CN113135815B - 甲醇合成的控制方法和控制装置 - Google Patents

甲醇合成的控制方法和控制装置 Download PDF

Info

Publication number
CN113135815B
CN113135815B CN202110376161.0A CN202110376161A CN113135815B CN 113135815 B CN113135815 B CN 113135815B CN 202110376161 A CN202110376161 A CN 202110376161A CN 113135815 B CN113135815 B CN 113135815B
Authority
CN
China
Prior art keywords
real
gas
raw material
time
time flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110376161.0A
Other languages
English (en)
Other versions
CN113135815A (zh
Inventor
卢利飞
刘洪忠
雷聪
张延斌
姜兴剑
冯长志
赵同科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guoneng Yulin Chemical Co ltd
China Shenhua Coal to Liquid Chemical Co Ltd
Original Assignee
Guoneng Yulin Chemical Co ltd
China Shenhua Coal to Liquid Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guoneng Yulin Chemical Co ltd, China Shenhua Coal to Liquid Chemical Co Ltd filed Critical Guoneng Yulin Chemical Co ltd
Priority to CN202110376161.0A priority Critical patent/CN113135815B/zh
Publication of CN113135815A publication Critical patent/CN113135815A/zh
Application granted granted Critical
Publication of CN113135815B publication Critical patent/CN113135815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/139Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring a value related to the quantity of the individual components and sensing at least one property of the mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及甲醇合成技术领域,具体涉及一种甲醇合成的控制方法和控制装置。该方法包括:将原料气在甲醇合成的条件下进行反应,得到甲醇和排放气;所述原料气和排放气各自独立地含有H2、CO2和CO;设定调整系数A满足下式:
Figure DDA0003010553370000011
当A>2.05时,增加排放气的实时流量或增加原料气中CO和/或CO2的实时流量;当A<2.05时,减少排放气的实时流量或减少原料气中CO和/或CO2的实时流量;当A=2.05时,不作调整。本发明根据调整系数A,精确调整甲醇合成过程中氢气与碳氧化合物的比例,保证甲醇合成稳定高效运行,有效提高甲醇的选择率。

Description

甲醇合成的控制方法和控制装置
技术领域
本发明涉及甲醇合成技术领域,具体涉及一种甲醇合成的控制方法和控制装置。
背景技术
目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。在生产中为保证甲醇合成系统稳定运行,对进甲醇合成系统原料气中氢碳比有明确要求。原料气中氢碳比控制在合适范围内,可提高甲醇合成的合成甲醇效率,提高合成甲醇产量,可减少原料气损耗,降低系统的能耗。
在实际生产中,要求控制进甲醇合成入口原料气中氢碳比在2.05~2.1之间,可保证甲醇合成系统在最佳运行工况运行。当原料气中氢碳比偏离这个指标时,不仅会影响甲醇合成反应的进行,影响甲醇的产量,而且还会造成副反应的增多,进而影响甲醇的精馏及产品甲醇的质量。一般而言,氢碳比控制太低,副反应增加,催化剂活性衰退加快,还容易引起积碳反应;氢碳比控制太高,影响产量并引起能耗等消耗定额增加。
在煤制甲醇系统实际生产中因煤气化操作参数、原料煤组成、水煤浆浓度、烧嘴运行周期、一氧化碳变换单元变换炉反应情况、低温甲醇洗甲醇循环量及循环甲醇温度、甲醇合成系统压力等因素影响,控制原料气中氢碳比时操作难度大,原料气中氢碳比在一个很大范围内波动。根据已运行装置实际情况,要将原料气保持(H2-CO2)/(CO+CO2)=2.05-2.1之间操作难度极大。
发明内容
为解决甲醇合成过程中,保持原料气组成难以操作的问题,本发明提供一种甲醇合成的控制方法和控制装置,该方法在保证上游甲醇合成气原料气中碳氢比准确性并保证实时监控,从而确保甲醇合成系统在最佳运行工况稳定运行。
为了实现上述目的,本发明第一方面提供一种甲醇合成的控制方法,该方法包括:将原料气在甲醇合成的条件下进行反应,得到甲醇和排放气;所述原料气和排放气各自独立地含有H2、CO2和CO;其中,设定调整系数A满足下式:
Figure BDA0003010553360000021
其中,QH2为原料气中H2的实时流量;Q’H2为排放气中H2的实时流量;QCO2为原料气中CO2的实时流量;Q’CO2为排放气中CO2的实时流量;QCO为原料气中CO的实时流量;Q’CO为排放气中CO的实时流量;
当A>2.05时,增加排放气的实时流量或增加原料气中CO和/或CO2的实时流量;当A<2.05时,减少排放气的实时流量或减少原料气中CO和/或CO2的实时流量;当A=2.05时,不作调整。
本发明第二方面提供一种甲醇合成的控制装置,该装置包括:依次连接的原料气管线、甲醇合成系统、排放气管线,且所述原料气管线上设置有第一流量计、第一在线色谱分析仪,所述排放气管线上设置有第二流量计、第二在线色谱分析仪;
其中,所述第一流量计用于监测所述原料气的实时流量;
所述第一在线色谱分析仪用于监测所述原料气中H2、CO2和CO的实时组分含量;
所述第二流量计用于监测所述排放气的实时流量;
所述第二在线色谱仪用于监测所述排放气中H2、CO2和CO的实时组分含量。
通过上述技术方案,本发明在甲醇合成的控制方法中,根据原料气和排放气中H2、CO2和CO的实时流量,引入调整系数A,即,实时氢气与碳氧化合物的比例,并根据调整系数A,实现精确调整甲醇合成过程中氢气与碳氧化合物的比例,保证甲醇合成稳定高效运行,从而有效提高甲醇的选择率。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本发明中,没有特殊情况说明下,所述第一和第二均不代表先后次序,也不对各个物料或者操作起限定作用,仅是为了区分各个物料或者操作,例如,“第一校正因子”和“第二校正因子”中的“第一”和“第二”仅是为了区分以表示这不是同一校正因子;“第一在线色谱分析仪”和“第二在线色谱分析仪”中的“第一”和“第二”仅是为了区分以表示这不是同一在线色谱分析仪。
本发明第一方面提供一种甲醇合成的方法,该方法包括:将原料气在甲醇合成的条件下进行反应,得到甲醇和排放气;所述原料气和排放气各自独立地含有H2、CO2和CO;其中,设定调整系数A满足下式:
Figure BDA0003010553360000031
其中,QH2为原料气中H2的实时流量;Q’H2为排放气中H2的实时流量;QCO2为原料气中CO2的实时流量;Q’CO2为排放气中CO2的实时流量;QCO为原料气中CO的实时流量;Q’CO为排放气中CO的实时流量;
当A>2.05时,增加排放气的实时流量或增加原料气中CO和/或CO2的实时流量;当A<2.05时,减少排放气的实时流量或减少原料气中CO和/或CO2的实时流量;当A=2.05时,不作调整。
本发明的发明人研究发现:现有技术中,仅在甲醇合成系统进口原料气管线上设置在线色谱分析仪,分析H2、CO2和CO,计算进入甲醇合成系统中氢气与碳氧化合物比例没有真正反映出实际进行甲醇合成系统中的氢气与碳氧化合物比例。因此,本发明在甲醇合成系统的原料气管线和排放气管线上均设置在线色谱分析仪,分析原料气和排放气中H2、CO2和CO的实时组分含量,计算原料气和排放气中H2、CO2和CO的实时流量,得到调整系数A,即,实时氢气与碳氧化合物比例,从而真实准确反映进入甲醇合成系统氢气与碳氧化合物比例,达到精确调整甲醇合成系统进料的氢气与碳氧化合物,保证甲醇合成稳定高效运行,从而有效提高甲醇的选择率。
根据本发明,优选地,以所述原料气的总量为基准,H2含量为66-69体积%,CO2含量为1.5-3体积%,CO含量为28-31体积%。
根据本发明,优选地,所述原料气中H2、CO2和CO的实时流量各自独立地取决于所述原料气的实时流量,以及原料气中H2、CO2和CO的实时组分含量。
在本发明中,所述原料气的实时流量Q由第一流量计测得。
在本发明中,对所述原料气中H2、CO2和CO的实时组分含量的测量方法具有较宽的选择范围。优选地,所述原料气中H2、CO2和CO的实时组分含量各自独立地由第一在线色谱分析仪测得。
在本发明的一些实施方式中,优选地,所述原料气中H2的实时流量QH2=Q×CH2,其中,Q为原料气的实时流量,Nm3;CH2为原料气中H2的实时组分含量,体积%。
在本发明的一些实施方式中,优选地,所述原料气中CO2的实时流量QCO2=Q×CCO2,其中,Q为原料气的实时流量,Nm3;CCO2为原料气中CO2的实时组分含量,体积%。
在本发明的一些实施方式中,优选地,所述原料气中CO的实时流量QCO=Q×CCO,其中,Q为原料气的实时流量,Nm3;CCO为原料气中CO的实时组分含量,体积%。
在本发明中,为进一步调整所述原料气中CO的实时组分含量,引入第一校正因子α1。
根据本发明,优选地,所述原料气中CO的实时流量QCO=Q×CCO×α1,其中,α1为第一校正因子,α1为0.95-1.05。
在本发明的一些实施方式中,优选地,所述第一校正因子α1=C标,CO/CCO,其中,C标,CO为原料气中CO的标准实时组分含量。
在本发明中,对所述原料气中CO的标准实时组分含量C标,CO的测量方法具有较宽的选择范围。优选地,所述原料气中CO的标准实时组分含量C标,CO由CO红外分析仪测得。
在本发明中,为进一步调整所述原料气中H2的实时组分含量,引入第二校正因子α2。
在本发明的一些实施方式中,优选地,所述原料气中H2的实时流量QH2=Q×CH2×α2,其中,α2为第二校正因子,α2为0.95-1.05。
在本发明的一些实施方式中,优选地,所述第二校正因子α2=(CH2+CCO-C标,CO)/CH2,其中,CH2为原料气中H2的实时组分含量,CCO为原料气中CO的实时组分含量,C标,CO为原料气中CO的标准实时组分含量。
在本发明的一些实施方式中,优选地,所述排放气中H2、CO2和CO的实时流量各自独立地取决于所述排放气的实时流量,以及排放气中H2、CO2和CO的实时组分含量。
在本发明中,所述排放气的实时流量Q’由第二流量计测得。
在本发明中,对所述排放气中H2、CO2和CO的实时组分含量的测量方法具有较宽的选择范围。优选地,所述排放气中H2、CO2和CO的实时组分含量各自独立地由第二在线色谱分析仪测得。
在本发明的一些实施方式中,优选地,所述排放气中H2的实时流量Q’H2=Q’×C’H2,其中,Q’为排放气的实时流量,C’H2为排放气中H2的实时组分含量。
在本发明的一些实施方式中,优选地,所述排放气中CO2的实时流量Q’CO2=Q’×C’CO2,其中,Q’为排放气的实时流量,C’CO2为排放气中CO2的实时组分含量。
在本发明的一些实施方式中,优选地,所述排放气中CO的实时流量Q’CO=Q’×C’CO,其中,Q’为排放气的实时流量,C’CO为排放气中CO的实时组分含量。
本发明第二方面提供一种甲醇合成的装置,该装置包括:依次连接的原料气管线、甲醇合成系统、排放气管线,且所述原料气管线上设置有第一流量计、第一在线色谱分析仪,所述排放气管线上设置有第二流量计、第二在线色谱分析仪;
其中,所述第一流量计用于监测所述原料气的实时流量;
所述第一在线色谱分析仪用于监测所述原料气中H2、CO2和CO的实时组分含量;
所述第二流量计用于监测所述排放气的实时流量;
所述第二在线色谱仪用于监测所述排放气中H2、CO2和CO的实时组分含量。
根据本发明,优选地,所述原料气管线上还设置有CO红外分析仪,用于监测所述原料气中CO的标准实时组分含量。
在本发明中,对所述第一在线色谱分析仪、CO红外分析仪和第一流量计的具体设置位置不作限定。优选地,根据所述原料气的流向,所述原料气管线上依次设置有第一流量计、第一在线色谱分析仪、CO红外分析仪。
在本发明中,对所述第二在线色谱分析仪和第二流量计的具体设置位置不作限定。优选地,根据所述排放气的流向,所述排放气管线上依次设置有第二流量计、第二在线色谱分析仪。
在本发明的一种优选的甲醇合成的装置中,该装置包括:依次连接的原料气管线、甲醇合成系统、排放气管线;根据所述原料气的流向,在所述甲醇合成系统的原料气管线上依次设置有第一流量计、第一在线色谱分析仪、CO红外分析仪,分别测得原料气的实时流量,原料气中H2、CO2和CO的实时组分含量,以及原料气中CO的标准实时组分含量;根据所述排放气的流向,在所述甲醇合成系统的排放气管线上依次设置有第二流量计、第二在线色谱分析仪,分别测得排放气的实时流量,排放气中H2、CO2和CO的实时组分含量。
以下将通过实施例对本发明进行详细描述。
实施例1
根据原料气的流向,在甲醇合成系统的原料气管线上依次设置有第一流量计、第一在线色谱分析仪、CO红外分析仪,测得原料气的实时流量Q,原料气中H2、CO2和CO的实时组分含量CH2、CCO2、CCO,原料气中CO的标准实时组分含量C标,CO
根据排放气的流向,在甲醇合成系统的排放气管线上依次设置有第二流量计、第二在线色谱分析仪,测得排放气的实时流量Q’,排放气中H2、CO2和CO的实时组分含量C’H2、C’CO2、C’CO
计算调整系数A1满足:
Figure BDA0003010553360000071
Figure BDA0003010553360000081
其中,α1=C标,CO/CCO,α2=(CH2+CCO-C标,CO)/CH2
测得A1>2.05,通过增加排放气的流量或增加原料气中CO和/或CO2的实时流量,使合成在最佳的反应条件下进行合成反应,提高合成气的利用率,增加甲醇产量。
实施例2
根据原料气的流向,在甲醇合成系统的原料气管线上依次设置有第一流量计、第一在线色谱分析仪、CO红外分析仪,测得原料气的实时流量Q,原料气中H2、CO2和CO的实时组分含量CH2、CCO2、CCO,原料气中CO的标准实时组分含量C标,CO
根据排放气的流向,在甲醇合成系统的排放气管线上依次设置有第二流量计、第二在线色谱分析仪,测得排放气的实时流量Q’,排放气中H2、CO2和CO的实时组分含量C’H2、C’CO2、C’CO
计算调整系数A2满足:
Figure BDA0003010553360000082
其中,α1=C标,CO/CCO,α2=(CH2+CCO-C标,CO)/CH2
测得A2=2.05,此时系统运行稳定,不需要做调整。
实施例3
根据原料气的流向,在甲醇合成系统的原料气管线上依次设置有第一流量计、第一在线色谱分析仪、CO红外分析仪,测得原料气的实时流量Q,原料气中H2、CO2和CO的实时组分含量CH2、CCO2、CCO,原料气中CO的标准实时组分含量C标,CO
根据排放气的流向,在甲醇合成系统的排放气管线上依次设置有第二流量计、第二在线色谱分析仪,测得排放气的实时流量Q’,排放气中H2、CO2和CO的实时组分含量C’H2、C’CO2、C’CO,原料气中CO的标准实时组分含量C’标,CO
计算调整系数A3满足:
Figure BDA0003010553360000091
其中,α1=C标,CO/CCo,α2=(CH2+CCO-C标,CO)/CH2
测得A3<2.05,通过减少排放气的实时流量或减少原料气中CO和/或CO2的实时流量,使合成在最佳的反应条件下进行合成反应,提高合成气的利用率,增加甲醇产量。
实施例4
按照实施例1的方法,不同的是,在甲醇合成系统的原料气管线上不设置有CO红外分析仪,计算调整系数A4满足:
Figure BDA0003010553360000092
测得A4>2.05,此时只能根据生产经验微调增加原料气中CO和/或CO2的实时流量,或者等第一在线色谱分析仪和第二在线色谱分析仪下一次更新数据后再做调整,这样无法高效的对进入甲醇合成系统的组分进行实时精准的调整,无法在最佳的状态下提高合成气的利用率,增加甲醇产量。
对比例1
按照实施例1的方法,不同的是,仅在甲醇合成系统的原料气管线上依次设置有第一流量计、第一在线色谱分析仪、CO红外分析仪,测得原料气的实时流量Q,原料气中H2、CO2和CO的实时组分含量CH2、CCO2、CCO,原料气中CO的标准实时组分含量C标,CO,计算调整系数DA1:
Figure BDA0003010553360000101
其中,α1=C标,CO/CCO,α2=(CH2+CCO-C标,CO)/CH2
测得DA1>2.05,此时应增加排放气的实时流量或增加原料气中CO和/或CO2的实时流量,原料气中的CO组分含量实时显示,调整系数DA1随着CO实时组分含量的变化随时变化,上游可根据调整系数及时提高原料气中的CO和/或CO2的流量,但是系统排放气中H2、CO和CO2的实时流量无法知道,故无法精准知道甲醇合成系统内H2、CO和CO2的比例,在调整进行甲醇合成系统组分时无法达到实时、高效。
对比例2
按照实施例1的方法,不同的是,仅在甲醇合成系统的原料气管线上依次设置有第一流量计、第一在线色谱分析仪,测得原料气的实时流量Q,原料气中H2、CO2和CO的实时组分含量CH2、CCO2、CCO,计算调整系数DA2:
Figure BDA0003010553360000102
测得DA2<2.05,此时应减少排放气的实时流量或减少原料气中CO和/或CO2的实时流量,原料气中CO的实时组分含量显示有延时,调整系数DA2显示也会滞后,上游原料气中的CO和/或CO2的实时流量不能过快,避免调整幅度过大。
将实施例与对比例进行比较可知,采用本发明1-3可以实时显示进出合成系统的CO、CO2的实时流量,上游可以根据实时显示的结果及时调整,保证原料气达到最佳组分,使甲醇合成系统始终在最佳的组分比例下进行反应,从而提高合成气转化率,增加甲醇的产量,降低单位产品合成气单耗,提高经济效益;而实施例4的效果稍微差些,但也基本能满足要求。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (16)

1.一种甲醇合成的控制方法,其特征在于,该方法在甲醇合成的控制装置中进行;其中,所述装置包括:依次连接的原料气管线、甲醇合成系统、排放气管线,且所述原料气管线上设置有第一流量计、第一在线色谱分析仪,所述排放气管线上设置有第二流量计、第二在线色谱分析仪;其中,所述第一流量计用于监测所述原料气的实时流量;所述第一在线色谱分析仪用于监测所述原料气中H2、CO2和CO的实时组分含量;所述第二流量计用于监测所述排放气的实时流量;所述第二在线色谱仪用于监测所述排放气中H2、CO2和CO的实时组分含量;
该方法包括:将原料气在甲醇合成的条件下进行反应,得到甲醇和排放气;所述原料气和排放气各自独立地含有H2、CO2和CO;其中,设定调整系数A满足下式:
Figure FDA0003980058940000011
其中,QH2为原料气中H2的实时流量;Q’H2为排放气中H2的实时流量;QCO2为原料气中CO2的实时流量;Q’CO2为排放气中CO2的实时流量;QCO为原料气中CO的实时流量;Q’CO为排放气中CO的实时流量;
当A>2.05时,增加排放气的实时流量或增加原料气中CO和/或CO2的实时流量;当A<2.05时,减少排放气的实时流量或减少原料气中CO和/或CO2的实时流量;当A=2.05时,不作调整。
2.根据权利要求1所述的方法,其中,所述原料气中H2、CO2和CO的实时流量各自独立地取决于所述原料气的实时流量,以及原料气中H2、CO2和CO的实时组分含量。
3.根据权利要求2所述的方法,其中,所述原料气中H2的实时流量QH2=Q×CH2,其中,Q为原料气的实时流量,CH2为原料气中H2的实时组分含量。
4.根据权利要求2所述的方法,其中,所述原料气中CO2的实时流量QCO2=Q×CCO2,其中,Q为原料气的实时流量,CCO2为原料气中CO2的实时组分含量。
5.根据权利要求2所述的方法,其中,所述原料气中CO的实时流量QCO=Q×CCO,其中,Q为原料气的实时流量,CCO为原料气中CO的实时组分含量。
6.根据权利要求2所述的方法,其中,所述原料气中CO的实时流量QCO=Q×CCO×α1,其中,α1为第一校正因子,α1为0.95-1.05。
7.根据权利要求6所述的方法,其中,所述第一校正因子α1=C标,CO/CCO,其中,C标,CO为原料气中CO的标准实时组分含量,CCO为原料气中CO的实时组分含量。
8.根据权利要求2所述的方法,其中,所述原料气中H2的实时流量QH2=Q×CH2×α2,其中,α2为第二校正因子,α2为0.95-1.05。
9.根据权利要求8所述的方法,其中,所述第二校正因子α2=(CH2+CCO﹣C标,CO)/CH2,其中,CH2为原料气中H2的实时组分含量,CCO为原料气中CO的实时组分含量,C标,CO为原料气中CO的标准实时组分含量。
10.根据权利要求1所述的方法,其中,所述排放气中H2、CO2和CO的实时流量各自独立地取决于所述排放气的实时流量,以及排放气中H2、CO2和CO的实时组分含量。
11.根据权利要求10所述的方法,其中,所述排放气中H2的实时流量Q’H2=Q’×C’H2,其中,Q’为排放气的实时流量,C’H2为排放气中H2的实时组分含量。
12.根据权利要求10所述的方法,其中,所述排放气中CO2的实时流量Q’CO2=Q’×C’CO2,其中,Q’为排放气的实时流量,C’CO2为排放气中CO2的实时组分含量。
13.根据权利要求10所述的方法,其中,所述排放气中CO的实时流量Q’CO=Q’×C’CO,其中,Q’为排放气的实时流量,C’CO为排放气中CO的实时组分含量。
14.根据权利要求1所述的方法,其中,所述原料气管线上还设置有CO红外分析仪,用于监测所述原料气中CO的标准实时组分含量。
15.根据权利要求1所述的方法,其中,根据所述原料气的流向,所述原料气管线上依次设置有第一流量计、第一在线色谱分析仪、CO红外分析仪。
16.根据权利要求1所述的方法,其中,据所述排放气的流向,所述排放气管线上依次设置有第二流量计、第二在线色谱分析仪。
CN202110376161.0A 2021-04-07 2021-04-07 甲醇合成的控制方法和控制装置 Active CN113135815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110376161.0A CN113135815B (zh) 2021-04-07 2021-04-07 甲醇合成的控制方法和控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110376161.0A CN113135815B (zh) 2021-04-07 2021-04-07 甲醇合成的控制方法和控制装置

Publications (2)

Publication Number Publication Date
CN113135815A CN113135815A (zh) 2021-07-20
CN113135815B true CN113135815B (zh) 2023-04-21

Family

ID=76810595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110376161.0A Active CN113135815B (zh) 2021-04-07 2021-04-07 甲醇合成的控制方法和控制装置

Country Status (1)

Country Link
CN (1) CN113135815B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959074B2 (ja) * 2001-07-19 2012-06-20 三菱重工業株式会社 メタノールの製造方法
CN104086368B (zh) * 2014-07-23 2015-07-08 北京众联盛化工工程有限公司 焦炉煤气制甲醇氢碳比h/c调节工艺方法
CN105460891B (zh) * 2014-09-03 2017-11-07 中国石油天然气股份有限公司 一种甲醇驰放气的回收利用方法及系统

Also Published As

Publication number Publication date
CN113135815A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
Janssen et al. Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts. I. The role of oxygen studied by way of isotopic transients under dilute conditions
Zhang et al. Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts
CN204214820U (zh) 一种用于加氢过程催化剂评价的集成装置
JPH09104649A (ja) 供給物流中の反応物濃度比を制御する方法
CN104194836A (zh) 制备合成气的方法
CA2887876A1 (en) Method and apparatus for generating a methane-containing substitute natural gas and related energy supply system
CN113135815B (zh) 甲醇合成的控制方法和控制装置
EP2922783B1 (en) Catalysts for hydrogen production from oxygenated feedstocks
Bhatta et al. Role of Urania and Alumina as Supports in the Steam Reforming of n-Butane at Pressure over Nickel-containing Catalysts
US20060233701A1 (en) Method and apparatus to improve the industrial production of hydrogen-carbon monoxide
CN113149811B (zh) 甲醇合成的调整方法
US20060198780A1 (en) Method and apparatus for removing CO2 in mixed gas such as biogas
US20180029884A1 (en) Methods for hydrogenation of carbon dioxide to syngas
CN103055871A (zh) 一种c4脂肪烃氧化脱氢制备丁二烯的方法及所用催化剂
CN105886695A (zh) 一种转炉煤气的脱氧方法和装置
CN101195476A (zh) 制备氢气的方法和装置
US3692480A (en) Method for controlling a sulfur recovery process
CN104803352A (zh) 一种提高蒸汽重整制氢效率的方法
Ay et al. Design studies for monolithic high temperature shift catalysts: Effect of operational parameters
Raybold et al. Analyzing enhancement of CO2, reforming of CH4, in Pd membrane reactors
Boon et al. Water–gas shift kinetics over FeCr-based catalyst: effect of hydrogen sulphide
CN114436748A (zh) 液相选择加氢反应中的控制方法、控制系统及反应系统
JPS5954608A (ja) 粗不活性ガス中の酸素分除去方法
CN205603621U (zh) 一种转炉煤气的脱氧装置
CN101825222B (zh) 一种煤炭气化气体提供方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant