CN113145060A - 一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用 - Google Patents

一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN113145060A
CN113145060A CN202110366300.1A CN202110366300A CN113145060A CN 113145060 A CN113145060 A CN 113145060A CN 202110366300 A CN202110366300 A CN 202110366300A CN 113145060 A CN113145060 A CN 113145060A
Authority
CN
China
Prior art keywords
polymer
heavy metal
solution
phosphate
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110366300.1A
Other languages
English (en)
Other versions
CN113145060B (zh
Inventor
凌岚
傅浩洋
盛杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202110366300.1A priority Critical patent/CN113145060B/zh
Publication of CN113145060A publication Critical patent/CN113145060A/zh
Application granted granted Critical
Publication of CN113145060B publication Critical patent/CN113145060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/325Preparation by double decomposition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4856Proteins, DNA
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用,该方法包括以下步骤:(1)磷酸钙的合成:将钙盐溶液和磷酸盐溶液在缓冲液中混合,得到混合液,以形成PILP过程中的磷酸钙;(2)将聚合物和胶原蛋白加入到混合液中,并调节混合液pH=6.0‑8.0;(3)产物矿化:将混合液在生理条件下矿化,得到羟基磷灰石,即重金属高效稳定固定纳米材料,该复合材料应用于去除水体中重金属。与现有技术相比,本发明具有能通过限域效应实现污染物的高效吸附,又可在结构有序化过程中,将吸附于PILP相表面的重金属高效“封装”,有效降低二次污染风险等优点。

Description

一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法 和应用
技术领域
本发明涉及环境污染治理领域,具体涉及一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用。
背景技术
随着工业发展和城市化进程的加快,大量污染物排入环境,造成地表水体污染,其中重金属污染尤为严重。重金属具有高毒性、难降解、易累积等性质,进入环境易通过食物链在人体内累积,危害人体健康。因此,重金属废水高效稳定处理可将潜在的生态风险降到最低。
目前,处理重金属污染物的主要方法有电动力学修复、化学沉淀法、生物法、吸附法等。其中,吸附法因具备操作廉价、简单、高效等特点是目前研究较多且较实用的方法。生物炭、膨润土、沸石等吸附材料也被用于重金属的去除,但在pH值、共存离子等溶液和界面物理化学条件变化的情况下,吸附的重金属容易脱附,存在二次污染的风险是重金属吸附去除的难点。此外,如何从基础材料物理和化学角度,基于材料自身的物理化学特性,利用材料合成过程调控,开发高效稳定固化重金属的方法尤为重要。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能通过限域效应实现污染物的高效吸附,又可在结构有序化过程中,将吸附于PILP 相表面的重金属高效“封装”,有效降低二次污染风险的聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用。
本发明的目的可以通过以下技术方案来实现:
发明人了解到,在碳酸钙结晶的系列研究中观察到了“类液态”中间相的存在,并提出了聚合物诱导的液体前驱体(PILP)过程。研究发现在碳酸钙形成过程中体系添加带电聚合物如聚天冬氨酸等可螯合和浓缩溶液中的Ca2+,稳定非平衡中间相,形成PILP相。PILP相是由互有界面30-50nm的液体颗粒聚集体组成,且聚集体内又包含了大量尺寸约为2nm的团簇。此外,PILP相的水化程度高且具有流化性,其在毛细作用下进入胶原纤维的缝隙和沟槽中,经固化后可得到沿着胶原纤维长轴排列的碳酸钙。
从污染物治理的角度出发,基于PILP过程及其诱导生成的材料具有弱结晶、大比表面积、高反应活性等特性,具有成为高效稳定固定重金属的可控过程并精准控制合成一类理想吸附剂的潜力。同样重要的是,基于生成的PILP 相自发有序的倾向性,会将污染物带入自发形成的高结晶度物相中。利用这个特殊性质和过程,本发明首次提出利用PILP过程,策略性地实现高效固定污染物。
质言之,本发明受生物进化过程中优化环境适应性的功能性策略启发,基于材料合成中的本征“类液态”非平衡中间相和后续自发有序的过程发明充分利用材料自身生长过程高效稳定污染物,也为基于生物矿化过程制备吸附材料提供了新的方向,具体方案如下:
一种聚合物诱导,利用生物矿化过程中的PILP过程制备高比表面、孔隙率的重金属高效稳定固定纳米材料的制备方法,该方法包括以下步骤:
(1)磷酸钙的合成:将钙盐溶液和磷酸盐溶液在缓冲液中混合,得到混合液,以形成PILP过程中的磷酸钙;
(2)将聚合物和胶原蛋白加入到混合液中,并调节混合液pH=6.0-8.0;
(3)产物矿化:将混合液在生理条件下矿化,得到羟基磷灰石,即重金属高效稳定固定纳米材料。
本发明利用PILP过程制备高比表面、高孔隙率的吸附材料。所制备的材料在重金属吸附过程中展现出局域效应,显著提升了吸附剂的吸附容量和稳定性。在羟基磷灰石合成过程中通过添加聚合物实现PILP过程,反应过程中生成的PILP相既可在吸附重金属过程中体现出限域效应,实现污染物的高效吸附,又可在结构有序化过程中,将吸附于PILP相表面的重金属高效“封装”,有效降低二次污染的风险。
进一步地,所述的钙盐包括CaCl2、Ca(NO3)2、CaSO4中的一种或多种,磷酸盐包括K2HPO4;所述钙盐溶液的浓度为5-10mM,磷酸盐溶液的浓度为 2-6mM。
进一步地,所述的缓冲液包括pH=7.4的Tris缓冲液,其添加量使混合液pH为中性。
进一步地,所述的聚合物包括Mw=3100-24800Da的聚天冬氨酸钠盐。
进一步地,所述的胶原蛋白浓度为0.1-20g/L。
进一步地,所述的钙盐、磷酸盐、聚合物和胶原蛋白的摩尔质量比为(5-10) mmol:(2-6)mmol:(0.5-10)g:(0.1-20)g。
进一步地,调节pH采用浓度为0.1M的NaOH或HCl溶液。
进一步地,所述生理条件的温度为36.5-37.3℃,相对湿度为70-80%、pH=6.0-8.0;所述矿化的时间为5-15天。
一种如上所述方法制备的聚合物诱导重金属高效稳定固定纳米材料。
一种如上所述的聚合物诱导重金属高效稳定固定纳米材料的应用,该复合材料应用于去除水体中重金属,所述的重金属包括Cd(II)、Ni(II)、Cu(II)、Pd(II)、 Cs(II)或Zn(II)中的一种或多种。
与现有技术相比,本发明具有以下优点:
(1)本发明利用生物矿化过程中的PILP过程制备高比表面、孔隙率的吸附材料;
(2)本发明的吸附剂具有大量活性位点,可实现重金属污染物的高效吸附;
(3)本发明的材料本身对污染物的高亲和能力,结合孔道限域效应实现了材料对重金属的高效固定;
(4)本发明合成的羟基磷灰石会不断老化。在老化过程中可实现对被吸附的重金属元素的晶格固定。
附图说明
图1为实施例1中制备的纳米材料的XRD图谱;
图2为实施例1中PILP过程合成的羟基磷灰石的SEM(左)和TEM图 (右);
图3为实施例1中PILP过程合成的羟基磷灰石和普通法合成的羟基磷灰石的Cd(II)等温吸附曲线;
图4为实施例1中PILP过程合成的羟基磷灰石的动力学吸附曲线;
图5为实施例1中制备的纳米材料吸附重金属后的XRD图谱;
图6为实施例1中PILP过程合成的羟基磷灰石和普通法合成的羟基磷灰石的Cd(II)脱附性能对比;
图7为实施例1中材料的脱附实验结果。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
一种聚合物诱导,利用生物矿化过程中的PILP过程制备高比表面、孔隙率的重金属高效稳定固定纳米材料的制备方法,该方法包括以下步骤:
(1)磷酸钙的合成:将钙盐溶液和磷酸盐溶液在缓冲液中混合,得到混合液,以形成PILP过程中的磷酸钙;其中,钙盐包括CaCl2、Ca(NO3)2、CaSO4中的一种或多种,磷酸盐包括K2HPO4;所述钙盐溶液的浓度为5-10mM,磷酸盐溶液的浓度为2-6mM;缓冲液包括pH=7.4的Tris缓冲液,其添加量使混合液pH为中性;
(2)将聚合物和胶原蛋白加入到混合液中,并浓度为0.1M的NaOH或 HCl溶液调节混合液pH=6.0-8.0;其中,聚合物包括Mw=3100-24800Da的聚天冬氨酸钠盐;胶原蛋白浓度为0.1-20g/L,最终钙盐、磷酸盐、聚合物和胶原蛋白的摩尔质量比为(5-10)mmol:(2-6)mmol:(0.5-10)g:(0.1-20)g;使用的胶原蛋白是成纤维胶原蛋白,包括第I、II、III、XI、XXIV或XXVII型胶原蛋白;
(3)产物矿化:将混合液在生理条件
Figure RE-GDA0003101404220000041
下矿化5-15天,得到羟基磷灰石,即重金属高效稳定固定纳米材料,该复合材料应用于去除水体中重金属,包括Cd(II)、Ni(II)、Cu(II)、Pd(II)、Cs(II)或 Zn(II)中的一种或多种。
实施例1
一种聚合物诱导重金属高效稳定固定纳米材料的制备方法
将等体积的9mM CaCl2溶液(50ml)和4.2mM K2HPO4溶液(50ml)在Tris 缓冲液中(pH=7.4)混合,以形成PILP过程中的磷酸钙。
将聚合物(聚天冬氨酸钠盐,Mw=6200Da,3g)和5g/L的胶原蛋白(50 ml)加入到溶液中,用0.1M的NaOH或HCl将溶液调至pH=7.4。
在生理条件下(37℃)矿化4天,得到实验样品羟基磷灰石,即重金属高效稳定固定纳米材料。
材料表征:
如图1,X射线衍射(XRD)谱图显示,所得的吸附材料具有羟基磷灰石的特征峰,与标准羟基磷灰石JCPDS卡片No.09-0432相符。
如图2,扫描电子显微镜(SEM)图显示胶原蛋白经过矿化后依然保留着纤维形貌;透射电子显微镜(TEM)对单个纤维的表征发现纤维内存在大量纳米晶,选区电子衍射结果显示这些纳米晶对应的矿相为羟基磷灰石,且具有多种晶面取向。羟基磷灰石纳米晶在纤维内定向排列,构成了大量的狭小空间,此结构将在后续的吸附过程中发挥重要作用。相比于普通的化学沉淀法方法合成的羟基磷灰石(郭广生等.化学沉淀法制备羟基磷灰石纳米粒子[J].化学通报, 2004,67(011):830-834.),聚合物的添加降低了羟基磷灰石的结晶过程中的能量势垒,使得生成的纳米晶具有更低的结晶度,从而具有高吸附活性。此外,聚合物在羟基磷灰石结晶PILP过程中诱导了液体前驱体向胶原纤维内部迁移,使纳米晶呈现多个晶面取向的有序结构。
如图3,经过PILP过程合成的材料孔径结构以微孔和介孔为主,比表面积经BET法估算为183m2/g,远高于传统方法合成的羟基磷灰石(约40m2/g),突出了利用PILP过程制备材料的优势。上述表征结果证明了PILP介导的羟基磷灰石材料因其独特的结构富有特殊的高效稳定性能。
材料性能:
将上述制备的材料用于重金属污染物的去除。如图4和表1,以吸附Cd(II) 为例,等温吸附结果显示PILP介导的羟基磷灰石材料对Cd(II)的吸附量高达329.9mg/g,远高于普通方法合成的羟基磷灰石的吸附容量(39.8mg/g)及其他 Cd(II)吸附材料。
表1本实施例与其他吸附剂对Cd(II)吸附能力比较
Figure RE-GDA0003101404220000061
如图5,Langmuir模型对材料的拟合效果都优于Freundlich模型,这意味着材料的吸附位点以单层吸附Cd(II)为主。吸附动力学数据显示材料仅需30 min即可达到饱和吸附量约50%的吸附量,且吸附120min后实现了吸附平衡。伪一级和伪二级动力学模型拟合实验数据结果表明材料动力学吸附更符合伪二级动力学模型,所拟合的结果与实验结果的相关性系数R2可达0.982,这说明该羟基磷灰石吸附Cd(II)不是通过溶液传质实现吸附,而是以化学吸附为主。
材料具备高吸附容量的一个重要原因是生物矿化制备方法引起的材料高比表面积,这显著提升了材料表面的吸附位点。此外,通过此法得到的羟基磷灰石纳米晶间存在一定间隙,吸附过程中一旦Cd(II)进入,纳米限域空间可使 Cd(II)周边的水分子的氢键网络发生改变,进而使限域水相表现出异常的热力学、动力学、流体力学性质与行为,并通过水分子氢键数目变化、超快流体力学等方式显著提升材料对Cd(II)的固定。
如图6,吸附后的羟基磷灰石经老化后结晶度明显增加,这说明羟基磷灰石经过一定时间的老化结构发生自发有序化。
如图7,脱附实验结果显示即使将脱附剂(EDTA)的浓度调至1.0mol/L,吸附后的材料也检测不出Cd(II)的脱附。相比普通法合成的羟基磷灰石,当脱附剂浓度仅为0.5mol/L时脱附率便已达92%。这说明吸附后的羟基磷灰石经老化后可实现污染物的有效晶格固定。
实施例2
将等体积的9mm CaCl2溶液(50ml)和4.2mM K2HPO4溶液(50ml)在Tris 缓冲液中(pH=7.4)混合,以形成PILP过程中的磷酸钙。
将聚合物(聚天冬氨酸钠盐,Mw=6200Da,3g)和10g/L的胶原蛋白(50 ml)加入到每个溶液中,用0.1M的NaOH或HCl将溶液调至pH=7.4,
模拟生理条件(37℃)矿化4天,得到实验样品羟基磷灰石。所制备的材料将用于对重金属Pd(II)的去除。
铅离子的去除效果实验
本实施例中的Pd(II)的去除效果的评定方法与实施例1相同。实验同样取得了优异的去除效果。
实施例3
将等体积的18mm CaCl2溶液(50ml)和4.2mM K2HPO4溶液(50ml)在Tris 缓冲液中(pH=7.4)混合,以形成PILP过程中的磷酸钙。
将聚合物(聚天冬氨酸钠盐,Mw=6200Da,4g)和5g/L的胶原蛋白(50 ml)加入到每个溶液中,用0.1M的NaOH或HCl将溶液调至pH=7.4,
模拟生理条件(37℃)矿化4天,得到实验样品羟基磷灰石。所制备的材料将用于对重金属Cd(II)的去除。
实验同样制备了低结晶度的羟基磷灰石,所制备的材料对Cd(II)具有优异的吸附封装效果。
实施例4
将等体积的18mm CaCl2溶液(50ml)和4.2mM K2HPO4溶液(50ml)在Tris 缓冲液中(pH=7.4)混合,以形成PILP过程中的磷酸钙。
将聚合物(聚天冬氨酸钠盐,Mw=10200Da,5g)和不同浓度的胶原蛋白(50ml)加入到每个溶液中,用0.1M的NaOH或HCl将溶液调至pH=7.4,
模拟生理条件(37℃)矿化4天,得到实验样品羟基磷灰石。所制备的材料将用于对重金属Cd(II)的去除。
实验同样制备了低结晶度的羟基磷灰石,所制备的材料对Cd(II)具有优异的吸附封装效果。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,该方法包括以下步骤:
(1)磷酸钙的合成:将钙盐溶液和磷酸盐溶液在缓冲液中混合,得到混合液,以形成PILP过程中的磷酸钙;
(2)将聚合物和胶原蛋白加入到混合液中,并调节混合液pH=6.0-8.0;
(3)产物矿化:将混合液在生理条件下矿化,得到羟基磷灰石,即重金属高效稳定固定纳米材料。
2.根据权利要求1所述的一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,所述的钙盐包括CaCl2、Ca(NO3)2、CaSO4中的一种或多种,磷酸盐包括K2HPO4;所述钙盐溶液的浓度为5-10mM,磷酸盐溶液的浓度为2-6mM。
3.根据权利要求1所述的一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,所述的缓冲液包括pH=7.4的Tris缓冲液,其添加量使混合液pH为中性。
4.根据权利要求1所述的一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,所述的聚合物包括Mw=3100-24800Da的聚天冬氨酸钠盐。
5.根据权利要求1所述的一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,所述的胶原蛋白浓度为0.1-20g/L。
6.根据权利要求1所述的一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,所述的钙盐、磷酸盐、聚合物和胶原蛋白的摩尔质量比为(5-10)mmol:(2-6)mmol:(0.5-10)g:(0.1-20)g。
7.根据权利要求1所述的一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,调节pH采用浓度为0.1M的NaOH或HCl溶液。
8.根据权利要求1所述的一种聚合物诱导重金属高效稳定固定纳米材料的制备方法,其特征在于,所述生理条件的温度为36.5-37.3℃,相对湿度为70-80%、pH=6.0-8.0;所述矿化的时间为5-15天。
9.一种如权利要求1-8任一项所述方法制备的聚合物诱导重金属高效稳定固定纳米材料。
10.一种如权利要求1所述的聚合物诱导重金属高效稳定固定纳米材料的应用,其特征在于,该复合材料应用于去除水体中重金属,所述的重金属包括Cd(II)、Ni(II)、Cu(II)、Pd(II)、Cs(II)或Zn(II)中的一种或多种。
CN202110366300.1A 2021-04-06 2021-04-06 一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用 Active CN113145060B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110366300.1A CN113145060B (zh) 2021-04-06 2021-04-06 一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110366300.1A CN113145060B (zh) 2021-04-06 2021-04-06 一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113145060A true CN113145060A (zh) 2021-07-23
CN113145060B CN113145060B (zh) 2024-03-26

Family

ID=76888770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110366300.1A Active CN113145060B (zh) 2021-04-06 2021-04-06 一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113145060B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117185399A (zh) * 2023-08-03 2023-12-08 同济大学 一种磷酸钙类液态前驱体缓慢矿化耦合连续流稳定重金属和抗生素的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2600911A1 (de) * 2010-08-04 2013-06-12 Technische Universität Dresden Wachstumsinhibierter hydroxylapatit, verfahren zu dessen herstellung und verwendung
CN106075590A (zh) * 2016-07-29 2016-11-09 福州大学 一种有机/无机多相诱导纳米羟基磷灰石的复合材料
CN107224609A (zh) * 2017-05-03 2017-10-03 中国人民解放军第四军医大学 高分子聚电解质诱导胶原纤维内仿生钙化的方法及其应用
CN108066816A (zh) * 2017-11-30 2018-05-25 中国人民解放军第四军医大学 一种聚阴离子改性纤维内仿生矿化材料、制备方法及应用
CN109718249A (zh) * 2019-01-24 2019-05-07 浙江大学 一种磷酸钙纳米簇及其制备方法和应用
CN109926032A (zh) * 2019-04-11 2019-06-25 广州大学 一种基于羟基磷灰石的铀吸附剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2600911A1 (de) * 2010-08-04 2013-06-12 Technische Universität Dresden Wachstumsinhibierter hydroxylapatit, verfahren zu dessen herstellung und verwendung
CN106075590A (zh) * 2016-07-29 2016-11-09 福州大学 一种有机/无机多相诱导纳米羟基磷灰石的复合材料
CN107224609A (zh) * 2017-05-03 2017-10-03 中国人民解放军第四军医大学 高分子聚电解质诱导胶原纤维内仿生钙化的方法及其应用
CN108066816A (zh) * 2017-11-30 2018-05-25 中国人民解放军第四军医大学 一种聚阴离子改性纤维内仿生矿化材料、制备方法及应用
CN109718249A (zh) * 2019-01-24 2019-05-07 浙江大学 一种磷酸钙纳米簇及其制备方法和应用
CN109926032A (zh) * 2019-04-11 2019-06-25 广州大学 一种基于羟基磷灰石的铀吸附剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANG SOO JEE ET AL.: "Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process", 《CRYSTENGCOMM》 *
江曙东: "羟基磷灰石的合成及其生物矿化意义", 《万方中国学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117185399A (zh) * 2023-08-03 2023-12-08 同济大学 一种磷酸钙类液态前驱体缓慢矿化耦合连续流稳定重金属和抗生素的方法
CN117185399B (zh) * 2023-08-03 2024-04-23 同济大学 一种磷酸钙类液态前驱体缓慢矿化耦合连续流稳定重金属和抗生素的方法

Also Published As

Publication number Publication date
CN113145060B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
Zhang et al. Removal of Pb (II) from aqueous solution using hydroxyapatite/calcium silicate hydrate (HAP/CSH) composite adsorbent prepared by a phosphate recovery process
Kong et al. Highly-effective phosphate removal from aqueous solutions by calcined nano-porous palygorskite matrix with embedded lanthanum hydroxide
Zhang et al. Recent progress in metal-based composites toward adsorptive removal of phosphate: Mechanisms, behaviors, and prospects
Wang et al. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption
Wu et al. Characterization of organo-montmorillonites and comparison for Sr (II) removal: equilibrium and kinetic studies
US11472706B2 (en) Hydroxyapatite composite for use in removal of contaminants from effluents and methods of making
Zhou et al. Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage
Abd El-Magied et al. Uranium extraction by sulfonated mesoporous silica derived from blast furnace slag
Gamshadzehi et al. One-pot synthesis of microporous Fe2O3/g-C3N4 and its application for efficient removal of phosphate from sewage and polluted seawater
Chan et al. The development of low cost adsorbents from clay and waste materials: a review
Oulguidoum et al. Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions
Chen et al. Performance and mechanisms of thermally treated bentonite for enhanced phosphate removal from wastewater
Li et al. A composite adsorbent of ZnS nanoclusters grown in zeolite NaA synthesized from fly ash with a high mercury ion removal efficiency in solution
Zhang et al. Characterization of La–Mg-modified palygorskite and its adsorption of phosphate
Peng et al. Enhanced removal of Cd (II) by poly (acrylamide-co-sodium acrylate) water-retaining agent incorporated nano hydrous manganese oxide
Yuan et al. Adsorption performance and mechanism for phosphate removal by cerium hydroxide loaded on molecular sieve
Li et al. Layered chalcogenide modified by Lanthanum, calcium and magnesium for the removal of phosphate from water
Xie et al. Performance of surfactant modified zeolite/hydrous zirconium oxide as a multi-functional adsorbent
Mahato et al. Rapid adsorption of As (V) from aqueous solution by ZnO embedded in mesoporous aluminosilicate nanocomposite adsorbent: Parameter optimization, kinetic, and isotherms studies
Zhao et al. Insights into the adsorption behaviour and mechanism of tetracycline on rectorite mineral: Influence of surface and structure evolution
Gan et al. Zeolite (Na) modified by nano-Fe particles adsorbing phosphate in rainwater runoff
Mokrzycki et al. The influence of zeolite X ion-exchangeable forms and impregnation with copper nitrate on the adsorption of phosphate ions from aqueous solutions
Wang et al. Efficient removal of phosphate and ammonium from water by mesoporous tobermorite prepared from fly ash
CN113145060A (zh) 一种聚合物诱导重金属高效稳定固定纳米材料及其制备方法和应用
Siéwé et al. Activation of clay surface sites of Bambouto's Andosol (Cameroon) with phosphate ions: Application for copper fixation in aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant