CN113174249A - 一种体内生物成像用纳米晶材料及其制备方法和应用 - Google Patents

一种体内生物成像用纳米晶材料及其制备方法和应用 Download PDF

Info

Publication number
CN113174249A
CN113174249A CN202010974037.XA CN202010974037A CN113174249A CN 113174249 A CN113174249 A CN 113174249A CN 202010974037 A CN202010974037 A CN 202010974037A CN 113174249 A CN113174249 A CN 113174249A
Authority
CN
China
Prior art keywords
mmol
nanocrystalline material
paa
nascf
nagd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010974037.XA
Other languages
English (en)
Inventor
王伟丽
王兆安
郭文胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Meidi Biomedical Technology Development Co ltd
Original Assignee
Hangzhou Meidi Biomedical Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Meidi Biomedical Technology Development Co ltd filed Critical Hangzhou Meidi Biomedical Technology Development Co ltd
Priority to CN202010974037.XA priority Critical patent/CN113174249A/zh
Publication of CN113174249A publication Critical patent/CN113174249A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本申请涉及生物医学成像领域,尤其涉及一种体内生物成像用纳米晶材料及其制备方法和应用。一种氟化物核壳纳米晶材料,该纳米晶材料的纳米晶分子式如下:NaGd0.4Nd0.6F4@NaScF4:Yb@PAA。该纳米晶材料经PAA表面修饰后具备良好的水溶性和生物相容性,能够很好地用于生物体内的荧光成像材料制备中的应用。由该纳米晶材料制备的荧光探针具有无背景荧光,深穿透深度以及准确度高的优势。

Description

一种体内生物成像用纳米晶材料及其制备方法和应用
技术领域
本申请涉及生物医学成像领域,尤其涉及一种体内生物成像用纳米晶材料及其制备方法和应用。
背景技术
传统的荧光探针有机荧光染料的发光稳定性较差,限制了它的生物应用,如有机荧光染料标记膜蛋白可以检测到膜蛋白的分布,但不能监测到蛋白的结构演变,因为有机荧光染料在几秒内就会发生光漂白现象。后来半导体纳米量子点以其较高的量子效率和较强的光稳定性,在生物分子检测和细胞成像应用中得到了极大关注。然而,半导体量子点含有有毒元素,且功能化十分复杂。这些原因激发了人们研究新型荧光探针的强烈愿望,近年来,稀土纳米材料以其独特的性能(光化学稳定性好,长寿命,低毒性等)在生物成像、蛋白质和核酸分子检测等应用中作为荧光探针得到了快速发展。
