CN113140209A - 基于相位自动补偿的无次级通道的频域主动噪声控制方法 - Google Patents

基于相位自动补偿的无次级通道的频域主动噪声控制方法 Download PDF

Info

Publication number
CN113140209A
CN113140209A CN202110444152.0A CN202110444152A CN113140209A CN 113140209 A CN113140209 A CN 113140209A CN 202110444152 A CN202110444152 A CN 202110444152A CN 113140209 A CN113140209 A CN 113140209A
Authority
CN
China
Prior art keywords
phase
frequency domain
signal
secondary channel
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110444152.0A
Other languages
English (en)
Other versions
CN113140209B (zh
Inventor
郝学元
喻莹玉
王路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Lipan Information Technology Co.,Ltd.
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202110444152.0A priority Critical patent/CN113140209B/zh
Publication of CN113140209A publication Critical patent/CN113140209A/zh
Application granted granted Critical
Publication of CN113140209B publication Critical patent/CN113140209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17815Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the reference signals and the error signals, i.e. primary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter

Abstract

本发明是一种基于相位自动补偿的无次级通道的频域主动噪声控制方法,该方法包括如下步骤:初级噪声信号x(k)经过主通道模块与频域算法模块的FFT,产生期望信号d(k)与频域信号Y(k);经过无次级通道建模模块中的相位计算后,偏移180°并估计补偿,得到此时的相位
Figure DDA0003036124030000011
经过无次级通道建模模块中的自适应滤波器W(z)更新后得到相位φ(k);最后通过频域算法模块中的公式a+ib=r·e和IFFT产生次级信号y(k)。本发明通过相位自动补偿,解决了次级信号通过次级通道导致相位改变的问题,具有很好的降噪效果,获得很小的残差。

Description

基于相位自动补偿的无次级通道的频域主动噪声控制方法
技术领域
本发明属于噪声消除技术领域,具体的说是涉及一种基于相位自动补偿的无次级通道的频域主动噪声控制方法。
背景技术
随着经济的不断发展,工业噪声,交通噪声,生活噪声也日益增加,噪声对人的心理和身体健康都会造成损伤,目前,主要的降噪方式有被动噪声控制和主动噪声控制。被动噪声控制主要是通过吸声材料、隔声构件以及隔振技术来降低噪声,这种方法适用于中、高频噪声的控制但在对低频噪声降噪不明显且设备昂贵笨重;而主动噪声控制能够有效降低频噪声,其控制原理是产生一个与原噪声声波幅度相同,相位相差180°的次级声波,两列声波在某区域内叠加,从而达到降噪的目的。主动噪声控制原理图如图1所示。
主动噪声控制在设计中面临的主要问题与次级通道相关,LMS自适应算法忽略了次级通道的存在,FXLMS算法由于次级通道随时间、环境不断变化,无法对次级通道精确建模,两种算法都影响了主动噪声控制系统的降噪性能。
西安电子科技大学学报(张瑞华、谢智波,2010年4月第37卷第2期)公开了一种无需次级通道模型的有源噪声控制算法,该控制算法引用了一套自动相位补偿机制,能自动对次级通道的相位偏移进行补偿,不管输入噪声频率如何,该算法都能有效收敛,但此控制算法是在时域上用移相器改变相位,一旦遇到频率复杂、频率变化较快的噪声,此方法的降噪效果就会大大降低。
ZL2014101164282公开了基于无次级通道建模的自适应算法的有源噪声控制方法,此控制方法需要实时比较采集到的的能量值并且比较,并且需要更新步长因子的方向,从而实时调整自适应滤波器的权系数,进而生成相应的次级声源控制量,达到稳定的降噪效果,此方法无法直接计算得出相位并且若遇到复杂的噪声或宽频噪声则无法达到很好的降噪效果。
发明内容
为了解决上述问题,本发明提供了一种基于相位自动补偿的无次级通道的频域主动噪声控制方法,该方法在频域上改变相位,利用FFT直接计算出相位改变,实现了ANC系统更高的降噪性能。
为了达到上述目的,本发明是通过以下技术方案实现的:
本发明是一种基于相位自动补偿的无次级通道的频域主动噪声控制方法,该方法包括如下步骤:初级噪声信号x(k)经过主通道模块与频域算法模块的FFT,产生期望信号d(k)与频域信号Y(k);经过无次级通道建模模块中的相位计算后,偏移180°并估计补偿,得到此时的相位
Figure BDA0003036124010000021
经过无次级通道建模模块中的自适应滤波器W(z)更新后得到相位φ(k);最后通过频域算法模块中的公式a+ib=r·e和IFFT产生次级信号y(k)。
该控制方法还包括频域算法模块、无次级通道建模模块及主通道模块三个模块,其中
频域算法模块,用于将初级噪声信号x(k)进行傅里叶变换(FFT),使其从时域信号转换为频域信号Y(k);以及在相位自动补偿后,通过公式a+ib=r·e得到新的频域信号Y'(k),并对其进行反傅里叶变换变换(IFFT),得到次级信号y(k),
Y(k)=FFT[x(k)]
=[ak+ibk,ak-1+ibk-1,...,ak-N+1+ibk-N+1]
Figure BDA0003036124010000022
y(k)=IFFT[Y'(k)]
产生的次级信号y(k)与主通道的期望信号做差,从而得到ANC系统的误差信号e(k);
e(k)=d(k)-y(k)
e(k)反映了ANC系统的降噪效果。
无次级通道建模模块,用于跟踪次级通道的变化并对次级通道导致次级信号的相位偏移180°并对次级通道导致次级信号的相位改变进行相位估计补偿,
Figure BDA0003036124010000031
Figure BDA0003036124010000032
Figure BDA0003036124010000033
Figure BDA0003036124010000034
补偿后的相位进入自适应滤波器中,根据ANC误差信号e(k)的变化不断的调整权值系数;
主通道模块,用于模拟ANC系统主通道路径函数,从而对初级噪声进行滤波,得到期望信号d(k)。
与现有方法相比,本发明具有以下优点:
(1)本发明通过相位自动补偿,解决了次级信号通过次级通道导致相位改变的问题,具有很好的降噪效果,获得很小的残差;
(2)本发明方法简单,易于实现,能够解决频率复杂的宽频噪声降噪问题。
附图说明
图1是本发明主动噪声控制的原理图。
图2是本发明的结构示意图。
图3是本发明的噪声信号时域和频域的仿真图。
图4是本发明噪声信号与次级次级信号的时域对比的仿真图。
图5是本发明噪声信号与误差信号的功率谱对比的仿真图。
具体实施方式
以下将以图式揭露本发明的实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。
本发明是一种基于相位自动补偿的无次级通道的频域主动噪声控制方法,该控制方法还包括频域算法模块、无次级通道建模模块及主通道模块三个模块,具体方法包括如下步骤:
步骤1:初级噪声信号x(k)经过主通道模块与频域算法模块的FFT,产生期望信号d(k)与频域信号Y(k);
步骤2:经过无次级通道建模模块中的相位计算后,偏移180°并估计补偿,得到此时的相位
Figure BDA0003036124010000041
相位补偿具体包括如下步骤:
(2-1)计算噪声信号的相位并相位偏移180°;
Figure BDA0003036124010000042
(2-2)得到估计补偿后的相位
Figure BDA0003036124010000043
并更新权值系数W(k)
Figure BDA0003036124010000051
Figure BDA0003036124010000052
(2-3)更新后的相位计算如下;
Figure BDA0003036124010000053
步骤3:经过无次级通道建模模块中的自适应滤波器W(z)更新后得到相位φ(k);
步骤4:最后通过频域算法模块中的公式a+ib=r·e和IFFT产生次级信号y(k),频域算法模块中的频域信号Y(n)的表达式为:
Y(k)=FFT[x(k)]
=[ak+ibk,ak-1+ibk-1,...,ak-N+1+ibk-N+1]
其中,[ak,ak-1,...,ak-N-1]表示快速傅里叶变换后的实部;[bk,bk-1,...,bk-N-1]表示快速傅里叶变换后的虚部;
得到新的频域信号Y'(k)的表达式为:
Figure BDA0003036124010000054
其中,φ(k)为自适应滤波器更新后的相位;
次级信号y(k)的表达式为:y(k)=IFFT[Y'(k)]。
本发明提出的ANC系统采用MATLAB8.6进行仿真。
如图3中为噪声信号的的时域波形和频域波形,可以看出噪声的频率丰富,属于宽频。
如附图4为降噪开始后噪声波形与次级信号波形的对比图,表明本发明能及时产生与噪声波形幅度相同,相位相差180°的次级信号。
如附图5为降噪后误差信号的功率谱与噪声信号功率谱的对比图,噪声功率降低了63.1dB。
本发明在频域上利用FFT直接计算出相位改变,无论噪声多复杂,都可以得到它的刺激信号,具有很好的降噪效果。
以上所述仅为本发明的实施方式而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理的内所作的任何修改、等同替换、改进等,均应包括在本发明的权利要求范围之内。

Claims (3)

1.一种基于相位自动补偿的无次级通道的频域主动噪声控制方法,其特征在于:所述频域主动噪声控制方法包括如下步骤:
步骤1:初级噪声信号x(k)经过主通道模块与频域算法模块的FFT,产生期望信号d(k)与频域信号Y(k);
步骤2:经过无次级通道建模模块中的相位计算后,偏移180°并估计补偿,得到此时的相位
Figure FDA0003036123000000011
步骤3:经过无次级通道建模模块中的自适应滤波器W(z)更新后得到相位φ(k);
步骤4:最后通过频域算法模块中的公式a+ib=r·e和IFFT产生次级信号y(k)。
2.根据权利要求1所述基于相位自动补偿的无次级通道的频域主动噪声控制方法,其特征在于:所述步骤2无次级通道相位补偿具体包括如下步骤:
(2-1)计算噪声信号的相位并相位偏移180°;
Figure FDA0003036123000000012
(2-2)得到估计补偿后的相位
Figure FDA0003036123000000013
并更新权值系数W(k)
Figure FDA0003036123000000014
Figure FDA0003036123000000015
(2-3)更新后的相位计算如下;
Figure FDA0003036123000000016
3.根据权利要求1所述基于相位自动补偿的无次级通道的频域主动噪声控制方法,其特征在于:所述步骤4中,频域算法模块中的频域信号Y(n)的表达式为:
Y(k)=FFT[x(k)]
=[ak+ibk,ak-1+ibk-1,...,ak-N+1+ibk-N+1]
其中,[ak,ak-1,...,ak-N-1]表示快速傅里叶变换后的实部;[bk,bk-1,...,bk-N-1]表示快速傅里叶变换后的虚部;
得到新的频域信号Y'(k)的表达式为:
Figure FDA0003036123000000021
其中,φ(k)为自适应滤波器更新后的相位;
次级信号y(k)的表达式为:y(k)=IFFT[Y'(k)]。
CN202110444152.0A 2021-04-23 2021-04-23 基于相位自动补偿的无次级通道的频域主动噪声控制方法 Active CN113140209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110444152.0A CN113140209B (zh) 2021-04-23 2021-04-23 基于相位自动补偿的无次级通道的频域主动噪声控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110444152.0A CN113140209B (zh) 2021-04-23 2021-04-23 基于相位自动补偿的无次级通道的频域主动噪声控制方法

Publications (2)

Publication Number Publication Date
CN113140209A true CN113140209A (zh) 2021-07-20
CN113140209B CN113140209B (zh) 2022-06-14

Family

ID=76812427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110444152.0A Active CN113140209B (zh) 2021-04-23 2021-04-23 基于相位自动补偿的无次级通道的频域主动噪声控制方法

Country Status (1)

Country Link
CN (1) CN113140209B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080317256A1 (en) * 2005-04-22 2008-12-25 Harry Bachmann Method for Reproducing a Secondary Path in an Active Noise Reduction System
EP2378513A1 (de) * 2010-04-08 2011-10-19 Helmut-Schmidt-Universität Verfahren und System zur aktiven Lärmreduktion
CN103840794A (zh) * 2014-03-26 2014-06-04 南京大学 简化子带结构无次级路径有源控制方法
CN106169294A (zh) * 2015-05-20 2016-11-30 联发科技股份有限公司 有源噪声控制系统的次级路径估计滤波器建模的自动选择方法
EP3338279A1 (en) * 2015-08-20 2018-06-27 Cirrus Logic International Semiconductor Ltd. Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
CN109448686A (zh) * 2018-12-13 2019-03-08 重庆邮电大学 基于次级通道在线辨识新算法交叉更新有源噪声控制系统
CN109658947A (zh) * 2018-11-18 2019-04-19 南京大学 一种同步建模和控制的主动噪声控制方法
CN110010116A (zh) * 2018-11-23 2019-07-12 重庆邮电大学 一种基于动量FxLMS算法的主动噪声控制系统
CN110718205A (zh) * 2019-10-17 2020-01-21 南京南大电子智慧型服务机器人研究院有限公司 一种无次级路径有源噪声控制系统及实现方法
CN111883095A (zh) * 2020-04-27 2020-11-03 珠海市杰理科技股份有限公司 主动降噪方法、装置、系统以及相关设备
CN112017683A (zh) * 2020-10-20 2020-12-01 南京南大电子智慧型服务机器人研究院有限公司 一种频域无次级路径有源噪声控制系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080317256A1 (en) * 2005-04-22 2008-12-25 Harry Bachmann Method for Reproducing a Secondary Path in an Active Noise Reduction System
EP2378513A1 (de) * 2010-04-08 2011-10-19 Helmut-Schmidt-Universität Verfahren und System zur aktiven Lärmreduktion
CN103840794A (zh) * 2014-03-26 2014-06-04 南京大学 简化子带结构无次级路径有源控制方法
CN106169294A (zh) * 2015-05-20 2016-11-30 联发科技股份有限公司 有源噪声控制系统的次级路径估计滤波器建模的自动选择方法
EP3338279A1 (en) * 2015-08-20 2018-06-27 Cirrus Logic International Semiconductor Ltd. Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
CN109658947A (zh) * 2018-11-18 2019-04-19 南京大学 一种同步建模和控制的主动噪声控制方法
CN110010116A (zh) * 2018-11-23 2019-07-12 重庆邮电大学 一种基于动量FxLMS算法的主动噪声控制系统
CN109448686A (zh) * 2018-12-13 2019-03-08 重庆邮电大学 基于次级通道在线辨识新算法交叉更新有源噪声控制系统
CN110718205A (zh) * 2019-10-17 2020-01-21 南京南大电子智慧型服务机器人研究院有限公司 一种无次级路径有源噪声控制系统及实现方法
CN111883095A (zh) * 2020-04-27 2020-11-03 珠海市杰理科技股份有限公司 主动降噪方法、装置、系统以及相关设备
CN112017683A (zh) * 2020-10-20 2020-12-01 南京南大电子智慧型服务机器人研究院有限公司 一种频域无次级路径有源噪声控制系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WU,G.CHEN,AND X.QIU: "An improved active noise control algorithm without secondary path identification based on thefrequency-domain subband architecture", 《IEEE TRANS.ON SPEECH ANDAUDIO PROCESSING》 *
张瑞华等: "一种无需次级通道模型的有源噪声控制算法", 《西安电子科技大学学报》 *
欧阳振华等: "一种不需要次级通道建模的有源噪声控制算法", 《声学技术》 *

Also Published As

Publication number Publication date
CN113140209B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
Luo et al. Wind induced vibration control and energy harvesting of electromagnetic resonant shunt tuned mass-damper-inerter for building structures
CN104616667A (zh) 一种用于汽车内的主动降噪方法
CN111627415A (zh) 一种基于自适应MFxLMS算法的主动降噪装置及FPGA实现
Rout et al. PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate
CN106203386B (zh) 电力变压器有源噪声控制抗干扰自适应方法
CN103915091A (zh) 基于无次级通道建模的自适应算法的有源噪声控制方法
CN111986644B (zh) 一种宽窄带混合前馈型主动噪声控制系统
Lu et al. Improved filtered-x least mean kurtosis algorithm for active noise control
CN101393736B (zh) 无次级通道建模的有源噪声控制方法
Davari et al. Designing a new robust on-line secondary path modeling technique for feedforward active noise control systems
CN103475336A (zh) 一种基于逆控制技术的电力变压器噪声控制方法
CN108233424A (zh) 单相lcl型并网逆变器无源阻尼控制方法与系统
CN113140209B (zh) 基于相位自动补偿的无次级通道的频域主动噪声控制方法
Sun et al. Active narrowband noise control systems using cascading adaptive filters
Sahib et al. Comparison of performance and computational complexity of nonlinear active noise control algorithms
Luo et al. Fast-convergence hybrid functional link artificial neural network for active noise control with a mixture of tonal and chaotic noise
Liu et al. Active control for vehicle interior noise using the improved iterative variable step-size and variable tap-length LMS algorithms
CN115565515A (zh) 一种分步虚拟传感降噪方法
CN112199912B (zh) 一种基于fpga的自适应算法模块化设计方法
Li et al. Noise Cancellation of a Train Electric Traction System Fan Based on a Fractional-Order Variable-Step-Size Active Noise Control Algorithm
Yang et al. Hybrid filtered-x adaptive vibration control with internal feedback and online identification
Sun et al. An improved VSS NLMS algorithm for active noise cancellation
Zuo et al. Study on active noise control of blower in fuel cell vehicle under transient conditions
Fu et al. Applying the remote microphone method in the filtered error least mean squares algorithm
Fan Active noise control system of central pump house in mine tunnel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230316

Address after: Room 359, Area D, Building 10, Yaxi International Slow Town, Gaochun District, Nanjing City, Jiangsu Province, 210000

Patentee after: Nanjing Lipan Information Technology Co.,Ltd.

Address before: 210003, 66 new model street, Gulou District, Jiangsu, Nanjing

Patentee before: NANJING University OF POSTS AND TELECOMMUNICATIONS