CN113151323A - Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development - Google Patents

Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development Download PDF

Info

Publication number
CN113151323A
CN113151323A CN202011278574.7A CN202011278574A CN113151323A CN 113151323 A CN113151323 A CN 113151323A CN 202011278574 A CN202011278574 A CN 202011278574A CN 113151323 A CN113151323 A CN 113151323A
Authority
CN
China
Prior art keywords
zmrh4
gene
mutant
protein
corn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011278574.7A
Other languages
Chinese (zh)
Inventor
李莉
王建华
贺岩
顾日良
王春予
夏嫒嫒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202011278574.7A priority Critical patent/CN113151323A/en
Publication of CN113151323A publication Critical patent/CN113151323A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/04Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; involved in cellular and subcellular movement (3.6.4)
    • C12Y306/04013RNA helicase (3.6.4.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Abstract

The invention describes a gene for coding DExD/H-box RNA helicase protein in corn and an amino acid sequence of the coding protein thereof, wherein the nucleotide sequence and the coding protein have the functions of regulating and controlling the development of corn kernels and the structure and components of endosperm; and develops a functional marker of the gene, can be used for improving the quality of the corn, and has great application and economic value.

Description

Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development
Technical Field
The invention relates to a corn grain development regulating gene ZmRH4 and a coding protein sequence thereof, wherein the gene codes DExD/H-box RNA helicase protein. The early termination of the gene coding frame causes defects in seed development (lower than normal grain weight) and plant establishment (leaf whitening, dwarfing and seedling death). Belongs to the field of crop molecular breeding, molecular biology and genetic engineering. In particular to clone and application of a gene ZmRH4 related to controlling the size and quality of corn grains.
Background
The corn kernel mutant comprises mutants with mutant phenotypes of various kernels, including sprouting, small grains, empty pericarp, shrinkage mutants and the like. From a biological composition perspective, corn kernel is composed primarily of embryo and endosperm, with the endosperm making up about 70% of the total weight of the corn kernel (Berger,1999), playing a key role in corn kernel size and hundred weight. Cell division of the endosperm directly affects the size and weight of the seed. Whether the corn kernel can normally develop or not directly influences the size of the corn kernel and the yield is low, and the kernel development has important significance for the research of the development process of the corn kernel and genetic breeding. With the rapid development of biotechnology, people continuously break through the methods of transposon technology, map-based cloning, high-throughput sequencing and the like, and clone some key genes influencing grain development. Many genes have been cloned so far, and these genes are involved in multiple pathways such as signal transduction, sugar metabolism, and RNA editing.
RNA links DNA to proteins and is the basis for organisms to perform a variety of physiological activities. RNA metabolic processes, including splicing, transcription, transport, translation, degradation, etc. of RNA, all require involvement of RNA helicase (RNAhelicase) (Byrd,2012) DExD/H-box family in various physiological processes such as plant morphogenesis, stress response, seed development, etc. The development of corn kernel involves a very complex network of gene regulation. In recent years, several genes have been reported that are involved in corn kernel architecture, embryo development, endosperm starch synthesis and storage protein synthesis. However, there is still limited knowledge of gene expression network information and important genes affecting grain development during grain development. Through previous GWAS research, a gene ZmRH4 for coding DExD/H-boxRNA helicase protein is located, and the early termination of the coding frame of the gene causes defects in seed development (lower than normal grain weight) and plant establishment (leaf whitening, dwarfing and seedling death). The gene directly or indirectly affects chloroplast ribosomal gene expression. The preliminary research lays a foundation for further exploring the function of the DExD/H-boxRNA helicase gene in the process of regulating and controlling the corn kernel development, and also provides a reference for improving the corn yield and the kernel type.
Disclosure of Invention
The invention aims to provide a novel DNA sequence and a cDAN sequence of a corn kernel development gene ZmRH4 and an amino acid sequence of a functional protein coded by the gene, wherein the gene codes DExD/H-boxRNA helicase protein, the DExD/H-boxRNA helicase protein is specifically expressed in chloroplast, and the loss of the function causes the corn embryo and endosperm to be prevented from developing, thereby causing embryo abortion and kernel reduction.
The first object of the present invention is: provides a novel gene ZmRH4 for regulating and controlling corn kernel development, which is characterized in that the gene is a DNA molecule selected from the following 1) or 2) or 3) or 4) or 5):
1) the DNA molecule shown in SEQ ID NO.1 (genomic DNA cloned from maize inbred line B73): the DNA molecule consists of 17748 nucleotides, 23 exons and 22 introns.
2) DNA molecule shown as SEQ ID NO.2 (cDNA cloned from maize inbred line B73)
3) A DNA molecule which is formed by one to a plurality of base substitutions and/or one to a plurality of base insertions and/or deletions and large fragment nucleotide sequence insertions/deletions/shifts/inversions on the basis of SEQ ID NO.1 and can influence the development of seed grains;
4) hybridizing and washing the membrane in a solution of 0.1 XSSPE (or 0.1 XSSPE), 0.1% (w/v) SDS at 65 ℃ to obtain a DNA molecule capable of hybridizing to the DNA molecule of SEQ ID No.2 and encoding a plant grain development related protein;
5) DNA molecules which have homology of more than 85 percent with the DNA molecules of SEQ ID NO.2 and encode the plant grain development related protein;
the second object of the present invention is: provides the related protein coded by the gene and used for regulating and controlling the development of seeds.
In one embodiment, the gene encodes a protein described in 1) or 2) below;
1) protein consisting of amino acid sequences shown by SEQ ID NO.3 of a sequence table;
2) related protein which is obtained by substituting, deleting and/or adding one or more amino acid residues in SEQ ID NO.3 of the sequence table and has the function of influencing the assembly of plant mitochondrial protein.
The third object of the present invention is: provides a recombinant expression vector, an expression cassette, a transgenic cell line or a recombinant bacterium containing the gene and/or the promoter.
A fourth object of the present invention is: provides the application of the gene in transgenic improved crops. In one embodiment, the gene is used for inducing normal development of crop seed kernels so as to introduce an exogenous gene to obtain a high-quality transgenic crop.
In a specific embodiment, the improvement comprises improvement in agronomic traits such as yield increase, quality increase, disease and pest resistance, stress tolerance, and lodging resistance.
In another embodiment, the crop is a self-pollinated or cross-pollinated crop.
In a more specific embodiment, the crop includes, but is not limited to, corn, rice, sorghum, wheat.
The fifth object of the present invention is: provides a method for obtaining the orthologous of the ZmRH4 protein in other plants and the amino acid sequences of rice, wheat and Arabidopsis obtained by the method, wherein the ZmRH4 protein is relatively conserved in rice, wheat and Arabidopsis (figure 5).
Compared with the prior art, the invention has the following beneficial effects: the plant seed organ development regulating gene ZmRH4 provided by the invention is related to the development of seed embryo and endosperm, and the embryo death is caused by the early termination of the gene coding frame. The expression is that the mutant endosperm is blocked in formation, starch granules and protein are abnormal in form, the endosperm cannot be normally deposited, and the early embryo cannot be normally divided and differentiated, so that the grain development is blocked, the seeds are loose, the filler is rare, and the grain is reduced. Through the plant biotechnology approach, the invention plays an important role in the high-quality breeding of crops.
Definition of terms
The term "gene for regulating seed grain development" refers to a nucleotide sequence with the ability of coding protein, and the sequence specifically codes protein active polypeptide with the function of regulating seed grain development, such as the nucleotide sequence from 1 st to 4239 th of SEQ ID NO.2 and the degenerate sequence thereof.
The term "degenerate sequence" refers to a sequence which is generated by substituting one or more codons in the nucleotide sequence encoding boxes 1 to 4239 of SEQ ID NO.2 with a degenerate codon encoding the same amino acid. Due to the degeneracy of codons, the degenerate sequence with homology as low as 70 percent with the nucleotide sequence from 1 st to 4239 th positions of SEQ ID NO.2 can also encode the amino acid sequence encoded by SEQ ID NO. 2.
The gene for regulating and controlling seed grain development also comprises a nucleotide sequence which can be hybridized with the nucleotide sequence of SEQ ID NO.2 under moderate strict conditions and more high strict conditions. Among them, the medium stringency conditions may be conditions of hybridization and membrane washing at 65 ℃ in a solution of 0.1 XSSPE (or 0.1 XSSC), 0.1% (w/v) SDS. The gene for regulating and controlling seed grain development also comprises a nucleotide sequence which has at least 70 percent of homology with the nucleotide sequence of SEQ ID NO.2 from 1 to 4239, preferably 80 percent, 82 percent, 85 percent, 86 percent, 88 percent and 89 percent of homology, more preferably 90 percent, 91 percent, 92 percent, 93 percent and 94 percent of homology, and most preferably at least 95 percent, 96 percent, 97 percent, 98 percent and 99 percent of homology.
The gene for regulating and controlling seed grain development also comprises a variant form of an open reading frame sequence of SEQ ID NO.2, which can encode the protein with the same function as the natural corn grain development regulating gene ZmRH 4. These variants include (but are not limited to): deletion, insertion and/or substitution of 1 or several nucleotides, and addition of several (usually, up to 60, preferably up to 30, more preferably up to 10, and most preferably up to 5) nucleotides at the 5 'or 3' end.
The gene for regulating and controlling seed grain development also comprises an amino acid sequence capable of translating and controlling the corn grain development function, such as the amino acid sequence of SEQIDNO.3. The amino acid sequence also comprises a variant form of SEQ ID NO.3 with the same function of naturally regulating and controlling the corn kernel development protein. These variants include (but are not limited to): deletion, insertion and/or substitution of 1 or several amino acids, and addition of 1 or several (usually, up to 20, preferably, up to 10, more preferably, up to 5) amino acids to the C-terminal and/or N-terminal. In the art, substitutions with amino acids of similar or similar properties do not generally alter the function of the protein; addition of one or several amino acids at the C-terminus and/or N-terminus does not generally alter the function of the protein.
In addition, the full-length nucleotide sequence of the "gene for regulating seed grain development" or a fragment thereof can be obtained by a PCR amplification method, a recombinant method or an artificial synthesis method. For the PCR amplification method, primers can be designed based on the nucleotide sequences disclosed in this example, particularly the open reading frame sequence, and the relevant sequences can be amplified using a commercially available cDNA library or a cDNA library prepared by a conventional method known to those skilled in the art as a template. When the sequence is long, two or more nested PCR amplifications are usually required, and then the PCR amplification products are spliced together in the correct order. Once the sequence of interest has been obtained, it can be obtained in bulk by recombinant methods. Usually, the sequence is cloned into a vector, and then the sequence is isolated from the expanded host cell by a conventional method such as cell transformation. Furthermore, mutations can also be introduced into the example protein sequences by chemical synthesis. In addition to being produced recombinantly, fragments of the proteins of the examples can also be produced by direct synthesis of the polypeptides using solid phase techniques. In vitro protein synthesis can be performed manually or automatically, and fragments of the example proteins can be chemically synthesized separately and then chemically linked to produce full-length protein molecules.
Drawings
FIG. 1 is a drawing F2Generations (ems4-668a4/+ selfed progeny; A is the phenotype map of the mutant ears; B. c is a front and side comparison graph of the mutant grains; d is a section view of mature mutant seeds, and E is a section view of mature wild type seeds; f is the inside of the seed after the seed coat of the mutant seed is removed on the 13 th day after pollination, and G is the inside of the seed after the seed coat of the wild type seed is removed on the 13 th day after pollination;
FIG. 2 is a graph comparing zmrh4-1 mutant with wild type seedlings;
FIG. 3 is a structural diagram of ZmRH4 gene containing 23 exons and 22 introns;
FIG. 4 is a scanning electron microscopy phenotype image of kernel endosperm, A, C is zmrh4-1 wild type kernel 1000 times magnification phenotype, 2000 times magnification phenotype; B. d is zmrh4-1 mutant seed 1000 times magnification phenotype, 2000 times magnification phenotype; E. g is zmrh4-2 wild type seed 1000 times magnification phenotype, 2000 times magnification phenotype; F. h is mrh4-2 mutant seed 1000 times magnification phenotype, 2000 times magnification phenotype;
FIG. 5 is a tree analysis diagram of ZmRH4 protein and its homologous genes in rice, wheat and Arabidopsis;
FIG. 6 shows the result of subcellular localization of ZmRH4 protein, wherein A is the yellow fluorescence of ZmRH4-YFP fusion protein; b is a cell structure; c is chloroplast spontaneous red fluorescence; d is the coincidence of the yellow fluorescence of ZmRH4-YFP fusion protein and the spontaneous red fluorescence of chloroplast;
FIG. 7 is a comparison graph of 25 genes with different expression in nucleus-encoded chloroplast ribosome-related genes obtained from the results of zmrh4-1, zmrh4-2 mutant and wild-type grain RNA-Seq.
Detailed Description
The following examples are given to facilitate a better understanding of the invention, but do not limit the scope of the invention. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, unless otherwise specified. Unless otherwise indicated, all techniques used or mentioned herein are standard techniques recognized by those of ordinary skill in the art. The test materials are, unless otherwise specified, all materials commonly used in the field of the present invention. The test reagents used in the following examples were purchased from conventional biochemical reagent stores unless otherwise specified. The materials, methods, and examples are illustrative only and not intended to be limiting. The granule mutant of the invention particularly refers to that the granule development is obviously smaller than normal granule due to the mutation of the gene related to the control of the granule development, and the granule mutant is F2The ears are obviously separated, and a certain proportion of seed mutants are expressed. So-called Dek (Defective), Smk (Smallkernel), emp (emptykernel) and the like. The grain development related genes are controlled by nuclear, cytoplasmic, e.g. mitochondrial or chloroplast genes. Thus, it is possible to provideThe invention also comprises the use of the sequence table to lock the sequence to regulate the development of grains or seeds, i.e. the gene sequence provided by the invention can influence the functions of the same or homologous genes in other plants at the genome, and/or transcriptome, and/or proteome level to achieve the purpose of controlling the development of grains. For example, the following methods are not limited to the following methods: affecting or altering the function of a plant gene by causing gene expression inhibition or loss of protein function through variation of the native sequence, by transferring the gene's antisense sequence or introducing hairpin structures into a plant, or by combining the gene with other sequences (DNA or RNA) to create new functionally active DNA or RNA strands, or any other technique known to those skilled in the art that can be used to affect seed grain development. The invention comprises a corn ZmRH4 gene, the dominant allele of which has a key effect on seed grain development, and the recessive allele with function deficiency can cause seed grain to be smaller and the development to be hindered. The gene is located on chromosome 5 of maize. The gene sequence and its homologous sequence can be obtained from any seed plant, including but not limited to maize (Zeamays), rice (Oryzasativa), sorghum (Sorghumbol), Triticum aestivum (Triticum aestivum), millet (Setaria availability), barley (Hordeum vulgare), brachypodium distachyon (Brachypodium distachyon), rye (Secalele), aegyptia procumbens (Aegliopsinus chinensis), Arabidopsis thaliana (Arabidopsis thaliana), cabbage (Brassica oleracea), soybean (Glycinemax), tomato (Lycopersicon esculentum), and the like. Methods of obtaining include, but are not limited to: calling from the genome sequence database, and/or cDNA sequence database, and/or protein sequence database of other plants by the maize ZmRH4 gene sequence using blastx, blastn, or by the amino acid sequence using blastp; designing a primer by taking a DNA or cDNA or RNA sequence of the ZmRH4 gene as a reference sequence, and directly obtaining the primer from the genome DNA or cDNA or RNA of other plants by using a PCR method; probes are designed according to the gene sequence of corn ZmRH4, and DNA or cDNA or RNA fragments containing homologous gene sequences are separated from a genome library by a nucleic acid hybridization method. ZmRH4 Gene homologous sequence "means that the identies are 35% or more after the blastx comparative analysis of the amino acids of SEQ ID NO.3And the DNA sequence of the plant gene is more than or equal to 50 percent of the positives (as shown in figure 5). When performing blastx, all parameters were performed following the default settings shown by http:// blast. ncbi. nlm. nih. gov/.
The following more detailed description is provided by way of illustration and description and is not intended to limit the scope of the invention.
Example 1: ZmRH4 and identification and gene cloning with mutants
The corn kernel development mutant is manifested by kernel abortion, developmental retardation and the like, as shown in fig. 1, and the manifestations are as follows: the mutant has no normal and plump starch granule structure, loose endosperm composition, rare filler, serious development obstruction degree, no observed embryo structure and seed abortion. The invention obtains a gene ZmRH4 which can possibly control the corn kernel development, and obtains two EMS mutagenesis mutants EMS4-668a4 and EMS4-66898 of the gene. According to the phenotype characteristics of the mutant, only heterozygous normal grains separated from the same F2 cluster can be used for propagation, and stable inheritance of the mutant phenotype is found through years and multiple generations of selfing. In addition, after two EMS mutants are subjected to allelic test (Aa multiplied by A 'a') after hybridization, the offspring is found to show a normal seed and empty fruit peel ratio of 3:1, and the genotype detection is normal, the seed shows Aa genotypes of two mutation types of EMS4-668a4 or EMS4-66898, and further the relationship between the gene ZmRH4 and the granule phenotype is confirmed, and the granule phenotype is caused due to the early termination of the translation of the ZmRH4 protein.
ZmRH4 encodes a DExD/H-box family protein, an infusion primer is designed according to a B73 genome sequence and a pGWC vector sequence, PCR amplification is carried out by taking B73 corn kernel cDNA as a template, and agarose gel electrophoresis is carried out for detection to obtain a single band which is consistent with the target size of 4.3 kb. And purifying the PCR product, constructing a pGWC vector, selecting a single clone, sequencing, and displaying the sequencing result of the vector, wherein the joint region of the vector is correct, and the sequence of the gene ZmRH4 is completely correct. As shown in FIG. 3, ZmRH4 contains 23 exons and 22 introns, wherein the lengths of the 23 exons are not greatly different and the lengths of the 22 introns are more different. DExD/H-box proteins are an important family of RNA helicases that exist in almost all eukaryotes and most prokaryotes. Most RNA helicases belong to the superfamily 2 subclasses and are characterized by sequence homology within a helicase domain consisting of 8 or 9 conserved amino acid motifs. The DExD/H-box family of proteins has a very broad spectrum of actions, and almost all cellular processes involving RNA involve the DExD/H-box proteins, starting with gene transcription, pre-splicing and export of mRNA, to ribosome production, protein translation, to finally organelle gene expression and RNA degradation. The DExD/H-box family of proteins has been reported to date in model organisms of plants, animals and microorganisms. In addition, in plants, in addition to functioning in cells, tissues, the DExD/H-box family of proteins is involved in processes such as substance transport, abiotic stress response, seed development, and the like.
Example 2: comparing the seed size and seedling of the mutant and the wild corn seed. The allelic variant ems4-668a4 is exemplified. The EMS mutant ears exhibited an empty peel phenotype with a 1/4 ratio, as shown in figure 1. Further observation of mature seed structure shows that mutant seeds can not see embryo with naked eyes, endosperm deposition is reduced, seed coats are removed from 13d mutant seeds after pollination, endosperm development is seriously retarded, and embryo can not be observed and separated. Normal grains and small grains on fruit ears are taken to perform standard seed germination experiments, and germination experiments are performed by taking soil and MS culture media as media. And (4) carrying out seed germination by using an MS culture medium, wherein the wild seeds germinate and the small seeds do not germinate. In the germination experiment with soil as a medium, no small-sized seeds germinate after the first experiment. After several experiments, there was and only one small seed that germinated, the seedling became albino, and died by withering on day 4 after germination, as shown in fig. 2. The above results indicate that the mutation causing this phenotype is a nuclear single gene stealth mutation. The gene mutation can cause seed abortion and the seedlings can not normally develop.
Example 3: scanning electron microscope phenotype comparison of mutant and wild type kernel endosperm.
Microscopic observation is carried out on endosperm of normal and mutant grains by utilizing a scanning electron microscope technology, and the forms of the zmrh4-1 and zmrh4-2 mutant starch grains and proteins are abnormal and irregular, as shown in figure 4. The two mutants were phenotypically different in degree. The zmrh4-1 mutant has no normal plump starch grain structure, loose endosperm composition, rare filler and serious development obstruction degree. The endosperm of the zmrh4-2 mutant has an obvious starch grain structure, the shape of the starch grain is regular, but the starch grain is obviously reduced, the arrangement is loose, the filling is rare, and the development resistance degree of the kernel is reduced compared with that of the zmrh4-1 mutant. In normal seeds, starch grains are full and closely arranged, and the filler is more. The functional defect of the gene causes the obstruction of endosperm development and embryo differentiation.
Example 4: ZmRH4 protein maize protoplast subcellular localization
Subcellular localization prediction of ZmRH4 was performed using URGI-Predotar (https:// URGI. versales. inra. fr/Tools/Predotar). The results show that the ZmRH4 protein is most likely localized to chloroplasts. The materials selected for the subcellular localization of maize are generally tobacco leaves and maize protoplasts. In order to observe the functional position of the protein in corn more accurately and visually, the corn protoplast is selected for subcellular localization verification. A ZmRH4-YFP fusion expression vector is constructed, transfected into a corn protoplast, and fluorescence signal detection is carried out by using a laser confocal microscope. As shown in FIG. 6, the fluorescence signal of ZmRH4-YFP fusion protein is yellow, the signal is integrated into a spheroid and completely coincides with chloroplast red fluorescence, and no yellow fluorescence signal is detected at other positions except chloroplast. The above results indicate that the ZmRH4 protein is localized in chloroplasts in maize protoplasts.
Example 5: mutant and wild type chloroplast ribosome related differential expression gene
Because the gene is located in chloroplast, and the fact that the gene is possibly related to ribosome metabolism is known according to KEGG enrichment in an RNA-seq result, 25 genes with different expressions in nucleus-encoded chloroplast ribosome-related genes are found out, the genes are analyzed by using Q-teller (https:// qteller. mainzegdb. org /) public plant expression data, genes expressed in seeds at 12 th and 13 th days after pollination are selected, and 13 genes are screened out in total. As shown in FIG. 7, the chloroplast Ribosomal gene expression of the mutant kernels and the wild kernels of the three materials are different, wherein the up-regulated expression is Glf17(Glycoside laser family 17), Rpl9 (Ribosol protein L19), Rpl28/24 (Ribosol protein L28/L24), Rps21 (Ribosol protein S21), and Rps 9-cl-like (30S ribosol protein S9 chloroplastic-like), wherein the expression level of Rps21 in the mutant kernels is 4.95 times that of the wild kernels, and the expression levels of Rps9, Rpl28/24 and Rpl9 in the mutant kernels are 2 times that of the wild kernels. Other genes are genes with down-regulated expression, wherein the expression level of RplL29/26 (Ribosolprotein L29/L36) is 3 times of that of the RplL 29/26. Premature termination of the translation of the ZmRH4 protein, directly or indirectly, resulted in a change in the expression of some chloroplast ribosomal genes, some up-regulated and some down-regulated. Thereby leading to the obstruction of plastid development and influencing the development of grains.
Sequence listing
<110> university of agriculture in China
<120> cloning, function research and marker excavation of gene ZmRH4 for controlling corn kernel development
<130> MP2029930Z
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 17748
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
aataaaccat agtttatatc tgcgtttaga tcactcgttt ggtcgcttcc atctcaagtg 60
ctggttgtgc aacagtcatt gccatcctcc atccctctga actccgaagg ccgaaccagt 120
tccgacgaaa cggtacggtg acggctcacc tcgggggtct ccatgtccat ggacggccct 180
gccacctcgc cggcaagcga ggtgccgttc cgcatcagct tctccggcca cagcggccac 240
ctccgcctcg accctacccc gcacacgccc agccccattc cggacttcgt cctggtacgc 300
ttgcgttccc cgcttccgcc ctaaatcact cctggcgttc gatgcaacct ttaaaaccct 360
aaacccaccg ttgtggcaat gacgaccaca gccgccggca tacccggccg agagcccgag 420
cagcgtgaag gagtacctcg agaggaacta cctcgacccc gagctgcacc tccccaccgc 480
ggccgatagc gggagggtgt gggatgtcga ctggtttgcc ctggccaggc cgccgctgga 540
gccctccgcc ccccgcacca tgctcgcgcc cgtctgggtg ccgcctttcc ggcgcgggca 600
ggagaagttg caatccgcgg cagagtcgcg agtgtgggac cctgagtccg tgcaaatgga 660
gatggtcgac gtgttcgatt cggggaccgg ggggatagcg ccccggatgc ctggtccggc 720
gaaggacttc gtcaggggga gcatcaacaa cagacctttt cgtccaggcg gtctgcagga 780
tgacgccgct gaggcggctg cgctggaaaa ggcgttccca gagggtgcaa ggactggtga 840
ttgggtgcgt gagctcatga gcggtggccc ggcgcaggtt gcgcctccag ggttccgtaa 900
gggattggag ctgggccagt tgaaggtttg acccttactt gtgtctcttc cactatataa 960
ccacaatcac cgatgtggtc atgtggatgt gccaaactgt gcagcggcta cttttcttgt 1020
aggggtatga aagccactgg aagtgtttcc gggatggaga acttgtagag gagcaacctg 1080
catcatcatc gaatgacaca atggtaatca gaacacatat tttgcatttg aacaatccac 1140
atctgtgctt actttgccat tgtagagttg tagccttgat tatcccattg ttctgcagga 1200
gaagtactct gtgcagtttg atgatctttt caagatagcg tgggaggaag atactgccaa 1260
caagttgttg aaggacggtg ttgttcaaca atctgctgaa ggtgaaggaa tcaatggtac 1320
tttattgttc tcacacatca tatttttaag ttacatgagt acactgtctt ggcaaattgt 1380
aatagctaaa aggtaatggg acattgtaac cactgttgct actaggacat tagcattcag 1440
ttcatttacc aaagcctggt ttcttgttaa gattttcatt tttcattggc agaaattggc 1500
gaacaaaaag ttgatgcatt gcaggatgag ttcgagagta taacaacgct agatgacgag 1560
aaacaggaag ttgatgtcat aagaaatgtt cctgaaactc aaacagactt ggatcagatg 1620
ttatcttctg aagtacagga tacaggcagg gaaccaggtg catcaggtga taagaagcca 1680
acacaagatg gcatggtaag cactctttat gccttttctt ctatctcact ttctatgctg 1740
tgcttcttgt tctgtaagct tcaggggtag atattgttgc agaaatgata aatgtggttt 1800
ggtctcacaa ttctcgatag atcatggatg gaccaataat gccaatgtac ctctatttca 1860
tctataggtt tgggcacttg ttggtgggga cgaggacata gtgactaact tctccaaact 1920
cgttccagat atggcaatcg agtttccatt tgaattggat aagttccaga aggaggtaaa 1980
gtactcatat gcatcctttt ctgtttcaat gtattctcca tattgatcag agtgtctatt 2040
atactgcatc atccaagtgc atgcactgtt ttttttactt ggacttttag gcaaattcac 2100
attacatgct tctaattgta gtacttcatc tatgtttggc agccttagcc tgcaatttta 2160
ctttccggta tacactcggt cgcagcttga tttcgtatta ggacataccg acatagatac 2220
tttcatacta tacattcagc ctgcgatcat ctaaacgatt ttacttctat tgccttgcaa 2280
taccacatta gatattttct taaaacagca caaggttgca tatctctgtg agaaatttaa 2340
aagctagtcc agtctagggt tgtctttcct ggaatacaag attacggata accaatttaa 2400
atgaaaagaa acatctagtg aacatatata ccctttcttc tatttcctgt gggaactatt 2460
tgttacaagg tgtcttagat ggtaccacta cctatctgtt tttgaactta gaacaatgtt 2520
ttcaagtcgt ccgattaatt gtgattagtc gcgattaatc gtccaagtcg gtttggacca 2580
atcacgatta atcgcccaag tcatccgact aatcgtgatt aatcgtgatt aatcggttag 2640
ccagaatgat cagcaagtcg tccgacttga aaacgatgct tagaaaacta tgtttaaatt 2700
gcttcgtata gttgctaatc tatatttctt ttgtctacaa agcacaggct atatattatc 2760
tcgagaaggg tgaatcagtc tttgttgcag cccatacttc agctggaaag acggttgttg 2820
ctgagtatgc attcgcatta gcaacgaaag tatgatttca tttgctcttt cttacttttt 2880
gggtaatttt gctcgtttta aactgcttag catcttccgc acttaatagc ttctaaaccc 2940
ttgcatttag cccccagcag cccagcttat tacttttttt agttgccttg agaattttcc 3000
agttcttaat ttctgataag attcatgctt gcttttctca gtagattgat ctttagatta 3060
catgccccag tgcactatct caaattcctc accgtaatag ttgatttaaa cccccactgt 3120
aataaaaaat gctagcattg atcttattat gacagataat tttgttatgc agcattgcac 3180
taggtctgtc tatactgctc ctattaaaac tatcagcaac cagaaataca gagatttttc 3240
tgggaagttt gatgtgggac ttctgacagg agatgttagc atcaggccag aggcaacttg 3300
cttaattatg actactgaga tattgcgttc aatgctctac agaggcgcag acattatacg 3360
tgatattgaa tgggtaggct atcacttatg atttgttcac tgtgttttac tctgtgcctt 3420
caagtttcac ttttataatc ttgtaaacgg atcatgagtt gctgatatgt gtttaattgt 3480
acactcaggt aatctttgat gaagtgcatt atgtaaatga tgctgaaaga ggtgtagtct 3540
gggaggaggt cattataatg ctcccgaagc acattaacat tgttcttctt tcggcaacgg 3600
tactgattta gtgtaaacag cacttttact cactatgttc actatcaacc aaacattcat 3660
gtactggctg ttgaaacagt tgctcagtaa tagctaggca caatatgaca tactaagggc 3720
acccacaagg ccaacaacag tatagtaatc tgccctctat aatagcagta gcaattcacc 3780
ttatctacag acaggataaa agaaaaaaag ggcagaccca gtgccaaagt ctcccacatg 3840
agtgggacag tctgaggaag ggataaaccg atacaagcct cccccccata aatgtggtga 3900
gtctgttttg aacctgtgac ttggtgactt agtgagacaa ctctcaccac tgcaccaggc 3960
ctacccttct aatctacaga cacgataaaa taacacgtcc aataatgaat gatctatcta 4020
ttggcacaaa ctacaagaaa aaatctcgat ctgcgtgggt aagacaaccc ctgggtatca 4080
cattaagaag acctcacata ggccgagaaa aatcctgaaa ccttgctcca cccatacaca 4140
gcagcaccat agcccatatg ggaacgacca cgaccggggc taggccttag acccgtgctt 4200
tggcatgagc caaaaaccac agcctgaaat tcgctaccac agggagttga atttaggact 4260
tgtggagtgc tactcagacc acctaaccaa cttaggtaga ggccttttcg tcacaaggtg 4320
caagaaataa taatgcccac gggtaagaat gatagttcgt aggatggttt ctatagtggc 4380
atggcatgga aactagttag tggtgtctgg gttagggttg tcctaatgcc atttgcagtt 4440
gcttttgatc ttttgaaata gttggcacat aactctgatc ttaggagaat tttgtggttg 4500
tccaagtttt atagcatgca attatggtct tgtattgcta ttaccctgtt tcttgatatg 4560
catgcaataa agtgacatgt ccactgatgt taattgtgca acttttggct ggcagtattc 4620
atccacaaat agtacttcgt gaaaacaata tagttgaaaa ctagtcctct aaatatgatg 4680
ttatgtgata atctaatatc aaattaccat ttgaatatat tggcattgca ataataaaat 4740
attctttttg tatatttttt tatcgaactc tcaagagaat tgcatatcat ttcgttaaga 4800
gaaaagagag tacacaaaga agggcaagct tggtgcagtg gtgagaaagt ctcattgagc 4860
caccaggtca cagtttcgaa gcaacttctt tgcatttgtg agagaaaggc ttgcctcagt 4920
ttattccttc cctagacgtc actcatgggg gagcctctgg caccgggtct acctttttta 4980
gaagagtaca caaagggagg gcattcccct attggttcaa agaacaaaat gacacctgtt 5040
ctttttctac aaatatctaa agttcgaaaa cattgtattg tttcacttat tcattttttt 5100
gcagttgaac cctatttgtt tcttttcagg tcccaaatac tgttgaattt gctgactgga 5160
ttggtcggac aaagcagaag aaaattcgtg tcacatcgta agtgcactta gtataaattt 5220
taagctaatc aatcacaccc caggcccttg aactatattg tcagttggtt tagtcactag 5280
tcactacttc actaggctgg ttagagtcat ccaattagct cttttgttca tgctagtgag 5340
cggtatatgg aatctacctt gctagaaaag tactgcttat atcatgtgag tgccatttta 5400
caaaattata aatttcagtt aattattttc tatctcagga tatgagggtg gctgtagcca 5460
tcaaatacgc atttctagat tatgaagcat tcaactactc aattgtaaga ggcaaattat 5520
tggttggtct gttattaact gctggtagga tatgaatgca tataggcttc tgggcttgaa 5580
aaatcaatgt atttgcttgg attacaggat atgagaacct gacaagtatt ttgagtatgt 5640
agaatgtaga tacatcatac atgctgtcca aggacagctg ttgtcatttt ggacagctgt 5700
tgttccaagg acaactatat tctatctaat acaatttatt tctctgttct gtgattgtaa 5760
ttattcctcc cataacaaaa ggcaaagcga ttccatggta ttatgataaa ttagtttgta 5820
ttcagattat cagtgatgca gcctaacacc cacctttata gcaaatcaca tatactggat 5880
acttctagct tattcgtaat tgaactgtgc ttcttctcat tgctagcgtt gctataagtc 5940
catatgaaaa tcctgaatct catactttat gtgtaaaaaa tcaactagca atgccgttaa 6000
aataatactc caaagtagtg atacctcttt cctggcaatg ccgttaaaaa aaccagcagg 6060
ccaggattgg ccacgtcgcc gtctgcaaaa cgagctctcg gagccagtgc agcccaattc 6120
actctttatc tctgccccac taggtaaagc ggcagttttt ctgccacgct agtcacctcc 6180
tgtcaggctg tcacgtgacc agagcaggaa agctatggac gcgtgatcgg agggtaaacg 6240
ctgaggctga cctcggcgcc gagatccgtg acgccgaggt tgctgccatg caggcgccgt 6300
ctcagtgtgc ggatctgaga cctcgttgcc gagctgatgg tctattttct gaaatgaaat 6360
tgaaaagggt gtatttgtga aaaacttttg caaaaagggc taaaataaaa aaacgggact 6420
gttgctgccc aaaatgacaa gaagctgttc agcagcagct gctgcagctc actctcacag 6480
attactatgt attactgcaa agtagctcaa gcgtggaggt agatggtttt tcttgggggt 6540
ggtgggtgtt ggagaatgtg gtgattttac atcgttttgc atcttggtag ttattttaag 6600
aagcatagtg ttcgaactac acattagtta ggcagggggg ggggtttggc cgttggcggg 6660
tgttggtgaa tgtgggggtt ttacattgat ttgcatcttg gtggtagtta tccttcaaat 6720
ttaagatgcc aatcttgctt gattagacat aatggtcaca ccactttaaa tattagttaa 6780
aaatctgtac aaatctgaat ggagcaactg aaaggtctat actttaataa aacaaactca 6840
gctgaggggc aaaaattaac acactcagtt taaagggacc tgcttataca tatttgggaa 6900
gaggcatgga aaggccaaag ttgacagggg aagaggcagt aaaaggagac ttgaaaggat 6960
gggatacacc caaagatttt agccttgaat aagagtgcat ggaaaacagc tatccatgtg 7020
cctgatctct gacttgtggt ttgtgttggg tttcaactct gcctacccca acttgcttgg 7080
gactaaaaga ctttgttgtt gctgcttata catatatgga taatatatgg ggccagatca 7140
acaatactag aatttagggg gtttggttgc aggcttacca tttaagtgga taatagtttt 7200
gatttgcctt aatgcacttt tgaatatact tggatacatg gactataatt ttgatcacag 7260
tttggtcatc atgtgttcac caggaccaac aaaaggcctg ttccacttga gcattgcctg 7320
ttctactctg gagaagtgta caaaatatgt gagagggata tgtttcttgc tcaaggattt 7380
aaagaagcaa aagatgcttt caaaaagaaa aatttgaata agtttggagt gaaacctggt 7440
tcaaagtcag gaacccctgc agtacgtgct ggaactcaag gcaaaaatcc agatacatcc 7500
aacaagggga gagatcaaaa gtacccaaag caccgcaatt ccaattcagg agtagccaca 7560
gttcaacaga gctcctcagg gccaaagaga tttgaatctt tattttggat gccacttgtg 7620
aataaccttc tgaagaaatc ccttgtgcct gtatgtgaga taatagcttt tgtgatatct 7680
ccatcataca attataaatt ctgtcggttc tttacttttt catcatttac actgaatttg 7740
tttgatcctt aatttgaaat ctgaagccag tctcaatatg ttataaaatg acaggtagtt 7800
agtctcaaca ttttgggaat agacttgtct ctttttatca tgaccatgtc atttcacatt 7860
tgacattctt ttttgatcat ttagatggtc ctttaacagg tggtgatttt ttgtttctca 7920
aagaatcgct gtgataaatc ggcagatagt atgtttggca ctgatctcac cagtagttca 7980
gagaaaagtg aaatacgtgt cttctgtgac aaggcatttt cacgtcttaa aggatctgat 8040
aggaaccttc cacaggtgat cttgtgacac tgcaaaattt agtcctctag ccctcacccc 8100
gtaaacctat gcttctgtta atcagttcaa tgctttaaac tttgacctct ttgataggtt 8160
gtaggaatac aaagccttct gcgaagagga attggagtac accacgctgg gcttctccct 8220
attgtgaagg aagttgttga gatgctgttt tgccgtggtg taatcaaggt tatgctttga 8280
acgtctggta tatgtacggt atttaatcac atgatagatg ctgctttacc tagtactaag 8340
cttggcggaa gaatcgtatt gttgttttgt ttgccttaga ttgtaaatgc tgaccagtga 8400
ccactaactt agcccatcct ggccaaagtt attgcagtca tgtagactat aactgtagca 8460
acctttaccg tacacagttc tttaacttga atggacaatc caacagaaaa ttgatagtcc 8520
taataacatc gcactgctcc tgaaaagcta ttttttccaa tgctccagcg gcaaatatag 8580
catgttctgg tacatttgtc ttataattta caaaatggtg agcttctgac ttcttgaact 8640
cattgtaggt actgttttcc actgagacat ttgcaatggg tgtcaatgca ccggcaagaa 8700
cggtgagatt ctatttttta tttagggttt caatgctttg gcatcttgaa caaatcactc 8760
tagtatctac tatctaattc tatgttttgt ggcacctctt gcattctact tcctacatat 8820
taattttacc tgtgttcctg caaccatggg aacaaaattt atttcaaatt ttcctgtgga 8880
tgaaaccgtc tcttctacat tcattgtgtt ttcaaggaag ctgctacctg ggttaatcat 8940
ttgtatttag caatctagtt ttctcgaaca tgcagaagag ctgcatatca ttatatcaaa 9000
aagaaaaatg cgacaagaac tcaaacaccc acaagaaccg acacataccc cacactgctg 9060
gttcctagaa aaggcaatct atttttctat gttggcacta tgaattgcag gcgggtatgc 9120
tgtgggacca atttttatgt actagagcat ctccacgggt tttgtaaaac aactcccaat 9180
tttaatattt tagcaaaaag ggaaaaaagt gcactccaac agtttggtaa aagagctctt 9240
taaaaataaa aagatgccaa atatcctttc caacttttaa gtttctgcag ctgagaggaa 9300
ctccgtatcc gctccccgtt cggcattttt attgggagag attggagtaa atcggacaca 9360
tgcgttaatt gtggaaataa acggttcaag atgagaaagc gtaagagaca gaaactatta 9420
aaaatgatta attaataata gtttggggtt cccaatgcaa aatcatttag gaagctatta 9480
ttggaaactg ttggagaagg acaaaattta agtgtaggaa ggagagattg tgtgctgctg 9540
tgctcatggc ctaaccatcc ttgtaatttg ggctgacctc gtggtcaccc ctttttattt 9600
cttcttaatg caatgacttg cagctctcct gcggtgttct aaaaaaatag atgggattgg 9660
atgattgatt gtattgcatt gagcatggtt taaaaggcgg ctaggcggaa ctaggcgccc 9720
agccaccgcc tgaccgccta gaggcgactt aggcgggcgc ctaggcgacg ccttagtagc 9780
tgttacaaac agctgttaca aaataccaag caaccaaaca gctgttacag ctcataaact 9840
agaaatcatc acaaattgac aatagcacaa tagtggatct gaaatagcca caaagtagtt 9900
tctaaaggaa caatagcaag tcacaaaatt taaaacagca caataccaaa tctgaaatag 9960
ctacatagat agtttgtaat ggcataatta atagtaacta gctgcagtta gtaatgcagc 10020
aaatatgcta atgcaatcta gcaatagcta ctctccccgt ctcccgtcgc tcaaaaatca 10080
tcatcaaact ctcctgggat attgggtgcc tccccttctt caccatcatt gccaccatta 10140
gattcatctt cacaatctgt gatttctgca tcgtcatgtg gaacatcttc ttcatcttca 10200
tcttcctctt cagcctgcag caacataatt tcttcttgaa tacatattat gggcccttct 10260
tggtaagttt cggccacgaa gtgcttgtga tgctccaatg gcattatcca caaggtccca 10320
tgtaaggtca cactcacacc cacgcccacc ttcagggact acatgcaaag aatcagccca 10380
ctcattgtcc cagttgaagt cctcatgaac caatggatca aagtttttcc ccttcttctg 10440
gcgtagtttt tggaacctag ctttcatctt tctgttgtag gaaatgaaga caatagaatt 10500
caacctctta tgcaacaatc ggtttctttt ctttgtatgg atctacaaaa taagaaaaga 10560
gaaaacactt ggtcatttaa tcctgaaata ttggatacaa aagtagccaa gtaggtggat 10620
gaggacttga ggaggcacac ataataactt acaaattcaa aggtactcca tatgcccctg 10680
ccaaatgttg ctttaacctc tttatccctc cactaacaac ctgaccacat agggtgcatt 10740
ccaccttatc tttattttga agatctggcc aaaatccata cttccaccct ggatcagtag 10800
acttccgtgg cttccgggta ggatcgctct tcgggtcgta ctcaccagcc acagaagatg 10860
gagcctcatt tcgagaagac attatgttgt cggcttgtcg ctagtcgatg cagtcgctgc 10920
acagtctaaa aacaggggaa gcaggggatg agaaaacagg ggaagcaggg gaggagggga 10980
tgagaaacgc ggggagtagg acttaccagc aggcagcagc tagcacagca gtctcgagcg 11040
tgcgcggcca gggagcagca gccgtgccca gcagcagccg cgcgcaggga gccgcgcgca 11100
gggagcaaag ggagccgcgc gcagggagag agcgcgcaca ggggattgag cgcgcgcagg 11160
ggagagtagc cgcgcgccca gagcagcagc cgcgagcgcg cgcagggaga gggagagcgc 11220
gcgagagaga ccgcgcgcag ggagatttgc cgcgcgcaga gaaatttgcc gcacgcaggg 11280
cgctgaaatt tgccgcactg aggggagaga gcgcgcgcac agggaagccc aaaacgcgcc 11340
taaagcccag tgcaaaccct aacccaatgc aaaccctagg ctaaggcgtc gcccagaggg 11400
agaaaggcgt cgccgagacg cctaccgcgc ctaggcagac gccatactca atgtcacctg 11460
ggcggcgcgg acgcctagcc aaattcgtcg cctggatgcc taggcgtcgc ctaggcgacg 11520
ccttttaaac aatggcattg agccctcggg ccggtatata taggagtaca agacttggga 11580
ggcaagagtc ctccccggat acatatggca gtcctaggta cacacgattc ctagagatat 11640
acgatatcca atactaccaa ttgtactcta tcattaagat tgctatttct actgttaact 11700
tggcaggtct attagtttag caagtagatt ataccaaact cctggagatg ctcttatctt 11760
accaacatat tctgttgttt gctgttcttg cacttgatgc attgcccagt gtttctttgt 11820
tggaaagata aatcatttta acatagatgc ttgagatgac agatgcaggg gcgacgccag 11880
ggagggggca gaggggggca atgtcccccc cccccccaaa aaaaaaaaac ctggctcctg 11940
gcttcgcccc tggacagatg catgccttaa tttccttgtt tctttttgca catttggact 12000
gagataactg taactgtgca taggtcgcac ttgctttttc catgcccttt taaactcagg 12060
attatgaagc tagctctgag cctatctcag ttttgaccca acaggttgtg tttgattctt 12120
taagaaagtt tgatggaaaa gaacaccgga aattgcttcc aggggaatat atacaaatgg 12180
ctgggcgagc tggtcggaga ggacttgata acattggtac tgtgatcatt atgtgtcgtg 12240
atgaaattcc tgaagaaagc gatttgaaaa atttgatcgt tggaaaacca actcgtttgg 12300
aatctcaatt tcgattaaca tacaccatga tactacatct tctgcgtgtg gaggaactga 12360
aggtatacca ttatgtttcc ctggttagat atgtttatat tttcacttct caacttcata 12420
ttttaatgtg gaactgtacc tgggtctgcc tacacatttg aaaccttgga gaacgaattt 12480
ttttgacaag acatttatgt tgctcctgca gcagtgctca tatcatcctc tgttctatta 12540
aaaatacttt gtctgtgcgt gtgcatttct gcaataatga catcccctat ttattcagca 12600
tgaattatag ttgtgtaata atatttatag caatactagt atactactac tgtccttgta 12660
cagttttgct ctatatgata acccattgtg ctcttgggat gccacatggt agctgagcac 12720
caggtgaagc cttatcagac tactgtgcca ctaccctcaa ggcattaact cggctggtag 12780
gggaaagacc gctcccactg tattatatta agaagaagct caattggagc cctgaccgag 12840
aaatgtcacg aaagttggtc ccccctgcaa catgagggtc tgccccctat gggctagatc 12900
tttactcgtg ctttgagcct cccagcccct acacgaggat cttagttcca aggctgtcat 12960
tgattgacta tctgctcaat actgtacatt ccactgtttt tatgtttact gttataatta 13020
tgggtgacaa tgtgctctca attttacact ataaaattta aggatccaat cagattagga 13080
tcgagctcta ttcctgttca tttttgaact aaaattattt aagggatcaa acaaattatg 13140
aagaaatatt tggatcgcga tccattacca cccctagtta taattggcac tgatctttta 13200
tgggcaaagg atgaaaacac aatcaatttt actttcagtt gaaatgtact cattacacaa 13260
cattgttaat taaatttaga tcaaaataag aacttgtcac tctttagtag attagcataa 13320
tacaagctga ctattctaga tgggcatggt cacacctttt tatgcataag taagttttat 13380
gagcatttgc actccaatag ttagcttttg gagatcaagt tttcaaattc acaatctatc 13440
agcattttta aagccacaaa gtggaataag cttttccaaa aatcgaagct caaagaaaac 13500
aggcccttag tcatgctcat gcataagtac tttcatctca agtgcacaat gtgtcagttg 13560
taactagata ctttacctaa cttccccatt tttatttctg aaaccgcttg aagagtacat 13620
tgtgtacacc cttaatcatg catagggaaa gtaatatact gtaacatttt ttttcatagg 13680
tcgaggacat gctcaagaga agttttgctg aattccacgc acaaaagaat ttgcctgaga 13740
aggaaaagct tcttctgcaa atgcttcgtc aacctacaag gacaatagag tgagcacaaa 13800
cactaactga tttttacctg attgtttcaa tgggtaccaa cacttgcata gaatataaaa 13860
ctcaaagaag taaagtttca tggaactatc actgctgctt tagcacaata aagtgacaag 13920
caaaaatcaa aatactgata atggaaaaca ccatttcttc ctagaatctg acctttgtaa 13980
acattaacac aagtaaacta tctagtaatc ttgtagtatt attttatagc gcagtttagg 14040
agtagtcatg attgtttggt tacaagattg cagaaatgtg gatactgaac ctagataggc 14100
ttagttagaa ctgtgcattc attgcacatg tgaagactag aaatgtgggc atttttccgt 14160
gcataaagtt gcaacaaagt ttatttcata atttctttgt cgtacatttg tcaatgtttt 14220
agggcctgtt tggatgcata ggactaattg ctactgggct agtgtttagc cttagcccat 14280
ccaaacaggg ggctaatcgg tgggctaatt ttttcgccaa gcgtccaact aattgttagt 14340
caagtagctg gccaacccta actaatttgc gctaattttt atccctagct aatccaaaca 14400
ggcccttgca agcattcatt gtacatttca agtactgaca aagtttagta tccaatctct 14460
atatgcacta atcttagttt ttttaatctc tttgccttgt attatgtatt cttcgattat 14520
caggtgcata aaaggagagc cttctattga ggaatactac gagatgactt tagatgctga 14580
ggcacacagg gaatacataa cagaagcaat tatgcagctg cctaattctc aacagtttct 14640
tacgcctggg agattggtgg ttgttaaatc tgattctgta tgtattcatc atatttggtt 14700
ctctttacac acgtctgcag tttttttgcg attattttta tttatgttct attactctac 14760
taaccaccat tcaactgcta taaaactcac taaaaactgt cttccacttt gggtctttat 14820
tagcaagcat acaaaagtag tgcacacaga atatgggaaa ttagaacaaa caaaaacaat 14880
ttatgttgga aaaggaccta ttgataaaca agcaccgaat atctgagacc aagctccaaa 14940
gagaattact aaaaatcatg tgagttccat gtacaccatg atattagctt ggtcttctcg 15000
agctttaaat cagcttgatc ttatcatatt cctggttcaa gcggaactaa ctccataaga 15060
tctcaacttg tgcttactgc tttagagctt ctttctgata actaaaattg accaggaaat 15120
ttaagtaagc tactttagga agttccatta tcttgttttg caggccacca ttatattatt 15180
ggcaccataa ccatatgtac aaaagcatga ctgttttgaa attatgatgc tctactactg 15240
tctaagggtt actgtgaatg tgcgatagtt acatttttcc acatttaaac gctgtgctat 15300
ttgaacatat tggcaggatg atgatcactt gcttggtgtt atactgaaaa atccatctgc 15360
attgctaaag aaatatgttg ttctggtatt gactggtgat tgcagttcat ctgcactagc 15420
ccctgagttc aataaaaatg aaaagggtcc tgtggatttt caaggaggac aatttattgt 15480
cctgaaagga aaacgtggca tggacgatga atatttctct tctgttagtt cacgaaaagc 15540
ttcaggtgta atcaatatca atctaccata caagggggat gcatctggaa tgggctttga 15600
agtaagagca attgagaata aagaaatcat tagtatatgc agcagcaaaa taaagattga 15660
tcaagtcaga cttcttgagg agcctaacaa aactgcatac tctagaactg tccaacagct 15720
tataaaggag caaccagatg gaaccaagta tcctcctgct ttagatgcaa taaaaggtac 15780
aaattttctg catgtcttga ctatcttgtg caattatatg ttctgtgtct aggaaattct 15840
tagtttatag cctgtgaagt tcactaactt tctgacaaag tatatactgc cctagttaga 15900
gggaaggatg gtagtaatat aatcatatat gttttattta cttctttttt tttggactct 15960
gatcattgtt gtgcactggt gcgtcattta ggccctactc ttgacttctc tagttgattc 16020
atatacttta tatatagctg tttaatgtgt ccacacgatg caatgcagat ctaaaaatga 16080
aagacatgta tcttgttgaa agttaccgtg catatcacat actactgcaa aaaatgtctg 16140
aaaacaagtg ccatggttgt ataaaactga aggagcatat atcattgatg agggagcaaa 16200
agatgtacaa ggatcagttg aatgaattga aattccaaat gtccgacgag gcacttcaac 16260
aaatgccaga gtttcaaggc agagtaagat tccttcatgc acagttttcc tcgtcttgtg 16320
tcctattgtg tgcctgaaga gaaaaaaaag ttaatgtatt atggtcattg tctctgcaac 16380
atggaaaaat aataacaata ttgtcatttc tttatttttt ttgattgagt atacatggga 16440
gatctttctg gttccagctc tatcgcagta ctgtaccagg agaacagttt ggacatggat 16500
tctgattctg aatattgggc ttaatatgtt aatgttgtat ccacgcaatc catgaaagat 16560
caggaagctg cacatttgta ttgttgttgt taattcattt tctttattta tttaacatgg 16620
aatggttata gggctattat cagcattttc aagactgaaa ttttattccg tgaaccacat 16680
ctgacttcat tcctgtaatt tgaagtactt tgctaacacc ttaatctttt gcagattgat 16740
gtactaaagg taatccacta cattgattct gatctagttg tgcaacttaa gggtcgggta 16800
gcatgtgaaa tgaactccgg tgaggagtta atatcaacag aatgtctgtt tgaaaatcaa 16860
ttggatgacc tagaacccga agaagctgtg gctattatgt ctgcattcgt cttccaacaa 16920
cgcaatgctt cagaaccatc tcttactcca aaactggctg aagcgaagaa gaggttagac 16980
aaattttttt ttgctcccat aatttgactc gtgctatggt tcttttgata acctcaatta 17040
tattttctga gaagccacgt ctcaaacacg ttttgctcgt gtgtttttct atatgtatta 17100
ttaggctcta tgatacagcc ataaaattag ggaagctcca atccgagttc aaggtgcctg 17160
tggaccctga agagtatgca cgtgataatc tcaagtttgg ccttgttgag gtcgtctacg 17220
agtgggcaaa ggtatactcg tcttcaggag aattcgtctc caagatatat gcaggctgca 17280
ggattataac gctgtcactt gttatattat atcaatgcag gggacgcctt tcgcagacat 17340
atgcgagctg actgatgtat ccgaagggat cattgtaaga acaatcgtcc gtctggacga 17400
aacatgtagg gaattcagga atgcagcttc catcatgggg aactctgcgc tgttcaagaa 17460
gatggaggtc gcgtctaacg ctattaagcg tgacattgtg tttgcagcaa gtttgtatgt 17520
cacaggaatc tgatgcatgt aacctcgtag tctcccttgc ttcttttgtt agagaaatcg 17580
ttgtgctggt ggaatgctac taacctaacc ttagctagaa caattgttgt ggtatttttt 17640
tttccagttc tggattattg cttttgctag ttttgcgaag ttttctgaag cggcgaccag 17700
cagagtaaag gaaaatcgaa agcgggtggg attctcgttt ttttttca 17748
<210> 2
<211> 4239
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atgtccatgg acggccctgc cacctcgccg gcaagcgagg tgccgttccg catcagcttc 60
tccggccaca gcggccacct ccgcctcgac cctaccccgc acacgcccag ccccattccg 120
gacttcgtcc tgccgccggc atacccggcc gagagcccga gcagcgtgaa ggagtacctc 180
gagaggaact acctcgaccc cgagctgcac ctccccaccg cggccgatag cgggagggtg 240
tgggatgtcg actggtttgc cctggccagg ccgccgctgg agccctccgc cccccgcacc 300
atgctcgcgc ccgtctgggt gccgcctttc cggcgcgggc aggagaagtt gcaatccgcg 360
gcagagtcgc gagtgtggga ccctgagtcc gtgcaaatgg agatggtcga cgtgttcgat 420
tcggggaccg gggggatagc gccccggatg cctggtccgg cgaaggactt cgtcaggggg 480
agcatcaaca acagaccttt tcgtccaggc ggtctgcagg atgacgccgc tgaggcggct 540
gcgctggaaa aggcgttccc agagggtgca aggactggtg attgggtgcg tgagctcatg 600
agcggtggcc cggcgcaggt tgcgcctcca gggttccgta agggattgga gctgggccag 660
ttgaaggggt atgaaagcca ctggaagtgt ttccgggatg gagaacttgt agaggagcaa 720
cctgcatcat catcgaatga cacaatggag aagtactctg tgcagtttga tgatcttttc 780
aagatagcgt gggaggaaga tactgccaac aagttgttga aggacggtgt tgttcaacaa 840
tctgctgaag gtgaaggaat caatgaaatt ggcgaacaaa aagttgatgc attgcaggat 900
gagttcgaga gtataacaac gctagatgac gagaaacagg aagttgatgt cataagaaat 960
gttcctgaaa ctcaaacaga cttggatcag atgttatctt ctgaagtaca ggatacaggc 1020
agggaaccag gtgcatcagg tgataagaag ccaacacaag atggcatggt ttgggcactt 1080
gttggtgggg acgaggacat agtgactaac ttctccaaac tcgttccaga tatggcaatc 1140
gagtttccat ttgaattgga taagttccag aaggaggcta tatattatct cgagaagggt 1200
gaatcagtct ttgttgcagc ccatacttca gctggaaaga cggttgttgc tgagtatgca 1260
ttcgcattag caacgaaaca ttgcactagg tctgtctata ctgctcctat taaaactatc 1320
agcaaccaga aatacagaga tttttctggg aagtttgatg tgggacttct gacaggagat 1380
gttagcatca ggccagaggc aacttgctta attatgacta ctgagatatt gcgttcaatg 1440
ctctacagag gcgcagacat tatacgtgat attgaatggg taatctttga tgaagtgcat 1500
tatgtaaatg atgctgaaag aggtgtagtc tgggaggagg tcattataat gctcccgaag 1560
cacattaaca ttgttcttct ttcggcaacg gtcccaaata ctgttgaatt tgctgactgg 1620
attggtcgga caaagcagaa gaaaattcgt gtcacatctg agcggtatat ggaatctacc 1680
ttgctagaaa agtactgctt atatcatttt ggtcatcatg tgttcaccag gaccaacaaa 1740
aggcctgttc cacttgagca ttgcctgttc tactctggag aagtgtacaa aatatgtgag 1800
agggatatgt ttcttgctca aggatttaaa gaagcaaaag atgctttcaa aaagaaaaat 1860
ttgaataagt ttggagtgaa acctggttca aagtcaggaa cccctgcagt acgtgctgga 1920
actcaaggca aaaatccaga tacatccaac aaggggagag atcaaaagta cccaaagcac 1980
cgcaattcca attcaggagt agccacagtt caacagagct cctcagggcc aaagagattt 2040
gaatctttat tttggatgcc acttgtgaat aaccttctga agaaatccct tgtgcctgtg 2100
gtgatttttt gtttctcaaa gaatcgctgt gataaatcgg cagatagtat gtttggcact 2160
gatctcacca gtagttcaga gaaaagtgaa atacgtgtct tctgtgacaa ggcattttca 2220
cgtcttaaag gatctgatag gaaccttcca caggttgtag gaatacaaag ccttctgcga 2280
agaggaattg gagtacacca cgctgggctt ctccctattg tgaaggaagt tgttgagatg 2340
ctgttttgcc gtggtgtaat caaggtactg ttttccactg agacatttgc aatgggtgtc 2400
aatgcaccgg caagaacgga ttatgaagct agctctgagc ctatctcagt tttgacccaa 2460
caggttgtgt ttgattcttt aagaaagttt gatggaaaag aacaccggaa attgcttcca 2520
ggggaatata tacaaatggc tgggcgagct ggtcggagag gacttgataa cattggtact 2580
gtgatcatta tgtgtcgtga tgaaattcct gaagaaagcg atttgaaaaa tttgatcgtt 2640
ggaaaaccaa ctcgtttgga atctcaattt cgattaacat acaccatgat actacatctt 2700
ctgcgtgtgg aggaactgaa ggtcgaggac atgctcaaga gaagttttgc tgaattccac 2760
gcacaaaaga atttgcctga gaaggaaaag cttcttctgc aaatgcttcg tcaacctaca 2820
aggacaatag agtgcataaa aggagagcct tctattgagg aatactacga gatgacttta 2880
gatgctgagg cacacaggga atacataaca gaagcaatta tgcagctgcc taattctcaa 2940
cagtttctta cgcctgggag attggtggtt gttaaatctg attctgatga tgatcacttg 3000
cttggtgtta tactgaaaaa tccatctgca ttgctaaaga aatatgttgt tctggtattg 3060
actggtgatt gcagttcatc tgcactagcc cctgagttca ataaaaatga aaagggtcct 3120
gtggattttc aaggaggaca atttattgtc ctgaaaggaa aacgtggcat ggacgatgaa 3180
tatttctctt ctgttagttc acgaaaagct tcaggtgtaa tcaatatcaa tctaccatac 3240
aagggggatg catctggaat gggctttgaa gtaagagcaa ttgagaataa agaaatcatt 3300
agtatatgca gcagcaaaat aaagattgat caagtcagac ttcttgagga gcctaacaaa 3360
actgcatact ctagaactgt ccaacagctt ataaaggagc aaccagatgg aaccaagtat 3420
cctcctgctt tagatgcaat aaaagatcta aaaatgaaag acatgtatct tgttgaaagt 3480
taccgtgcat atcacatact actgcaaaaa atgtctgaaa acaagtgcca tggttgtata 3540
aaactgaagg agcatatatc attgatgagg gagcaaaaga tgtacaagga tcagttgaat 3600
gaattgaaat tccaaatgtc cgacgaggca cttcaacaaa tgccagagtt tcaaggcaga 3660
attgatgtac taaaggtaat ccactacatt gattctgatc tagttgtgca acttaagggt 3720
cgggtagcat gtgaaatgaa ctccggtgag gagttaatat caacagaatg tctgtttgaa 3780
aatcaattgg atgacctaga acccgaagaa gctgtggcta ttatgtctgc attcgtcttc 3840
caacaacgca atgcttcaga accatctctt actccaaaac tggctgaagc gaagaagagg 3900
ctctatgata cagccataaa attagggaag ctccaatccg agttcaaggt gcctgtggac 3960
cctgaagagt atgcacgtga taatctcaag tttggccttg ttgaggtcgt ctacgagtgg 4020
gcaaagggga cgcctttcgc agacatatgc gagctgactg atgtatccga agggatcatt 4080
gtaagaacaa tcgtccgtct ggacgaaaca tgtagggaat tcaggaatgc agcttccatc 4140
atggggaact ctgcgctgtt caagaagatg gaggtcgcgt ctaacgctat taagcgtgac 4200
attgtgtttg cagcaagttt gtatgtcaca ggaatctga 4239
<210> 3
<211> 450
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 3
Met Ser Met Asp Gly Pro Ala Thr Ser Pro Ala Ser Glu Val Pro Phe
1 5 10 15
Arg Ile Ser Phe Ser Gly His Ser Gly His Leu Arg Leu Asp Pro Thr
20 25 30
Pro His Thr Pro Ser Pro Ile Pro Asp Phe Val Leu Pro Pro Ala Tyr
35 40 45
Pro Ala Glu Ser Pro Ser Ser Val Lys Glu Tyr Leu Glu Arg Asn Tyr
50 55 60
Leu Asp Pro Glu Leu His Leu Pro Thr Ala Ala Asp Ser Gly Arg Val
65 70 75 80
Trp Asp Val Asp Trp Phe Ala Leu Ala Arg Pro Pro Leu Glu Pro Ser
85 90 95
Ala Pro Arg Thr Met Leu Ala Pro Val Trp Val Pro Pro Phe Arg Arg
100 105 110
Gly Gln Glu Lys Leu Gln Ser Ala Ala Glu Ser Arg Val Trp Asp Pro
115 120 125
Glu Ser Val Gln Met Glu Met Val Asp Val Phe Asp Ser Gly Thr Gly
130 135 140
Gly Ile Ala Pro Arg Met Pro Gly Pro Ala Lys Asp Phe Val Arg Gly
145 150 155 160
Ser Ile Asn Asn Arg Pro Phe Arg Pro Gly Gly Leu Gln Asp Asp Ala
165 170 175
Ala Glu Ala Ala Ala Leu Glu Lys Ala Phe Pro Glu Gly Ala Arg Thr
180 185 190
Gly Asp Trp Val Arg Glu Leu Met Ser Gly Gly Pro Ala Gln Val Ala
195 200 205
Pro Pro Gly Phe Arg Lys Gly Leu Glu Leu Gly Gln Leu Lys Gly Tyr
210 215 220
Glu Ser His Trp Lys Cys Phe Arg Asp Gly Glu Leu Val Glu Glu Gln
225 230 235 240
Pro Ala Ser Ser Ser Asn Asp Thr Met Glu Lys Tyr Ser Val Gln Phe
245 250 255
Asp Asp Leu Phe Lys Ile Ala Trp Glu Glu Asp Thr Ala Asn Lys Leu
260 265 270
Leu Lys Asp Gly Val Val Gln Gln Ser Ala Glu Gly Glu Gly Ile Asn
275 280 285
Glu Ile Gly Glu Gln Lys Val Asp Ala Leu Gln Asp Glu Phe Glu Ser
290 295 300
Ile Thr Thr Leu Asp Asp Glu Lys Gln Glu Val Asp Val Ile Arg Asn
305 310 315 320
Val Pro Glu Thr Gln Thr Asp Leu Asp Gln Met Leu Ser Ser Glu Val
325 330 335
Gln Asp Thr Gly Arg Glu Pro Gly Ala Ser Gly Asp Lys Lys Pro Thr
340 345 350
Gln Asp Gly Met Val Trp Ala Leu Val Gly Gly Asp Glu Asp Ile Val
355 360 365
Thr Asn Phe Ser Lys Leu Val Pro Asp Met Ala Ile Glu Phe Pro Phe
370 375 380
Glu Leu Asp Lys Phe Gln Lys Glu Ala Ile Tyr Tyr Leu Glu Lys Gly
385 390 395 400
Glu Ser Val Phe Val Ala Ala His Thr Ser Ala Gly Lys Thr Val Val
405 410 415
Ala Glu Tyr Ala Phe Ala Leu Ala Thr Lys His Cys Thr Arg Ser Val
420 425 430
Tyr Thr Ala Pro Ile Lys Thr Ile Ser Asn Gln Lys Tyr Arg Asp Phe
435 440 445
Ser Gly
450

Claims (8)

1. A gene encoding a DExD/H-box RNA helicase protein, wherein premature termination of the coding cassette results in defects in both seed development (below normal grain weight) and plant establishment (leaf albino, dwarfness, seedling lethality), wherein the DNA sequence of the gene ZmRH4 is the following DNA sequence of 1) or 2):
1) a DNA sequence shown as SEQ ID NO. 1;
2) the cDNA sequence shown in SEQ ID NO. 2.
2. Use of the protein encoded by the novel gene ZmRH4 in the use according to claim 1 for improving corn, characterized in that: inhibiting the expression of the gene ZmRH4 so as to make the function of the protein coded by the gene lost, wherein the protein is composed of the amino acid sequence shown as SEQ ID NO. 3.
3. The use according to claim 1, wherein the inhibition of the expression of the gene ZmRH4 lays a foundation for inducing the structural change of corn embryo and endosperm to regulate the function of corn kernel development, and provides a reference for corn yield and kernel type improvement, and the gene is used for production of high-quality corn breeding and the like.
4. A functional marker ZmRH4-1 of a maize granule mutant ZmRH4, which is characterized in that the functional marker includes but is not limited to a first primer ZmRH4-1F and a second primer ZmRH4-1R,
ZmRH4-1F:ATGTCCATGGACGGCCCTGC,
ZmRH4-1R:GGGAGACTACGAGGTTACATGCATCA。
5. a functional marker Zmrh4-2 of a maize granule mutant Zmrh4(ems4-668a4), wherein the functional marker includes but is not limited to a first primer Zmrh4-2-F and a second primer Zmrh 4-2-R:
Zmrh4-2-F:TCCCTTGTGCCTGTATGTGAG,
Zmrh4-2-R:ACTGTGTACGGTAAAGGTTGC。
6. a functional marker ZmRH4-3 of a maize granule mutant ZmRH4(ems4-66898), wherein the functional marker includes but is not limited to a first primer Zmrh4-3-F and a second primer Zmrh 4-3-R:
Zmrh4-3-F:ACTGTGCATAGGTCGCACT,
Zmrh4-3-R:AGACCCAGGTACAGTTCCAC。
7. the molecular marker of claim 5 and 6, which is designed according to the mutant site of the mutant gene ZmRH4 of a maize granule mutant ZmRH4, is a functional molecular marker, and the marker sequencing detects that the heterozygous site represents the existence of the mutant gene ZmRH 4.
8. The molecular markers of claims 5 and 6, which are also wild-type gene ZmRH4, can be detected to be positive according to the difference with the sequencing result of the mutant, and represent the existence of wild-type gene ZmRH 4.
CN202011278574.7A 2020-11-16 2020-11-16 Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development Pending CN113151323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011278574.7A CN113151323A (en) 2020-11-16 2020-11-16 Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011278574.7A CN113151323A (en) 2020-11-16 2020-11-16 Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development

Publications (1)

Publication Number Publication Date
CN113151323A true CN113151323A (en) 2021-07-23

Family

ID=76882348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011278574.7A Pending CN113151323A (en) 2020-11-16 2020-11-16 Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development

Country Status (1)

Country Link
CN (1) CN113151323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015701A (en) * 2021-11-23 2022-02-08 四川农业大学 Molecular marker for detecting barley grain shrinkage character and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WARE,D.: "GenBank:AQK68648", 《NCBI》 *
YUELIN LIU等: "Function of Plant DExD/H-Box RNA Helicases Associated with Ribosomal RNA Biogenesis", 《FRONT PLANT SCI.》 *
张亚楠 等: "DExD_H-box类RNA解旋酶的结构与功能", 《生命的化学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015701A (en) * 2021-11-23 2022-02-08 四川农业大学 Molecular marker for detecting barley grain shrinkage character and application thereof
CN114015701B (en) * 2021-11-23 2022-07-19 四川农业大学 Molecular marker for detecting barley grain shrinkage character and application thereof

Similar Documents

Publication Publication Date Title
Chen et al. EGY1 encodes a membrane‐associated and ATP‐independent metalloprotease that is required for chloroplast development
US8637735B2 (en) Method for improving stress resistance in plants and materials therefor
Lehman et al. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl
US7220587B2 (en) Ethylene insensitive plants
Li et al. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice
CN111778265B (en) Mutant gene, mutant, expression vector and application of zearalenone oxidase
US20070094744A1 (en) A novel stay-green gene and method for preparing stay-green transgenic plants
CN108642065B (en) Rice endosperm aleurone related gene OsSecY2 and encoding protein and application thereof
CN108864266B (en) Protein SSH1 related to rice graininess and grain type as well as encoding gene and application thereof
US20180010143A1 (en) New rice high temperature resistance gene and use in crop breeding resistance to high temperature thereof
CN107475266B (en) Rice endosperm flour quality related gene OscyMDH and encoding protein and application thereof
CN108570474A (en) Rice flower development gene EH1 and its application
CN113151323A (en) Clone, function research and marker excavation of gene ZmRH4 for controlling corn kernel development
CN109797158B (en) Application of gene OsNTL3 in improvement of rice high-temperature resistance and obtained rice high-temperature resistance gene
EP1641921B1 (en) Nod-factor perception
CN114836441B (en) ZmRAP2.7 gene related to corn seed storability and functional marker and application thereof
EP2029753B1 (en) Methods for obtaining plants with increased tolerance to water deficit
CN111826391A (en) Application of NHX2-GCD1 double genes or protein thereof
Xu et al. PWL1, a G‐type lectin receptor‐like kinase, positively regulates leaf senescence and heat tolerance but negatively regulates resistance to Xanthomonas oryzae in rice
CN111218457B (en) Rice MIT2 gene and encoding protein and application thereof
CN111153980B (en) Plant grain type related protein OsSDSG and coding gene and application thereof
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
CN111533807A (en) Application of AET1-RACK1A-eIF3h complex in plant environmental temperature adaptability
CN110241130B (en) GSN1 gene for controlling grain number and grain weight of plants, encoded protein and application thereof
CN112813097A (en) Method for regulating and controlling salt tolerance of rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210723