稀土纳米粒子应用于生物医学方面必须满足以下条件:(1)发光效率高;(2)良好的水溶性,表面具有活性官能团(如-NH2,-SH 或-COOH 等);(3)尺寸较小且形貌可控。目前,制备出的大多数纳米粒子在水中都不能稳定分散,比如,Mimun等合成了 GdF3:Nd3+纳米发光体,并研究了它的水分散液的稳定性,两天后发现有明显的沉淀产生。后来人们采用表面修饰的方法改变来纳米粒子的亲水性和增强纳米粒子水分散液的稳定性。例如,Wang等在NdF3纳米粒子的表面包覆了一层 SiO2得到了生物相容性良好且发光效率极高的纳米粒子。这些修饰方法已经比较成熟,然而,它们都有一定的局限性,如反应过程极其复杂、精确控制形貌大小比较困难,无法保证单分散性等。值得关注的是,纳米粒子的粒径和分散性对癌症的诊断和治疗具有很大的影响,理想的纳米探针的粒径应该小于20 nm,因为粒径小于20 nm 的纳米粒子更有利于人体的排泄,对人体伤害小。因此需要进一步发展一种简单易行的方法来制备表面带有活性基团,水溶性的,粒径较小的稀土纳米粒子。
发明内容
为了解决上述的技术问题,本申请的目的是提供一种氟化物核壳纳米晶材料,该纳米晶材料经PAA表面修饰后具备良好的水溶性和生物相容性,能够很好地用于生物体内的荧光成像材料制备中的应用。由该纳米晶材料制备的荧光探针具有无背景荧光,深穿透深度以及准确度高的优势。
为了实现上述的目的,本申请采用了以下的技术方案:
一种氟化物核壳纳米晶材料,该纳米晶材料的纳米晶分子式如下:NaGd0.4Nd0.6F4@NaScF4:Yb@PAA。
优选,该纳米晶材料为水溶性纳米晶材料,由PAA包覆NaGd0.4Nd0.6F4@NaScF4:Yb纳米晶构成。
优选,NaGd0.4Nd0.6F4@NaScF4:Yb@PAA纳米晶为NaGd0.4Nd0.6F4@NaScF4:50Yb@PAA。
进一步,本申请提供了一种氟化物核壳纳米晶材料的制备方法,该方法包括以下步骤:
1)0.4毫摩尔乙酸钆,0.6毫摩尔乙酸钕,0.04毫摩尔乙酸铒,1毫摩尔三氟乙酸钠,4毫摩尔氟化铵,5毫升油酸和10毫升十八烯加入到三口烧瓶中,在氮气保护气氛条件下,于110℃搅拌并保温60分钟,然后迅速升温至300℃,并保温1小时;
2)待溶液冷却至室温后,产物用乙醇和去离子水的混合液洗涤3-5次;
3)0.5毫摩尔三氟乙酸钪,0.5毫摩尔乙酸镱,1毫摩尔三氟乙酸钠,4毫摩尔氟化铵,8毫升油酸和10毫升十八烯加入到三口烧瓶中,加热到110℃去除水,再将温度升到150℃反应1小时,冷却至室温,将步骤2)中的产物加入到反应混合液中,搅拌2小时后在氮气保护气氛条件下迅速升温至300℃,并保温1小时;
4)待溶液冷却至室温后,产物用乙醇和去离子水的混合液洗涤3-5次;
5)取15 mg步骤4)中的产物分散于10 mL四氢呋喃溶液中并转入100 mL圆底烧瓶中,然后向体系中加入0.25 g PAA并在室温条件下剧烈搅拌过夜;
6)在50℃条件下旋转蒸发THF得到白色固体,向烧瓶中加入10 mL环己烷超声15 min并剧烈搅拌30 min,用环己烷和乙醇混合液离心洗涤三次并分散于超纯水中。
进一步,本申请提供了所述的纳米晶材料用于生物体内荧光成像材料制备中的应用。
进一步,本申请提供了一种生物体内成像荧光探针,该荧光探针包括所述的纳米晶材料。
本申请由于采用了上述的技术方案,通过一种热分解法制备出超小尺寸的NaGd0.4Nd0.6F4@NaScF4:Yb核壳纳米晶,再通过PAA表面修饰,使纳米晶能够很好地分散在水溶液中,具有良好的单分散性和生物相容性。在980纳米激光器激发条件下,Yb3+离子能够吸收980nm波长的光子,Nd3+离子能够发射1064nm的光子,而且Yb3+离子到Nd3+离子具有很高的能量传递效率。本申请提出的纳米晶材料在生物荧光成像应用中具有无背景荧光干扰、斯托克斯位移大、尺寸粒径小和细胞毒性小的优势。
附图说明
图1(a)和(b)分别为NaGd0.4Nd0.6F4@NaScF4:50Yb的XRD图谱和透射电子显微镜图,(c)为NaGd0.4Nd0.6F4@NaScF4:50Yb@PAA的透射电子显微镜图。
图2(a)NaGd0.9Nd0.1F4@NaScF4: 20Yb(黑色)与NaGd0.4Nd0.6F4@NaScF4:20Yb(绿色)纳米晶在980纳米近红外激光器激发条件下的下转移发射谱,(b)下转移发光强度随Yb3+离子掺杂浓度变化的关系曲线,(c)980nm激光器激发的下转移发光机理示意图。
图3(a)NaGd0.4Nd0.6F4@NaScF4:20Yb,NaGd0.6Nd0.4F4@NaGdF4:20Yb与NaGd0.2Nd0.6Yb0.2F4@NaScF4纳米晶在980纳米近红外激光器激发条件下的下转移发射谱。
图4 NaGd0.4Nd0.6F4@NaScF4: 20Yb纳米晶中Nd3+离子的近红外发光强度在不同无机盐溶液中的相对强度。
图5 L929细胞在吸附纳米粒子后的细胞毒性图。
图6对小鼠四肢皮下注射NaGd0.4Nd0.6F4@NaScF4:50Yb@PAA纳米晶材料小鼠体内荧光生物照片(a)明场照片,(b) X射线荧光照片以及(c)叠加照片。
图7从尾静脉注射的裸鼠的体内荧光信号随时间的变化。
具体实施方式
1 实验部分
1.1 主要仪器和试剂:
乙酸钆(99.0%),三氟乙酸钠,乙酸镱(99.9%),三氟乙酸钪,乙酸钕(99.0%),油酸(90.0%),十八烯(90.0%)和环己烷购买于Sigma-Aldrich公司,盐酸,无水乙醇,氟化铵、聚丙烯酸(PAA)和四氢呋喃(THF)购买于国药集团化学试剂有限公司,3-(4,5-Dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide(MTT)购买于北京鼎国生物有限公司,胎牛血清(FBS)和高糖培养基(DMEM)购买于Gibco公司,L929细胞购于中国科学院上海细胞库,裸鼠购买于北京华阜康生物有限公司。
1.2 NaGd0.4Nd0.6F4@NaScF4:Yb@PAA纳米晶的制备
以NaGd0.4Nd0.6F4@NaScF4:50Yb@PAA为例,0.4毫摩尔乙酸钆,0.6毫摩尔乙酸钕,0.04毫摩尔乙酸铒,1毫摩尔三氟乙酸钠,4毫摩尔氟化铵,5毫升油酸和10毫升十八烯加入到三口烧瓶中,在氮气保护气氛条件下,于110oC搅拌并保温60分钟,然后迅速升温至300oC,并保温1小时。待溶液冷却至室温后,产物用乙醇和去离子水的混合液洗涤3-5次。
再将0.5毫摩尔三氟乙酸钪,0.5毫摩尔乙酸镱,1毫摩尔三氟乙酸钠,4毫摩尔氟化铵,8毫升油酸和10毫升十八烯加入到三口烧瓶中,加热到110℃去除水,再将温度升到150℃反应1小时,冷却至室温,将上述产物加入到反应混合液中,搅拌2小时后在氮气保护气氛条件下迅速升温至300oC,并保温1小时。待溶液冷却至室温后,产物用乙醇和去离子水的混合液洗涤3-5次。
取15 mg产物分散于10 mL四氢呋喃溶液中并转入100 mL圆底烧瓶中,然后向体系中加入0.25 g PAA并在室温条件下剧烈搅拌过夜;在50℃条件下旋转蒸发THF得到白色固体,向烧瓶中加入10 mL环己烷超声15 min并剧烈搅拌30 min,用环己烷和乙醇混合液离心洗涤三次并分散于超纯水中。
不同浓度或种类的离子掺杂样品,通过改变前驱溶液中相应的离子浓度或种类来实现。
1.3 表征仪器
X射线衍射图谱 (Bruker D8 Advance,Cu-Kα (λ=1.5405 Å)),透射电子显微镜 (TEM,FEI Tecnai G2 F20) ,光谱仪(FLUROHUB-B, HORIBA JOBIN YVON),980nm近红外激光器(功率范围为0-2w)。
X射线衍射样品的制备:将烘干的纳米晶铺满样品支架的凹槽;
透射电子显微镜样品的制备:将每次合成的全部纳米晶溶于4毫升乙醇溶液中,超声5分钟后,滴3-6滴液体于超薄碳膜上。
1.4细胞毒性测试
采用MTT检测纳米晶的细胞毒性。将L929细胞置于37℃,二氧化碳浓度为5%的湿润气氛下,在含有FBS(10%,v/v)的DMEM培养基中培养。然后将L929细胞分别与 200,400,600,800和 1000 μg/ml 五种浓度的纳米粒子共培养48小时,在倒置显微镜下观察细胞形态及数量与对照组细胞的差异。
1.5生物体内荧光成像
选取5至6周龄的雄性裸鼠用于NaGd0.4Nd0.6F4@NaScF4:50Yb@PAA纳米颗粒活体成像研究。每只裸鼠平均体重为25g,随机分笼。首先,将全部雄性裸鼠用5 wt%水合氯醛麻醉,然后分别向部分裸鼠四肢注入不同浓度(0,30,70和100mg/mL)的纳米晶材料,注射后收集图像。然后,通过尾部静脉注射向其余的裸鼠体内注射NaGd0.4Nd0.6F4@NaScF4:50Yb@PAA纳米晶溶液,注射后在不同的时间点收集图像。
2. 数据分析与讨论
NaGd0.4Nd0.6F4@NaScF4: 50Yb纳米晶的X射线衍射图谱如图1a所示,所有衍射峰均与标准PDF卡片JCPDS 51-1808号一一对应,且无多余的衍射峰,表明本申请得到的产物为纯六方相。透射电子显微镜分析结果如图1b所示,表明产物为均匀的单分散纳米晶。NaGd0.4Nd0.6F4@NaScF4: 50Yb@PAA纳米晶的透射电子显微镜分析结果如图1c所示,可以看到PAA修饰后的纳米晶呈片状结构,粒径变小且均一,平均粒径约9nm,具有很好的单分散性。对比可知PAA加入对纳米晶形貌结构有很大影响,可能是PAA分子分布在纳米晶表面阻碍了其生长和团聚。
如图2a所示,在980nm近红外光激发条件下,产物在1064nm的近红外区域表现出很强的下转移发光,对应于Nd3+离子4F3/24I11/2的跃迁。Yb3+离子浓度为20 mol%时,NaGd0.4Nd0.6F4@NaScF4: 20Yb的发光强度远大于NaGd0.9Nd0.1F4@NaScF4: 20Yb;固定Nd3+离子掺杂浓度为60 mol%,随着Yb3+离子浓度从20 增到50 mol%,纳米晶对入射光子的吸收能力增大,因此激活离子Nd3+的发光强度显著增强,当Yb3+离子浓度超过50 mol%,会产生Nd3+到Yb3+离子的能量反传递以及更多的无辐射交叉弛豫,导致Nd3+的发光强度下降(图2b)。以上发光机理解释如下:在980nm近红外光激发条件下,Yb3+2F7/2基态能级的电子吸收入射光子后,跃迁至2F5/2能级,通过能量传递过程填充Nd3+4F3/2能级,当电子返回4I11/2能级时,发射一个近红外光子,由于稀土离子在激发态能级具有较长的荧光寿命,能级继续吸收下一个入射光子,跃迁至4D3/2能级,当电子返回4F3/2能级时,能重复以上发光过程,发射一个近红外光子(图2c)。
作为对比,在同等掺杂浓度条件下,当壳层改为常规的NaGdF4体系,或者将Nd3+和Yb3+离子均掺杂在核纳米晶中,两种情况的近红外发光强度明显弱于NaGd0.4Nd0.6F4@NaScF4:20Yb纳米晶(图3)。前者表明NaScF4壳层的晶体场环境有利于Yb3+离子对入射光的吸收以及后续的能量传递过程,后者表明Yb3+离子与Nd3+离子同时掺杂在核纳米晶中,两者之间的无辐射交叉弛豫几率明显增大,导致发光强度减弱。
为了验证NaGd0.4Nd0.6F4@NaScF4: 20Yb纳米晶中Nd3+离子近红外发光强度的稳定性,进一步表征了纳米晶在不同种类常见金属无机盐溶液中的发光强度。如图4所示,当溶液中加入NaCl,LiCl,KCl,CaCl2,SrCl2,BaCl2或者FeCl3时,纳米晶的发光强度基本不受影响,表明纳米晶具有很好的光化学稳定性。
如图5所示,NaGd0.4Nd0.6F4@NaScF4: 50Yb纳米晶浓度高达1000μg/mL时,细胞几乎仍保持100%的活性,因此被 PAA 修饰的纳米晶几乎没有毒性,生物相容性很好。
由图6可以明显观察到,NaGd0.4Nd0.6F4@NaScF4: 50Yb纳米晶的浓度为0 mg/mL时无荧光信号出现,随着纳米晶材料浓度增大其荧光发射强度逐渐增强,且荧光信号很容易被肉眼观测到;同时,并未观察到组织的自荧光现象,证明所制备的水溶性纳米晶材料在进行生物成像时可以有效地提升生物体内成像时信噪比。从图7可以看到裸鼠体内纳米晶荧光强度随时间变化而迅速增强,表明其在生物体内通过血液循环能够很快的富集。
结论
本申请通过一种热分解法制备出NaGd0.4Nd0.6F4@NaScF4:50Yb纳米晶后经PAA表面修饰得水性纳米晶,该纳米晶能够很好地分散在水溶液中,具有良好的单分散性和生物相容性。该纳米晶在980纳米近红外激光器激发条件下,Yb3+离子能够吸收980nm波长的光子,Nd3+离子能够发射1064nm的光子,而且Yb3+离子到Nd3+离子具有很高的能量传递效率。本申请提供的纳米晶材料具有无背景荧光,穿透深度深,水溶性和生物相容性好的优点,具有很好的应用前景。
参考文献
[1] W. Zheng, S. Y. Zhou, Z. Chen, P. Hu, Y. S. Liu, D. T. Tu, H. M. Zhu,R. F. Li, M. D. Huang, X. Y. Chen, Angew. Chem. Int. Ed., 2013, 52: 6671-6676.
[2] X. J. Zhu, W. Feng, J. Chang, Y. W. Tan, et al, Nat. Commun., 2016,7: 10437.
[3] Y. Jee, Y. Yu, H. W. Abemathy, S. Lee, T. L. Kalapos, G. A. Hackett,P. R. Ohodnicki, J. Am. Chem. Soc., 2015, 137: 3051-3058.
[4] C. Siefe, R. D. Mehlenbacher, C. S. Peng, Y. X. Zhang, S. Fischer, A.Lay, C. A. Mclellan, A. Paul Alivisatos, S. Chu, J. A. Dionne, J. Am. Chem.Soc., 2019, 141: 16997-17005.
[5] M. Lin, L. J. Xie, Z. J. Wang, B. S. Richards, G. J. Gao, J. P.Zhong, J. Mater. Chem. C, 2019, 7, 2971.
[6] A. Kumar, J. Manam, Optical thermometry using up and down conversionphotoluminescence mechanism in Y2Zr2O7: Er3+ phosphors with excellent sensingsensitivity, Journal of Alloys and Compounds, 2020, 829, 154610.
[7] A. Pal, K. Ahmad, D. Dutta, A. Chattopadhyay, Boron Doped Carbon Dotswith Unusually High Photoluminescence Quantum Yield for RatiometricIntracellular pH Sensing, Chemphyschem, 2019, 20, 1018-1027。

Claims (7)

1.一种氟化物核壳纳米晶材料,其特征在于,该纳米晶材料的纳米晶分子式如下:NaGd0.4Nd0.6F4@NaScF4:Yb@PAA。
2.根据权利要求1所述的一种氟化物核壳纳米晶材料,其特征在于,该纳米晶材料为水溶性纳米晶材料,由PAA包覆NaGd0.4Nd0.6F4@NaScF4:Yb纳米晶构成。
3.根据权利要求1或2所述的一种氟化物核壳纳米晶材料,其特征在于,NaGd0.4Nd0.6F4@NaScF4:Yb@PAA纳米晶为NaGd0.4Nd0.6F4@NaScF4:50Yb@PAA。
4.根据权利要求3所述的一种氟化物核壳纳米晶材料的制备方法,其特征在于,该方法包括以下步骤:
1)0.4毫摩尔乙酸钆,0.6毫摩尔乙酸钕,0.04毫摩尔乙酸铒,1毫摩尔三氟乙酸钠,4毫摩尔氟化铵,5毫升油酸和10毫升十八烯加入到三口烧瓶中,在氮气保护气氛条件下,于110℃搅拌并保温60分钟,然后迅速升温至300℃,并保温1小时;
2)待溶液冷却至室温后,产物用乙醇和去离子水的混合液洗涤3-5次;
3)0.5毫摩尔三氟乙酸钪,0.5毫摩尔乙酸镱,1毫摩尔三氟乙酸钠,4毫摩尔氟化铵,8毫升油酸和10毫升十八烯加入到三口烧瓶中,加热到110℃去除水,再将温度升到150℃反应1小时,冷却至室温,将步骤2)中的产物加入到反应混合液中,搅拌2小时后在氮气保护气氛条件下迅速升温至300℃,并保温1小时;
4)待溶液冷却至室温后,产物用乙醇和去离子水的混合液洗涤3-5次;
5)取15 mg步骤4)中的产物分散于10 mL四氢呋喃溶液中并转入100 mL圆底烧瓶中,然后向体系中加入0.25 g PAA并在室温条件下剧烈搅拌过夜;
6)在50℃条件下旋转蒸发THF得到白色固体,向烧瓶中加入10 mL环己烷超声15 min并剧烈搅拌30 min,用环己烷和乙醇混合液离心洗涤三次并分散于超纯水中。
5.权利要求1-3任意一项权利要求所述的纳米晶材料用于生物体内荧光成像材料制备中的应用。
6.一种生物体内成像荧光探针,其特征在于,该荧光探针包括权利要求1或2或3所述的纳米晶材料。
7.一种生物体内成像荧光成像试剂盒,其特征在于,该试剂盒包括权利要求6所述的荧光探针。
CN202010974037.XA 2020-09-16 2020-09-16 一种体内生物成像用纳米晶材料及其制备方法和应用 Withdrawn CN113174249A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010974037.XA CN113174249A (zh) 2020-09-16 2020-09-16 一种体内生物成像用纳米晶材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010974037.XA CN113174249A (zh) 2020-09-16 2020-09-16 一种体内生物成像用纳米晶材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113174249A true CN113174249A (zh) 2021-07-27

Family

ID=76921509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010974037.XA Withdrawn CN113174249A (zh) 2020-09-16 2020-09-16 一种体内生物成像用纳米晶材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113174249A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693831A (zh) * 2009-10-16 2010-04-14 东华大学 一种增强稀土氟化物复合纳米晶的发光性能的方法
CN103241760A (zh) * 2013-05-02 2013-08-14 中国科学院福建物质结构研究所 稀土掺杂氟化钪钠纳米材料及其制备与应用
CN108424763A (zh) * 2018-03-13 2018-08-21 中国计量大学 荧光温度探针材料
US20180303959A1 (en) * 2017-04-21 2018-10-25 Korea Institute Of Science And Technology Core/double shell structured red light-emitting upconversion nanophosphors
CN110028951A (zh) * 2019-04-30 2019-07-19 深圳大学 核壳结构纳米颗粒及其制备方法
CN111303863A (zh) * 2020-02-19 2020-06-19 广东工业大学 一种上转换发光纳米颗粒及其制备方法和应用
CN111334282A (zh) * 2020-03-18 2020-06-26 厦门稀土材料研究所 Pth稀土检测试剂盒及检测卡及其微球及制备与检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693831A (zh) * 2009-10-16 2010-04-14 东华大学 一种增强稀土氟化物复合纳米晶的发光性能的方法
CN103241760A (zh) * 2013-05-02 2013-08-14 中国科学院福建物质结构研究所 稀土掺杂氟化钪钠纳米材料及其制备与应用
US20180303959A1 (en) * 2017-04-21 2018-10-25 Korea Institute Of Science And Technology Core/double shell structured red light-emitting upconversion nanophosphors
CN108424763A (zh) * 2018-03-13 2018-08-21 中国计量大学 荧光温度探针材料
CN110028951A (zh) * 2019-04-30 2019-07-19 深圳大学 核壳结构纳米颗粒及其制备方法
CN111303863A (zh) * 2020-02-19 2020-06-19 广东工业大学 一种上转换发光纳米颗粒及其制备方法和应用
CN111334282A (zh) * 2020-03-18 2020-06-26 厦门稀土材料研究所 Pth稀土检测试剂盒及检测卡及其微球及制备与检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANYING CHEN ET AL,: "Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications", 《ACS NANO》 *
MIN PANG ET AL.,: "One-step synthesis of water-soluble hexagonal NaScF4 :Yb/Er nanocrystals with intense red emission", 《DALTON TRANS.》 *

Similar Documents

Publication Publication Date Title
Yao et al. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy
Chatterjee et al. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals
Vetrone et al. Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications
US20220001032A1 (en) Coated up-conversion nanoparticles
Qiu et al. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification
Wang et al. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence
Lin et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications
Xu et al. NaYF 4: Yb, Tm nanocrystals and TiO 2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin
CN103589432B (zh) 稀土掺杂氟化镥锂纳米材料及其制备与应用
Neaime et al. Time-gated luminescence bioimaging with new luminescent nanocolloids based on [Mo 6 I 8 (C 2 F 5 COO) 6] 2− metal atom clusters
Bednarkiewicz et al. Synthesis and spectral properties of colloidal Nd3+ doped NaYF4 nanocrystals
CN102618284A (zh) 具有800nm强近红外上转换发射特性的生物荧光纳米颗粒及其应用
Hemmer et al. In vitro and in vivo investigations of upconversion and NIR emitting Gd 2 O 3: Er 3+, Yb 3+ nanostructures for biomedical applications
CN103224787A (zh) 稀土掺杂碱土金属氟化物纳米材料及其制备与应用
CN114231273A (zh) 近红外染料敏化的稀土发光多层核壳结构材料杂化体系材料、其制备方法及其应用
Xiaofeng et al. Upconversion nanoparticles for differential imaging of plant cells and detection of fluorescent dyes
Karthi et al. Synthesis and characterization of Nd3+: Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe
Song et al. Construction of Au@ NaYF 4: Yb 3+, Er 3+/Ho 3+ bifunctional hybrid nanocomposites with upconversion luminescence and photothermal properties
Nampi et al. Barium yttrium fluoride based upconversion nanoparticles as dual mode image contrast agents
Ilves et al. Multimodal upconversion CaF2: Mn/Yb/Er/Si nanoparticles
Li et al. Facile microemulsion route to coat carbonized glucose on upconversion nanocrystals as high luminescence and biocompatible cell-imaging probes
CN112111266A (zh) 一种生物体内温度检测纳米晶材料及其制备方法和检测试剂盒
CN105602566B (zh) 一种稀土掺杂NaGdF4上转换纳米晶及其制备方法
CN102757789B (zh) 一种用于磁光双模生物标记的稀土掺杂氟化钆钾纳米材料及其制备方法
CN113174249A (zh) 一种体内生物成像用纳米晶材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210727