。检测极限约为0.005微摩尔/升,能够与电化学法相提并论。
图4 Na0.7Li0.3BiF4: 20Yb/1Tm纳米晶溶液中加入罗丹明B后的发射谱图,(b)Tm3+离子和罗丹明的发光强度与溶液中罗丹明B浓度的关系曲线,(c)罗丹明B与Tm3+离子荧光强度比随溶液中罗丹明B浓度变化的关系曲线,(d)Na0.7Li0.3BiF4: 20Yb/1Tm纳米晶与罗丹明B之前的能量传递过程示意图。
相比而言,样品制备过程中,如果不加入柠檬酸配体,产物表现出严重的团聚现象(图5a)。相比柠檬酸配体包覆的纳米晶而言,当溶液中加入罗丹明B后,纳米晶表面与罗丹明B的总体接触面积变小,表面的Tm3+离子到罗丹明B的能量传递效率降低,导致等量的罗丹明B浓度条件下,荧光强度比的变化幅度降低,即检测灵敏度下降(图5b)。
4. 结论
本申请通过一种简单的加热法一次性制备出水溶性Na0.7Li0.3BiF4: 20Yb/1Tm纳米晶,通过掺杂离子浓度调控,得到最佳Yb3+和Tm3+离子掺杂浓度分别为30 和 1 摩尔%。研究结果表明罗丹明B 与Tm3+离子的荧光强度比随着溶液中罗丹明B浓度的增加而逐渐增大,能够应用于罗丹明B的定量检测。
参考文献
[1] Q. G. He, J. Lin, Y. H. Xia, D. Tuo, P. H. Deng, Y. L. Tian, Y. Y.Wu, G. L. Li, D. C. Chen, Rapid and Sensitive Voltammetric Detection ofRhodamine B in Chili-Containing Foodstuffs Using MnO2 Nanorods/Electro-Reduced Graphene Oxide Composite, Journal of The Electrochemical Society,2019, 166, B805-B813.
[2] S. Hamd-Ghadareh, B. A. Hamah-Ameen, A. Salimi, F. Fathi, F.Soleimani, Ratiometric enhanced fluorometric determination and imaging ofintracellular microRNA-155 by using carbon dots, gold nanoparticles andrhodamine B for signal amplification, Microchimica Acta, 2019, 186, UNPS 469.
[3] H. P. Xiong, Q. H. Min, H. Q. Ma, L. Zhao, W. B. Chen, J. B. Qiu, X.Yu, X. H. Xu, Ultra-high sensitivity of rhodamine B sensing based on NaGdF4:Yb3+, Er3+@NaGdF4 core-shell upconversion nanoparticles, Journal of Rareearths, 2019, 37, 339-344.
[4] A. Kumar, J. Manam, Optical thermometry using up and down conversionphotoluminescence mechanism in Y2Zr2O7: Er3+ phosphors with excellent sensingsensitivity, Journal of Alloys and Compounds, 2020, 829, 154610.
[5] A. Pal, K. Ahmad, D. Dutta, A. Chattopadhyay, Boron Doped Carbon Dotswith Unusually High Photoluminescence Quantum Yield for RatiometricIntracellular pH Sensing, Chemphyschem, 2019, 20, 1018-1027.
[6] Y. L. T. Ngo, J. S. Chung, S. H. Hur, Aminoboronic acid-functionalized graphitic carbon nitride quantum dots for thephotoluminescence multi-chemical sensing probe, Dyes and Pigments, 2019, 168,180-188.
[7] J. Zhang, B. W. Ji, G. B. Chen, Z. H. Hua, Upconversion luminescenceand discussion of sensitivity improvement for optical temperature sensingapplication, Inorg. Chem., 2018, 57: 5038-5047.
[8] H. Dong, L. D. Sun, L. D. Li, R. Si, R. Liu, C. H. Yan, Selectivecation exchange enabled growth of lanthanide core/shell nanoparticles withdissimilar, J. Am. Chem. Soc. 2017, 139: 18492−18495.
[9]M. Quintanilla, Y. Zhang, L. M. LizMarzán, Subtissue Plasmonic HeatingMonitored with CaF2:Nd3+,Y3+ Nanothermometers in the Second Biological Window.Chem. Mater., 2018, 30: 2819-2828.
[10] J. X. Zhao, X. Chen, B. Chen, Xue, Luo, T. Y. Sun, W. W. Zhang, C.J. Wang, J. Lin, D. Su, X. S. Qiao, F. Wang, Accurate Control of Core-ShellUpconversion Nanoparticles through Anisotropic Strain Engineering, Adv.Funct. Mater., 2019, 29: 1903295.

Claims (6)

1.一种比率型荧光检测用的水溶性纳米晶材料,其特征在于,该水溶性纳米晶材料的纳米晶分子式为Na0.7Li0.3BiF4: 20Yb/1Tm。
2.根据权利要求1所述的一种用于比率型荧光检测的水溶性纳米晶材料,其特征在于,该水溶性纳米晶材料为柠檬酸配体包覆Na0.7Li0.3BiF4: 20Yb/1Tm纳米晶。
3.权利要求2所述的水溶性纳米晶材料的制备方法,其特征在于,该方法包括以下的步骤:
2毫摩尔硝酸钠(NaNO3),0.79毫摩尔硝酸铋(Bi(NO3)3∙5H2O),0.2毫摩尔硝酸镱(Yb(NO3)3∙5H2O),0.01毫摩尔硝酸铥(Tm(NO3)3∙5H2O)以及4毫摩尔柠檬酸溶于2毫升去离子水中,搅拌5分钟后,加入10毫摩尔氟化铵(NH4F)和30毫升聚乙二醇,搅拌1小时后,在油浴锅100℃条件下,加热12小时。
4.产物用乙醇和去离子水的混合液洗涤3-5次。
5.权利要求1或2所述的水溶性纳米晶材料用于罗丹明B比率型荧光检测。
6.罗丹明B比率型荧光检测试剂盒,其特征在于,该试剂盒包括权利要求1或2所述的水溶性纳米晶材料。
CN202010724424.8A 2020-07-24 2020-07-24 一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒 Withdrawn CN113176232A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010724424.8A CN113176232A (zh) 2020-07-24 2020-07-24 一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010724424.8A CN113176232A (zh) 2020-07-24 2020-07-24 一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒

Publications (1)

Publication Number Publication Date
CN113176232A true CN113176232A (zh) 2021-07-27

Family

ID=76921500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010724424.8A Withdrawn CN113176232A (zh) 2020-07-24 2020-07-24 一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒

Country Status (1)

Country Link
CN (1) CN113176232A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970395A (zh) * 2023-06-29 2023-10-31 长春理工大学重庆研究院 一种基于NaBiF4:Tm3+/Yb3+/Lu3+的高灵敏度温敏材料及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970395A (zh) * 2023-06-29 2023-10-31 长春理工大学重庆研究院 一种基于NaBiF4:Tm3+/Yb3+/Lu3+的高灵敏度温敏材料及其应用

Similar Documents

Publication Publication Date Title
Resch-Genger et al. Perspectives and challenges of photon-upconversion nanoparticles-Part I: routes to brighter particles and quantitative spectroscopic studies
Sedlmeier et al. Photon upconverting nanoparticles for luminescent sensing of temperature
Chen et al. Ultrasmall monodisperse NaYF4: Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence
Vetrone et al. Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications
Chien et al. Multiple doping effect of LiYF4: Yb3+/Er3+/Ho3+/Tm3+@ LiYF4: Yb3+ core/shell nanoparticles and its application in Hg2+ sensing detection
Wiesholler et al. Strategies for the design of bright upconversion nanoparticles for bioanalytical applications
Ansari et al. Influence of shell formation on morphological structure, optical and emission intensity on aqueous dispersible NaYF4: Ce/Tb nanoparticles
Zeng et al. Design and synthesis of a vanadate-based ratiometric fluorescent probe for sequential recognition of Cu 2+ ions and biothiols
CN112111266A (zh) 一种生物体内温度检测纳米晶材料及其制备方法和检测试剂盒
Song et al. Construction of Au@ NaYF 4: Yb 3+, Er 3+/Ho 3+ bifunctional hybrid nanocomposites with upconversion luminescence and photothermal properties
Thakur et al. Coprecipitation synthesis, structural, optical properties, and thermometry application of Tm3+/Yb3+ co-doped YPO4 phosphor
Zhang et al. Photoluminescent Ag nanoclusters for reversible temperature and pH nanosenors in aqueous solution
Dwivedi et al. A flexible Eu: Y2O3-polyvinyl alcohol photoluminescent film for sensitive and rapid detection of arsenic ions
Fu et al. Luminescence property and magnetic resonance imaging of Gd 2 O 3: Tb 3+ nanocrystals doped with Zn 2+, Li+
CN113176232A (zh) 一种比率型荧光检测用的水溶性纳米晶材料及采用该材料的检测试剂盒
Yang et al. Er, Yb: CeF 3 red emission nanoparticles with controllable size and enhanced luminescence properties
Gong et al. Multicolor upconversion emission of dispersed ultrasmall cubic Sr2LuF7 nanocrystals synthesized by a solvothermal process
Guo et al. Ionic liquid-based approach to monodisperse luminescent LaF3: Ce, Tb nanodiskettes: synthesis, structural and photoluminescent properties
CN111303863B (zh) 一种上转换发光纳米颗粒及其制备方法和应用
Zhang et al. Dropwise addition of cation solution: An approach for growing high-quality upconversion nanoparticles
Ansari Impact of surface coating on morphological, optical and photoluminescence properties of YF3: Tb3+ nanoparticles
Drozdowski et al. Bright photon upconversion in LiYbF4: Tm3+@ LiYF4 nanoparticles and their application for singlet oxygen generation and in immunoassay for SARS-CoV-2 nucleoprotein
CN113185978A (zh) 一种细胞温度探测用纳米晶材料及其制备方法和检测试剂盒
Burikov et al. Determining the Photophysical Parameters of NaGdF 4: Eu Solid Solutions in Suspensions Using the Judd—Ofelt Theory
CN113684031B (zh) 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210727

WW01 Invention patent application withdrawn after publication