CN113140650A - 一种基于表面态吸收原理的垂直耦合透明光电探测器 - Google Patents

一种基于表面态吸收原理的垂直耦合透明光电探测器 Download PDF

Info

Publication number
CN113140650A
CN113140650A CN202110367097.XA CN202110367097A CN113140650A CN 113140650 A CN113140650 A CN 113140650A CN 202110367097 A CN202110367097 A CN 202110367097A CN 113140650 A CN113140650 A CN 113140650A
Authority
CN
China
Prior art keywords
detected
detector
admittance
signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110367097.XA
Other languages
English (en)
Other versions
CN113140650B (zh
Inventor
胡小龙
刘海毅
王昭
张子彧
邹锴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110367097.XA priority Critical patent/CN113140650B/zh
Publication of CN113140650A publication Critical patent/CN113140650A/zh
Application granted granted Critical
Publication of CN113140650B publication Critical patent/CN113140650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种基于表面态吸收原理的垂直耦合透明光电探测器,所述垂直耦合透明光电探测器包括:探测器和信号读出电路;所述探测器由光敏面、氧化层、金电极、及衬底组成,光敏面由半导体材料制成,待测光源为能量低于半导体禁带宽度的光源;待测光源入射到光敏面上时,通过边界态吸收造成光敏区导纳的变化;信号读出电路以器件导纳作为读出信号,待测光几乎无损耗地穿过所述探测器,从而实现对待测光的非侵入式探测。本发明拓宽了光电探测器的应用场景。

Description

一种基于表面态吸收原理的垂直耦合透明光电探测器
技术领域
本发明涉及光电子器件领域,尤其涉及一种基于表面态吸收原理的垂直耦合透明光电探测器。
背景技术
光电探测器被广泛应用于通信、传感、成像等领域。目前市场上常见的光电探测器基于的原理是,光使电子跃迁到导带,从而产生电流;探测器通过测量电流得到对应的光功率。因此传统光电探测器仅可以探测光谱上能量高于材料禁带宽度的波段,测量光谱范围受到禁带宽度的限制。
边界态吸收是一种广泛存在于各种半导体中的吸收现象,其最低探测能量低于禁带宽度。边界态吸收会产生额外的自由电子,从而引起半导体导纳的相应变化,测量导纳的变化可以得出相应的光功率。将边界态吸收原理应用于光电探测器,可以从根本上拓宽光电探测器的可探测波长范围。
传统的光电探测器以光生电流为读出信号。为了获得显著的光生电流信号,需要选用高量子效率的材料,因此只能用于侵入式探测,应用场景受到限制。基于边界态原理的光电探测器由于吸收过程仅存在于器件表面,对材料的量子效率没有限制,因此可以使用对待测光透明的材料,实现光功率的非侵入式探测,从而从根本上拓宽了光电探测器的应用场景。基于表面态吸收的波导集成光电探测器已有广泛研究和探讨,但基于表面态吸收的垂直耦合光电探测器还未有人研制成功。本发明提供了一种垂直耦合的、基于表面态吸收的透明光电探测器,不同于传统的波导集成光电探测器,本发明提供的垂直耦合光功率计在成像、传感、光束特性表征等方面有独特的应用前景。
发明内容
本发明提供了一种基于表面态吸收原理的垂直耦合透明光电探测器,第一,本发明旨在打破当前光电探测器中存在的探测原理对测量光谱范围的限制,开发一种基于边界态吸收的光电探测器,弥补目前市面上的光电探测器测量光谱范围受限的缺陷;第二,打破目前市面上的光电探测器只能实现侵入式探测的限制,开发一种透明的光电探测器,实现光的非侵入式探测,拓宽光电探测器的应用场景,详见下文描述:
一种基于表面态吸收原理的垂直耦合透明光电探测器,所述垂直耦合透明光电探测器包括:探测器和信号读出电路;
所述探测器由光敏面、氧化层、金电极、及衬底组成,待测光源为能量低于半导体禁带宽度的光源;待测光源入射到光敏面上时,通过边界态吸收造成光敏区导纳的变化;
信号读出电路以器件导纳作为读出信号,待测光几乎无损耗地穿过所述探测器,从而实现对待测光的非侵入式探测。
在一种实施方式中,在晶圆上溅射所述金电极,经光刻制作半导体材料的光敏面。
其中,所述信号读出电路由跨阻放大器和锁相放大器组成。所述锁相放大器提供交流驱动电压,电流信号经跨阻放大器放大后输入至锁相放大器的接收端进行信号处理,测得器件的导纳变化;
通过校准过的光功率与导纳变化的关系曲线,计算出器件探测到的光功率。
本发明提供的技术方案的有益效果是:
1、在本发明之前,光电探测器的探测光谱范围较窄,应用范围受限。本发明可以从根本上拓宽光电探测器的探测光谱范围;
2、本发明大大拓宽光电探测器的使用范围,成本低廉,与CMOS工艺兼容,可以被应用于成像、光斑轮廓检测等各个光学探测领域;
3、本发明工艺简单,适合用于集成电路,可扩展成大规模二维成像阵列,从而可被应用于透明照相机、透明传感器等新一代透明电子器件中;
4、本发明具有普适性,不局限于某种特殊材料,可被广泛应用于各种半导体材料,包括但不仅限于硅、氮化镓、氮化硅、锗、锗化硅、氮化铝,对从紫外到中远红外的各种探测器,均可拓宽其可探测光谱范围。
附图说明
图1为一种基于表面态吸收原理的垂直耦合透明光电探测器的结构示意图;
其中,(a)为探测器结构示意图:氧化层厚度为3μm;光敏面位于氧化层上;金电极位于光敏面两端,“+”表示正极,“-”表示负极;衬底厚度为700μm。(b)为探测器的实物光学显微镜照片。
图2为光电探测器探测系统示意图;
图3为器件加工流程示意图;
图4为不同光功率下器件导纳变化与工作频率关系图;
其中,工作电压为1V,在500Hz处,导纳变化明显随光功率递增。
图5为1.55μm以及1.31μm波长下,器件导纳变化与光功率关系图;
其中,该光电探测器在不同红外波长下均有响应,具有宽谱响应特性。
图6为光电探测器的时间特性示意图;
其中,(a)为方波调制光源照射下,导纳随时间变化的曲线图。光电探测器的上升时间τr以及下降时间τf,分别被定义为导纳信号从最大值的10%上升到90%的时间,和导纳信号从最大值的90%下降到10%的时间,二者几乎相等;(b)为光电探测器响应时间以及光电探测器灵敏度随锁相放大器带宽变化的曲线。带宽越宽,响应时间越短,同时灵敏度越差。
图7为光电探测器器件二维扫描图;
其中,图(a)为器件表面反射光功率的空间分布图,通过图(a)与器件结构图(图1(b))对比,可以得出器件光敏区的位置;图(b)为器件表面导纳分布图。
图8为光电探测器在成像方面的应用示意图;
其中,图(a)为用光电探测器对”hν”图案的成像,图(b)为用光电探测器对高斯光束的成像,图(c),(d)分别为成像得到的待测光束在x和z方向的导纳分布。从图(c),(d)算出测得光束的直径为24.4,24.6μm,与从光纤聚焦器参数出发计算出的光斑直径25.1μm相吻合。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
本发明实施例提供了一种垂直入射的透明光电探测器,参见图1-图8,该光电探测器的总体技术方案为:光电探测器的整体探测系统包含:探测器和信号读出电路。探测器部分由光敏面、氧化层、电极、及衬底组成。在晶圆上溅射金电极,然后经光刻制作半导体材料的光敏面。不同于传统的基于硅的光电探测器,本发明实施例的待测光源为传统硅光功率计无法探测的、能量低于半导体禁带宽度的通信波段(1.31、1.55μm)红外光源,而非传统硅光电探测器探测的、能量高于禁带宽度的可见光或近红外光源。待测光入射到光敏面上时,通过边界态吸收造成光敏区导纳的变化。信号读出电路由跨阻放大器和锁相放大器组成,以器件导纳作为读出信号。同时由于光敏区材料对待测光透明,待测光几乎无损耗地穿过光电探测器,从而实现对待测光的非侵入式探测。
宽谱透明光电探测器的实现基于以下4点:
1、半导体边界界面存在边界态吸收,测量由边界态吸收导致的导纳变化可以得出光功率的大小。
2、边界态吸收的最低探测能量低于禁带宽度,因此可以拓宽器件的光谱探测范围。
3、边界态吸收的最低探测能量低于禁带宽度,因此半导体材料本身不吸收待测光,边界态吸收微弱到可以忽略不计,从而使待测光可以几乎无损耗地穿过探测器,使探测器表现出透明的光学性质。
4、锁相放大器可以检测出微小的导纳变化,使光电探测器可以探测到微弱的光学信号。
光功率的测量过程为:由锁相放大器提供的交流驱动电压,加在探测器两端产生电流信号。电流信号从器件流出,经跨阻放大器放大后输入至锁相放大器的接收端进行信号处理,从而测得器件的导纳变化。通过校准过的光功率与导纳变化的关系曲线,可以计算出器件探测到的光功率。
光电探测器可选材料包括但不限于:硅、氮化镓、氮化硅、锗、锗化硅、氮化铝。
实施方式1
待测光经光衰减器和单模光纤垂直入射到光电探测器的光敏面上,引发边界态吸收造成导纳变化,形成探测事件。
探测器两端分别连接金电极作为正极和负极,电极通过打线与同轴电缆连接。探测器由锁相放大器内置的电压源供电。探测器在未通入探测光时,也会有一定的导纳。探测器受待测光照射时测得新的导纳,减去未通待测光时的导纳,即可得到待测光造成的导纳变化。再通过事先标定好的光功率与导纳变化关系曲线,即可测得待测光的光功率值。
实施方式2
该光电探测器的校准
本光电探测器需要校准:首先需要测得不同光功率下器件导纳与电压源工作频率的关系,找出导纳变化最明显处的工作频率;选定工作频率后,需要标定不同波长下光功率与导纳变化的关系曲线。
实施方式3
该光电探测器的加工:
通过光刻的方法把光敏面图形转移到光刻胶上,利用光刻胶作为掩模,用电感耦合反应离子束刻蚀光敏面图形;
用等离子体增强气相化学沉积的方法在光敏面上覆盖氧化层。
通过光刻-电子束蒸发/溅射-剥离的方法,在氧化层上沉积与光敏面图形对准的电学连接电极(钛/金)。
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于表面态吸收原理的垂直耦合透明光电探测器,其特征在于,所述垂直耦合透明光电探测器包括:探测器和信号读出电路;
所述探测器由光敏面、氧化层、金电极、及衬底组成,待测光源为能量低于半导体禁带宽度的光源;待测光源入射到光敏面上时,通过边界态吸收造成光敏区导纳的变化;
信号读出电路以器件导纳作为读出信号,待测光几乎无损耗地穿过所述探测器,从而实现对待测光的非侵入式探测。
2.根据权利要求1所述的一种基于表面态吸收原理的垂直耦合透明光电探测器,其特征在于,所述信号读出电路由跨阻放大器和锁相放大器组成。
3.根据权利要求1-2中任一权利要求所述的一种基于表面态吸收原理的垂直耦合透明光电探测器,其特征在于,
所述锁相放大器提供交流驱动电压,电流信号经跨阻放大器放大后输入至锁相放大器的接收端进行信号处理,测得器件的导纳变化;
通过校准过的光功率与导纳变化的关系曲线,计算出器件探测到的光功率。
CN202110367097.XA 2021-04-06 2021-04-06 一种基于表面态吸收原理的垂直耦合透明光电探测器 Active CN113140650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110367097.XA CN113140650B (zh) 2021-04-06 2021-04-06 一种基于表面态吸收原理的垂直耦合透明光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110367097.XA CN113140650B (zh) 2021-04-06 2021-04-06 一种基于表面态吸收原理的垂直耦合透明光电探测器

Publications (2)

Publication Number Publication Date
CN113140650A true CN113140650A (zh) 2021-07-20
CN113140650B CN113140650B (zh) 2023-05-16

Family

ID=76811749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110367097.XA Active CN113140650B (zh) 2021-04-06 2021-04-06 一种基于表面态吸收原理的垂直耦合透明光电探测器

Country Status (1)

Country Link
CN (1) CN113140650B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639795A (zh) * 2021-08-09 2021-11-12 天津大学 原位监测控制光波导器件温度和光功率的系统和方法
CN113764542A (zh) * 2021-08-31 2021-12-07 天津大学 一种氦离子注入提升硅基探测器红外响应的方法
CN115218788A (zh) * 2022-07-22 2022-10-21 天津大学 工作在波长大于1.1微米的硅四象限探测器及定位系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180357A (ja) * 1998-12-11 2000-06-30 Omron Corp 路面状態判別装置
CN106409938A (zh) * 2016-10-26 2017-02-15 东南大学 一种基于锥形超表面结构的光伏型光电探测器及其制备方法
CN107195722A (zh) * 2017-07-12 2017-09-22 中国科学院上海技术物理研究所 一种室温纳米线光子数可分辨探测器及制备方法
CN107946401A (zh) * 2017-08-30 2018-04-20 中国科学院上海技术物理研究所 一种室温拓扑绝缘体太赫兹探测器及制备方法
CN108400198A (zh) * 2018-01-30 2018-08-14 中国科学院上海技术物理研究所 面内非对称局域场调控的低维纳米光电探测器及制备方法
CN111276573A (zh) * 2020-02-18 2020-06-12 湖北大学 基于非晶(GaLu)2O3薄膜的日盲紫外光探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180357A (ja) * 1998-12-11 2000-06-30 Omron Corp 路面状態判別装置
CN106409938A (zh) * 2016-10-26 2017-02-15 东南大学 一种基于锥形超表面结构的光伏型光电探测器及其制备方法
CN107195722A (zh) * 2017-07-12 2017-09-22 中国科学院上海技术物理研究所 一种室温纳米线光子数可分辨探测器及制备方法
CN207967011U (zh) * 2017-07-12 2018-10-12 中国科学院上海技术物理研究所 一种室温纳米线光子数可分辨探测器
CN107946401A (zh) * 2017-08-30 2018-04-20 中国科学院上海技术物理研究所 一种室温拓扑绝缘体太赫兹探测器及制备方法
CN108400198A (zh) * 2018-01-30 2018-08-14 中国科学院上海技术物理研究所 面内非对称局域场调控的低维纳米光电探测器及制备方法
CN111276573A (zh) * 2020-02-18 2020-06-12 湖北大学 基于非晶(GaLu)2O3薄膜的日盲紫外光探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵连城: "《材料科学与工程》", 31 December 2005 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639795A (zh) * 2021-08-09 2021-11-12 天津大学 原位监测控制光波导器件温度和光功率的系统和方法
CN113639795B (zh) * 2021-08-09 2023-10-27 天津大学 原位监测控制光波导器件温度和光功率的系统和方法
CN113764542A (zh) * 2021-08-31 2021-12-07 天津大学 一种氦离子注入提升硅基探测器红外响应的方法
CN115218788A (zh) * 2022-07-22 2022-10-21 天津大学 工作在波长大于1.1微米的硅四象限探测器及定位系统

Also Published As

Publication number Publication date
CN113140650B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN113140650B (zh) 一种基于表面态吸收原理的垂直耦合透明光电探测器
Gibson et al. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection
US6812464B1 (en) Superconducting single photon detector
CN110057446B (zh) 一种具有宽光谱范围和大量程范围的光功率计
Bai et al. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes
CN110459548B (zh) 一种基于范德瓦尔斯异质结的光电探测器及其制备方法
KR101660943B1 (ko) 근적외선 광 검출기 및 이를 채용한 이미지 센서, 그 반도체 제조 방법
WO2023239294A1 (en) Photodetector pixel, photodetector and methods of forming the same
Lolli et al. Ti/Au transition-edge sensors coupled to single mode optical fibers aligned by Si V-groove
Lu et al. D-shaped Silicon-cored fibers as platform to build in-line Schottky photodetectors
CN100516794C (zh) 半球形和球形双光子响应半导体光电探测器
Long et al. High-Speed 46-GHz 850 nm Photodetector With Inductive Peaking
Chen et al. A 16-pixel NbN nanowire single photon detector coupled with 300 micrometer fiber
Ma et al. 100 GBd ultra-compact plasmonic graphene photodetector
US7309854B2 (en) Photo-detectors and optical devices incorporating same
Ke Detectors and Their Noise Models
US20120176680A1 (en) Patterned backside optical coating on transparent substrate
Xu Fabrication and characterization of photodiodes for silicon nanowire applications and backside illumination
CN113764542A (zh) 一种氦离子注入提升硅基探测器红外响应的方法
Yao et al. A novel PIN photodetector with double linear arrays for rainfall prediction
CN114400266B (zh) 一种集成有双吸收区的光电探测器及其制备方法
Li et al. Microwave measurement technology of optical signal based on the helical antenna
Miki et al. Enhancing detection efficiency by applying an optical cavity structure in a superconducting nanowire single-photon detector
Yuan et al. A new type silicon based PIN photodetector linear array for rainfall prediction
Ackert et al. 10 Gb/s bit error free performance of a monolithic silicon avalanche waveguide-integrated photodetector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant