CN113151402B - 一种检测dna羟化酶tet1的纳米传感器及其检测方法和应用 - Google Patents

一种检测dna羟化酶tet1的纳米传感器及其检测方法和应用 Download PDF

Info

Publication number
CN113151402B
CN113151402B CN202110261946.3A CN202110261946A CN113151402B CN 113151402 B CN113151402 B CN 113151402B CN 202110261946 A CN202110261946 A CN 202110261946A CN 113151402 B CN113151402 B CN 113151402B
Authority
CN
China
Prior art keywords
tet1
dna
hairpin probe
hydroxylase
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110261946.3A
Other languages
English (en)
Other versions
CN113151402A (zh
Inventor
张春阳
胡娟
姚洁
潘丽媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Normal University
Original Assignee
Shandong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University filed Critical Shandong Normal University
Priority to CN202110261946.3A priority Critical patent/CN113151402B/zh
Publication of CN113151402A publication Critical patent/CN113151402A/zh
Application granted granted Critical
Publication of CN113151402B publication Critical patent/CN113151402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种检测DNA羟化酶TET1的纳米传感器及其检测方法和应用,纳米传感器包括发夹探针、T4噬菌体β‑葡萄糖基转移酶、内切酶、量子点;所述发夹探针为能够形成茎环结构的单链DNA,所述发夹探针的一端连接荧光剂,另一端能够与量子点配合连接,形成茎环结构的茎区域含有被内切酶识别并剪切的位点,所述位点含有5‑甲基胞嘧啶;量子点与荧光剂能够配合发生荧光共振能量转移。本发明提供的纳米传感器不涉及任何特异性抗体,能够简单、快速灵敏定量检测TET1。

Description

一种检测DNA羟化酶TET1的纳米传感器及其检测方法和应用
技术领域
本发明属于分析测试技术领域,涉及一种检测DNA羟化酶TET1的纳米传感器及其检测方法和应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
DNA羟化酶TET1是一种Fe(II)和2-氧戊二酸依赖的双加氧酶,它在哺乳动物中负责DNA 5-甲基胞嘧啶(5mC)羟甲基化。TET1表达失调与多种遗传性疾病和癌症密切相关。因此,准确灵敏地定量TET1活性具有重要意义。
据发明人研究了解,目前TET1检测方法包括染色质免疫沉淀法、酶联免疫吸附法(ELISA)、蛋白免疫印迹法、薄层色谱分析法、电化学传感器等。染色质免疫沉淀法是将一定长度范围内的蛋白质-DNA片段随机切成一定长度的染色质片段,并通过免疫沉淀法将与靶蛋白结合的DNA片段特异性地浓缩,以研究蛋白质与DNA相互作用的关系的方法。酶联免疫吸附测定法是将已知的抗原或抗体吸附在固相载体表面,酶标抗原和抗体反应在固相表面进行的方法。蛋白质印迹分析法是基于抗原和抗体特异性结合的分析方法,可用于检测复杂样品中的特定蛋白。薄层色谱分析法(TLC)根据不同的迁移速率在TLC板上分离TET蛋白介导的甲基胞嘧啶氧化物以分析TET蛋白活性。但是,发明人研究发现,这些方法具有需要大量TET1特异性抗体、高样本输入量、耗时的分离操作、灵敏度低等缺点。
发明内容
为了解决现有技术的不足,本发明的目的是提供一种检测DNA羟化酶TET1的纳米传感器及其检测方法和应用,本发明提供的纳米传感器不涉及任何特异性抗体,能够简单、快速灵敏定量检测TET1。
为了实现上述目的,本发明的技术方案为:
一方面,一种检测DNA羟化酶TET1的纳米传感器,包括发夹探针、T4噬菌体β-葡萄糖基转移酶、内切酶、量子点;
所述发夹探针为能够形成茎环结构的单链DNA,所述发夹探针的一端连接荧光剂,另一端能够与量子点配合连接,形成茎环结构的茎区域含有被内切酶识别并剪切的位点,所述位点含有5-甲基胞嘧啶;
量子点与荧光剂能够配合发生荧光共振能量转移。
另一方面,一种上述纳米传感器在检测DNA羟化酶TET1活性中的应用。
第三方面,一种DNA羟化酶TET1活性的检测方法,提供上述检测DNA羟化酶TET1的纳米传感器;步骤如下:
1)将所述纳米传感器孵育成茎环结构;
2)将形成茎环结构的纳米传感器与含有DNA羟化酶TET1的待测溶液混合后进行反应;
3)将步骤2)反应后的反应物与尿苷二磷酸葡萄糖、T4噬菌体β-葡萄糖基转移酶进行反应;
4)将步骤3)反应后的反应物与内切酶进行消化反应;
5)将步骤4)获得的消化产物与量子点进行反应,然后进行荧光检测。
第四方面,一种检测DNA羟化酶TET1的试剂盒,包括上述纳米传感器、尿苷二磷酸葡萄糖、缓冲溶液。
第五方面,一种上述纳米传感器或试剂盒在筛选DNA羟化酶TET1药物中的应用。
本发明的有益效果为:
本发明的纳米传感器含有发夹探针,发夹探针包含的一个5mC可用于TET1检测。在TET1存在条件下,检测探针发生羟甲基化和糖基化反应,生成对限制性内切酶具有抗性的糖基化检测探针。当量子点与糖基化检测探针结合时,量子点与荧光剂之间能够发生高效的FRET,从而导致明显荧光信号。该方法不涉及任何特异性抗体、不需要高样本输入量和耗时的分离过程,能够实现TET1的灵敏检测,其检测限为1.68×10-12M。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例中采用纳米传感器对TET1活性检测的机理图;
图2为本发明实施例中采用纳米传感器对TET1活性检测可行性实验的结果图,(A)聚丙烯酰氨凝胶(PAGE)电泳分析,(B)不存在TET1(对照)和存在TET1的情况下测量的605QD和Cy5荧光发射光谱,(C)不存在TET1(对照)和存在TET1的情况下测量605QD的荧光寿命曲线;
图3为本发明实施例中检测TET1的单分子荧光图像,A、B、C为无TET1,D、E、F为存在TET1,标尺为5μm;
图4为本发明实施例中检测TET1的优化实验的结果图,(A)不同用量MspI对应的Cy5计数,(B)不同的检测探针与605QD比率对应的FRET效率及Cy5计数;
图5为本发明实施例中检测TET1的灵敏度和特异性的检测结果图,(A)Cy5计数随TET1浓度变化的曲线,插图显示在5.0×10-12到5.0×10-9M范围内Cy5计数与TET1浓度的对数呈线性相关,(B)在230nM TET1、23U/mL M.SssI、23U/mL Dam、230nM SIRT1、23U/mL PNK和反应缓冲液(对照)的条件下测定Cy5计数。
图6为本发明实施例中不同Ni(II)离子浓度对应的TET1相对活性结果图;
图7为本发明实施例对实际样品检测的结果图,(A)测量SK-N-BE(2)和HeLa细胞提取物得到的Cy5计数,(B)Cy5计数与SK-N-BE(2)细胞数呈线性关系。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
鉴于现有检测TET1的方法存在需要大量TET1特异性抗体、高样本输入量、耗时的分离操作、灵敏度低等缺点,本发明提出了一种检测DNA羟化酶TET1的纳米传感器及其检测方法和应用。
本发明的一种典型实施方式,提供了一种检测DNA羟化酶TET1的纳米传感器,包括发夹探针、T4噬菌体β-葡萄糖基转移酶、内切酶、量子点;
所述发夹探针为能够形成茎环结构的单链DNA,所述发夹探针的一端连接荧光剂,另一端能够与量子点配合连接,形成茎环结构的茎区域含有被内切酶识别并剪切的位点,所述位点含有5-甲基胞嘧啶;
量子点与荧光剂能够配合发生荧光共振能量转移。
在一些实施例中,所述荧光剂为Cy5,所述量子点为605QD。
在一些实施例中,发夹探针通过生物素-链霉亲和素与量子点连接。进一步地,发夹探针连接生物素,量子点表面包被链霉亲和素。
在一些实施例中,发夹探针形成茎环结构后,能够连接量子点的一端突出。能够保证发夹探针与量子点连接。
在一些实施例中,所述内切酶为内切酶MspI。
在一些实施例中,发夹探针的序列为:
TTT TTC ACT CmCG GTC ACG TTT TCG TGA CCG GAG TG,其中,mC为甲基胞嘧啶。
本发明的另一种实施方式,提供了一种上述纳米传感器在检测DNA羟化酶TET1活性中的应用。所述应用优选以非疾病的诊断与治疗为目的。
本发明的第三种实施方式,提供了一种DNA羟化酶TET1活性的检测方法,提供上述检测DNA羟化酶TET1的纳米传感器;步骤如下:
1)将所述纳米传感器孵育成茎环结构;
2)将形成茎环结构的纳米传感器与含有DNA羟化酶TET1的待测溶液混合后进行反应;
3)将步骤2)反应后的反应物与尿苷二磷酸葡萄糖、T4噬菌体β-葡萄糖基转移酶进行反应;
4)将步骤3)反应后的反应物与量子点进行反应,然后进行荧光检测。
所述检测方法优选以非疾病的诊断与治疗为目的。
在一些实施例中,步骤1)中孵育的温度为90~100℃,孵育时间为3~7min。
在一些实施例中,步骤2)中反应的温度为35~39℃,反应时间为25~35min。
在一些实施例中,步骤2)中的反应液含有HEPES(4-羟乙基哌嗪乙磺酸)、氯化钠、Fe(NH4)2(SO4)2、抗坏血酸、DTT(二硫苏糖醇)和α-KG(α-酮戊二酸)。HEPES、氯化钠、Fe(NH4)2(SO4)2、抗坏血酸、DTT和α-KG的摩尔比为45~55:45~55:0.070~0.080:1.5~2.5:2.0~3.0:0.5~1.5。
在一些实施例中,步骤3)中反应的温度为35~39℃,反应时间为1.5~2.5h。
在一些实施例中,步骤3)中的反应液含有醋酸钾、Tris-Ac、醋酸镁、DTT。醋酸钾、Tris-Ac、醋酸镁、DTT的摩尔比为45~55:15~25:5~15:0.5~1.5。反应液pH为7.0~8.0。
在一些实施例中,步骤4)中反应的温度为35~39℃,反应时间为1.5~2.5h。
在一些实施例中,步骤4)中的反应液含有醋酸钾、Tris-Ac、醋酸镁、BSA(牛血清白蛋白)。醋酸钾、Tris-Ac、醋酸镁、BSA的比为5~15:15~25:45~55:50~150,mmol:mmol:mmol:mg。反应液pH为7.0~8.0。
在一些实施例中,步骤5)中反应的温度为室温,反应时间为15~25min。
在一些实施例中,步骤5)中反应液含有Tris-HCl、(NH4)2SO4、MgCl2。Tris-HCl、(NH4)2SO4、MgCl2的摩尔比为90~110:5~15:2~4。反应液pH为7.6~8.4。
在一些实施例中,荧光剂为Cy5,量子点为605QD,荧光检测的激发波长为487~489nm。
本发明的第四种实施方式,提供了一种检测DNA羟化酶TET1的试剂盒,包括上述纳米传感器、尿苷二磷酸葡萄糖、缓冲溶液。
本发明的第五种实施方式,提供了一种上述纳米传感器或试剂盒在筛选DNA羟化酶TET1药物中的应用。
具体的,所述DNA羟化酶TET1药物为TET1抑制剂。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例
TET1的测定:首先,检测探针与缓冲液A(5mM MgCl2、10mM Tris-HCl,pH 8.0)在95℃下孵育5min,缓慢冷却至室温。然后,在含有50mM HEPES、50mMNaCl、75μM Fe(NH4)2(SO4)2、2mM抗坏血酸、2.5mM DTT和1mMα-KG的反应液中加入144nM检测探针和不同浓度的TET1,37℃反应30min。第三,反应产物与40μM尿苷二磷酸葡萄糖(UDP-glucose)和3U T4噬菌体β-葡萄糖基转移酶(T4-βGT)和缓冲液B(50mM醋酸钾、20mM Tris-Ac、10mM醋酸镁、1mMDTT,pH 7.9)组成反应溶液,37℃孵育2h。随后,糖基化产物与30U MspI和缓冲液C(10mM醋酸镁、20mM Tris-Ac、50mM醋酸钾、0.1mg/mL BSA,pH 7.9)组成反应溶液,37℃消化2h。最后,将消化后的产物加入0.5nM 605QDs和60μl缓冲液D(100mM Tris-HCl、10mM(NH4)2SO4、3mM MgCl2,pH 8.0)中,室温孵育20min,得到605QD-DNA-Cy5纳米结构。
TET1测定的检测探针为5’-biotin-TTT TTC ACT CmCG GTC ACG TTT TCG TGACCG GAG TG-Cy5-3’,其中,mC为甲基胞嘧啶,序列如SEQ ID NO.1所示。
凝胶电泳分析:MspI的消化产物与荧光指示剂(SYBR Gold)混合加入12%的聚丙烯酰胺凝胶中,凝胶放入三羟甲基氨基甲烷-硼酸(TBE缓冲液:89mMTris-HCl、89mM boricacid、2mM EDTA,pH 8.3)中,在110V恒压室温条件下电泳40min。多通道成像由ChemiDoc MP成像系统完成。SYBR Gold信号使用Epi-blue(460-490nm激发)和518-546nm滤光片进行测量,Cy5信号使用Epi-red(625-650nm激发)和675-725nm滤光片进行测量。
荧光检测:荧光光谱由荧光分光光度计在488nm的激发波长下进行检测。
单分子检测:将反应产物用缓冲液D(100mM Tris-HCl、10mM(NH4)2SO4、3mM MgCl2,pH 8.0)稀释25倍。取10μL样品加在盖玻片上进行全内反射荧光(TIRF)成像。反应产物由488nm激光激发,Cy5和605QD发射的光子通过100×油浸透镜采集。使用Image J软件对600×600像素的图像区域内的Cy5进行统计。
抑制剂实验:不同浓度的镍(II)离子与检测探针和230nM TET1在37℃孵育10分钟,随后将铁(II)离子添加到孵育混合物中,37℃反应30分钟,然后进行上述实验操作过程。
细胞培养和细胞提取:神经母细胞瘤细胞系SK-N-BE(2)在45%MEM和45%F-12培养基中培养,培养基中加入10%胎牛血清和1%青霉素链霉素。宫颈癌细胞系HeLa在90%DMEM培养基中培养,培养基中加入10%胎牛血清和1%青霉素链霉素。培养皿置于37℃且含有5%二氧化碳的培养箱中培养至细胞成熟。待细胞成熟,使用细胞核提取试剂盒(ActiveMotif)完成细胞提取物的提取,得到的提取物用于随后的检测。
本实施例提供的检测方法检测原理图,如图1所示:首先设计了一种Cy5/生物素修饰的发夹检测探针,探针包含的一个5mC可用于TET1检测。在TET1存在下,TET1催化5mC转化为5hmC,生成羟甲基化的检测探针。T4噬菌体β-葡萄糖基转移酶(T4-βGT)可将尿苷二磷酸葡萄糖(UDP-glucose)的葡萄糖基转移到5hmC的羟甲基上,形成带有β-葡萄糖基-5-羟甲基胞嘧啶(5ghmC)的葡萄糖基化检测探针。由此得到的糖基化检测探针不能被限制性内切酶MspI切割,因而Cy5和生物素分子被同时保留在糖基化检测探针中。随后,糖基化的Cy5/生物素修饰的检测探针与链霉亲和素包被的605QD反应,形成一个具有单供体/多受体的605QD-DNA-Cy5纳米结构。在488nm的激发波长下,605QD与Cy5之间发生高效的FRET,从而导致明显Cy5荧光发射信号。测得单分子检测图像后,可以简单地对Cy5进行计数,从而定量TET1活性。在没有TET1存在时,羟甲基化反应不能发生,5mC维持原有状态。检测探针中的5'-C-5mC-G-G-3'/3'-G-G-C-C-5'位点可以被MspI剪切,产生三个片段:Cy5标记的DNA片段、生物素标记的DNA片段、发夹状的DNA片段。由于Cy5与生物素发生分离,605QD表面无法组装Cy5,605QD与Cy5之间不会发生FRET,因而Cy5信号不能被检测到。因此无抗体的单量子点荧光共振能量转移传感器可以用于灵敏的检测TET1。
可行性验证:
如图2A,12%的PAGE电泳分析被用于确定TET1是否诱导检测探针羟甲基化。当发夹检测探针单独存在时,只能观察到35nt的条带(图2A,lane 1)。在有MspI但没有TET1的情况下,出现了Cy5标记的DNA片段的新条带(图2A,lane 2,b)和DNA片段的新条带(图2A,lane2,c),这表明MspI切割反应的发生。与此相反,TET1和MspI同时存在时,只观察到35nt的糖基化检测探针的条带(图2A,lane 3,a)。
为了验证实验可行性,荧光光谱被用于验证该传感器(图2B)。在没有TET1的情况下,由于没有发生FRET,无法观察到Cy5荧光强度。与此相反,TET1存在时,可以观察到明显的Cy5荧光强度。有TET1存在时的605QD的荧光强度明显低于没有TET1时的荧光强度,说明605QD和Cy5之间发生了FRET。
为了验证实验中605QD与Cy5之间的高FRET效率,605QD的荧光寿命曲线被研究。如图2C,可以观察到在TET1存在时荧光寿命较短。
为了进一步验证实验可行性,在单分子成像系统下检测TET1(图3)。在没有TET1的情况下,只有605QD信号存在(A)。在TET1存在下,605QD(D)和Cy5(E)信号被同时检测到,且Cy5信号与605QD信号发生明显的共定位(F)。TET1存在条件下的605QD信号(D)与TET1不存在条件下的605QD信号(A)相比明显减弱。这些结果表明通过Cy5计数可以用于TET1检测。
优化实验条件:
为了得到最佳的实验结果,限制性内切酶MspI用量和检测探针与605QD的比率被逐一优化。如图4A,Cy5的计数随着MspI用量从5到30U的增加而减少,在超过30U时达到平台期,因此30U被选择为MspI的最佳用量。如图4B,随着检测探针与605QD的比率从12增加到48,FRET效率逐渐提高,在超过48时达到平台;该比率在12~48范围内与Cy5计数呈线性关系,超过48时Cy5计数达到平台。因此48被选择为检测探针与605QD的最优比率。
检测的灵敏度:
为了验证该方法的高灵敏度,研究了在最佳条件下不同浓度TET1对Cy5计数的影响。如图5A所示,随着TET1浓度从0增加到2.3×10-7M,Cy5的数量相应增加。在5.0×10-12到5.0×10-9M范围内,Cy5计数与TET1浓度的对数呈现线性相关(图5A的插图)。线性回归方程为N=5082.18+429.94log10C(R2=0.994),其中C为TET1浓度(M),N为Cy5计数。根据对照的均值和3倍标准差计算出检出限为1.68×10-12M(1.34×10-7μg/μL)。该检测限比电化学传感法高约3个数量级(9.8×10-4μg/μL)。
检测的特异性:
利用M.SssICpG甲基转移酶(M.SssI)、Dam甲基转移酶(Dam)、sirtuin 1去乙酰化酶(SIRT1)和T4多聚核苷酸激酶(PNK)4种非特异性蛋白对传感器的特异性进行验证。如图5B,这4种非特异性蛋白均不能观察到Cy5信号。与之相反,TET1产生了高的Cy5信号。这一结果表明该传感器对TET1具有较高的特异性。
抑制剂分析:
用镍(Ni(II))离子作为TET1模型抑制剂来验证抑制试验的可行性。如图6,随着Ni(II)离子浓度的增加,TET1相对活性逐渐降低。通过相对活性与抑制剂浓度的关系曲线计算IC50值为3.30μM。该IC50值与UHPLC-MS/MS分析结果相当(1.2μM),这表明该方法可用于TET1抑制剂的筛选。
实际样品分析:
为了验证该方法在实际样品方面的应用,SK-N-BE(2)和HeLa细胞提取物被用于检测。图7A,SK-N-BE(2)细胞样品得到Cy5信号远高于HeLa细胞样品。如图7B,随着SK-N-BE(2)细胞数量的增加,Cy5数量增加。在1-7200细胞范围内,Cy5数量与细胞数的对数呈线性相关。回归方程为N=81.93+210.56log10X(R2=0.998),其中N是Cy5的计数,N是SK-N-BE(2)细胞数,检测限为1个细胞。这些结果表明该方法可以用于检测细胞中的TET1酶。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
SEQUENCE LISTING
<110> 山东师范大学
<120> 一种检测DNA羟化酶 TET1的纳米传感器及其检测方法和应用
<130>
<160> 1
<170> PatentIn version 3.3
<210> 1
<211> 35
<212> DNA
<213> 人工序列
<400> 1
tttttcactc cggtcacgtt ttcgtgaccg gagtg 35

Claims (4)

1.一种纳米传感器在制备检测DNA羟化酶TET1活性的试剂盒中的应用,其特征是,一种检测DNA羟化酶TET1的试剂盒包括纳米传感器、尿苷二磷酸葡萄糖、缓冲溶液;所述检测DNA羟化酶TET1的纳米传感器包括发夹探针、T4噬菌体β-葡萄糖基转移酶、内切酶、量子点;
所述发夹探针为能够形成茎环结构的单链DNA,所述发夹探针的一端连接荧光剂,另一端能够与量子点配合连接,形成茎环结构的茎区域含有被内切酶识别并剪切的位点,所述位点含有5-甲基胞嘧啶;
量子点与荧光剂能够配合发生荧光共振能量转移;
所述荧光剂为Cy5,所述量子点为605QD;所述内切酶为内切酶MspI;
发夹探针通过生物素-链霉亲和素与量子点连接;发夹探针连接生物素,量子点表面包被链霉亲和素;
发夹探针形成茎环结构后,能够连接量子点的一端突出;
发夹探针的序列为:
TTT TTC ACT CmCG GTC ACG TTT TCG TGA CCG GAG TG,其中,mC为甲基胞嘧啶。
2.一种DNA羟化酶TET1活性的检测方法,其特征是,提供权利要求1所述的检测DNA羟化酶TET1的纳米传感器;步骤如下:
TET1的测定:首先,检测探针与含有5mM MgCl2、10mM Tris-HCl,且pH为8.0的缓冲液A在95℃下孵育5min,缓慢冷却至室温;然后,在含有50mM HEPES、50mM NaCl、75μM Fe(NH4)2(SO4)2、2mM抗坏血酸、2.5mM DTT和1mMα-KG的反应液中加入144nM检测探针和不同浓度的TET1,37℃反应30min;第三,反应产物与40μM尿苷二磷酸葡萄糖和3U T4噬菌体β-葡萄糖基转移酶和含有50mM醋酸钾、20mM Tris-Ac、10mM醋酸镁、1mM DTT,且pH为7.9的缓冲液B组成反应溶液,37℃孵育2h;随后,糖基化产物与30U MspI和含有10mM醋酸镁、20mM Tris-Ac、50mM醋酸钾、0.1mg/mL BSA,且pH为7.9的缓冲液C组成反应溶液,37℃消化2h;最后,将消化后的产物加入0.5nM 605QDs和含有100mM Tris-HCl、10mM(NH4)2SO4、3mM MgCl2,且pH为8.0的60μl缓冲液D中,室温孵育20min,得到605QD-DNA-Cy5纳米结构;
TET1测定的检测探针为5’-biotin-TTT TTC ACT CmCG GTC ACG TTT TCG TGA CCG GAGTG-Cy5-3’,其中,mC为甲基胞嘧啶;
凝胶电泳分析:MspI的消化产物与荧光指示剂混合加入12%的聚丙烯酰胺凝胶中,凝胶放入三羟甲基氨基甲烷-硼酸中,在110V恒压室温条件下电泳40min;多通道成像由ChemiDoc MP成像系统完成。SYBR Gold信号使用460-490nm激发的Epi-blue和518-546nm滤光片进行测量,Cy5信号使用625-650nm激发的Epi-red和675-725nm滤光片进行测量;
荧光检测:荧光光谱由荧光分光光度计在488nm的激发波长下进行检测;
所述检测方法不以疾病的诊断和治疗为目的。
3.一种权利要求1所述的试剂盒在筛选DNA羟化酶TET1药物中的应用,其特征是,所述应用不以疾病的诊断和治疗为目的。
4.如权利要求3所述的应用,其特征是,所述DNA羟化酶TET1药物为TET1抑制剂。
CN202110261946.3A 2021-03-10 2021-03-10 一种检测dna羟化酶tet1的纳米传感器及其检测方法和应用 Active CN113151402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110261946.3A CN113151402B (zh) 2021-03-10 2021-03-10 一种检测dna羟化酶tet1的纳米传感器及其检测方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110261946.3A CN113151402B (zh) 2021-03-10 2021-03-10 一种检测dna羟化酶tet1的纳米传感器及其检测方法和应用

Publications (2)

Publication Number Publication Date
CN113151402A CN113151402A (zh) 2021-07-23
CN113151402B true CN113151402B (zh) 2022-08-02

Family

ID=76886711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110261946.3A Active CN113151402B (zh) 2021-03-10 2021-03-10 一种检测dna羟化酶tet1的纳米传感器及其检测方法和应用

Country Status (1)

Country Link
CN (1) CN113151402B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062672B (zh) * 2021-11-12 2023-04-25 福州大学 一种检测covid-19抗体的血糖生物传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928351A (zh) * 2014-03-19 2015-09-23 中国科学院生态环境研究中心 一种硼酸介导的聚合酶链反应检测dna中5-羟甲基胞嘧啶的方法和试剂盒
CN105506084A (zh) * 2015-12-28 2016-04-20 安诺优达基因科技(北京)有限公司 快速高效检测基因组dna羟甲基化的方法及试剂盒
CN106990084A (zh) * 2017-05-27 2017-07-28 山东师范大学 一种基于单个量子点的用于检测dna甲基转移酶的纳米传感器
CN113640283A (zh) * 2021-08-23 2021-11-12 翌圣生物科技(上海)股份有限公司 Tet酶活性测定方法及tet酶活性小分子激活剂或抑制剂的高通量筛选方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928351A (zh) * 2014-03-19 2015-09-23 中国科学院生态环境研究中心 一种硼酸介导的聚合酶链反应检测dna中5-羟甲基胞嘧啶的方法和试剂盒
CN105506084A (zh) * 2015-12-28 2016-04-20 安诺优达基因科技(北京)有限公司 快速高效检测基因组dna羟甲基化的方法及试剂盒
CN106990084A (zh) * 2017-05-27 2017-07-28 山东师范大学 一种基于单个量子点的用于检测dna甲基转移酶的纳米传感器
CN113640283A (zh) * 2021-08-23 2021-11-12 翌圣生物科技(上海)股份有限公司 Tet酶活性测定方法及tet酶活性小分子激活剂或抑制剂的高通量筛选方法

Also Published As

Publication number Publication date
CN113151402A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
KR101029343B1 (ko) 면역분석 기반의 항원 검출용 키트 및 항원 검출 방법
KR102497054B1 (ko) 개선된 분석 방법
KR102378388B1 (ko) 개선된 분석 방법
US7576192B2 (en) Rapid and sensitive assay for the detection and quantification of coregulators of nucleic acid binding factors
US20210302429A1 (en) Compositions and methods related to the methylation of histone h1.0 protein
Ilkhani et al. Novel approaches for rapid detection of COVID-19 during the pandemic: A review
US6218105B1 (en) High throughput papilloma virus in vitro infectivity assay
CN113151402B (zh) 一种检测dna羟化酶tet1的纳米传感器及其检测方法和应用
EP1476557B1 (en) A rapid and sensitive assay for the detection and quantification of coregulators of nucleic acid binding factors
Kim et al. Aptamers generated by Cell SELEX for biomarker discovery
CN114859058A (zh) 无酶核酸放大和选择性识别反应辅助IFN-γ的均相双荧光和二元可视化分析方法及应用
Lou et al. Screening inhibitors for blocking UHRF1-methylated DNA interaction with capillary electrophoresis
WO2020014883A1 (zh) 一种特异性识别妥布霉素的单链dna适配体及其应用
Ren et al. Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection
CN112114154B (zh) 一种检测核因子-κB的试剂盒及其应用
CN112903641A (zh) 一种检测组蛋白修饰酶的生物传感器及其检测方法和应用
WO2021138621A1 (en) Electrochemical proximity assay
Zhou et al. Proximity binding induced nucleic acid cascade amplification strategy for ultrasensitive homogeneous detection of PSA
EP3365350B1 (en) Multiplex dna immuno-sandwich assay (mdisa)
Hu et al. A single quantum dot-based fluorescence resonance energy transfer biosensor for antibody-free detection of ten-eleven translocation 1
Zhou et al. Sensitive monitoring of RNA transcription levels using a graphene oxide fluorescence switch
CN114250271B (zh) 一种在单分子水平检测tet2的无扩增的单量子点生物传感器及其检测方法和应用
CN113710803A (zh) 针对伊马替尼的适体
Sun et al. Rapid identification of A29L antibodies based on mRNA immunization and high-throughput single B cell sequencing to detect Monkeypox virus
CN108300759B (zh) 基于荧光染料toto-1分析检测parp-1活性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant