CN113121207B - 一种低介低二次电子发射系数复合粉体、制备方法及应用 - Google Patents

一种低介低二次电子发射系数复合粉体、制备方法及应用 Download PDF

Info

Publication number
CN113121207B
CN113121207B CN201911389649.6A CN201911389649A CN113121207B CN 113121207 B CN113121207 B CN 113121207B CN 201911389649 A CN201911389649 A CN 201911389649A CN 113121207 B CN113121207 B CN 113121207B
Authority
CN
China
Prior art keywords
ball milling
low
alumina
composite powder
electron emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911389649.6A
Other languages
English (en)
Other versions
CN113121207A (zh
Inventor
杨殿来
张莹莹
段同飞
杨国庆
马俊良
崔俊刚
薛健
许壮志
张明
周亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Light Industry Science Research Institute Co ltd
Original Assignee
Liaoning Light Industry Science Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Light Industry Science Research Institute Co ltd filed Critical Liaoning Light Industry Science Research Institute Co ltd
Priority to CN201911389649.6A priority Critical patent/CN113121207B/zh
Publication of CN113121207A publication Critical patent/CN113121207A/zh
Application granted granted Critical
Publication of CN113121207B publication Critical patent/CN113121207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明公开了一种低介低二次电子发射系数复合粉体、制备方法及应用,其中,所述复合粉体包括Al、Cr、Mn、Ti、Mo、Si、La、Eu、Y、Ho、Mg、Cu,制备方法如下:首先,引入掺杂剂并进行一次球磨,然后,缓慢加入氧化铝粉体进行二次高能球磨,得氧化铝基球磨浆料,最后,对氧化铝基球磨浆料进行真空冷冻干燥、低温煅烧获得。该复合粉体可以通过刷涂、喷涂等多种施工工艺对真空绝缘材料进行涂层,达到提高真空绝缘工件,尤其是伪火花开关沿面闪络耐压的效果。

Description

一种低介低二次电子发射系数复合粉体、制备方法及应用
技术领域
本发明属于真空高压绝缘技术领域,特别提供了一种可提高沿面闪络电压的氧化铝基低二次电子发射系数复合粉体、制备方法及应用。
背景技术
在能源、宇航和高能物理研究等许多高电压应用领域中,固体绝缘子的电绝缘和支撑都是至关重要的。例如高压真空断路器、高功率光导开关、高功率速调管及空间飞行器的电源系统往往都要承受高电压的作用。往往桥接真空间隙的绝缘固体的耐高电压击穿能力普遍低于单纯真空间隙,而绝缘固体本身的体击穿耐压强度仍高于同尺寸的真空间隙。且伴随击穿过程、沿绝缘固体表面有显著的放电闪烁发生。显然,发生于绝缘固体表面的放电闪烁是绝缘固体耐高电压能力降低的症结。大量研究表明:绝缘子表面的电子发射和表面荷电增强电场都是导致绝缘子表面闪络形成并最后完全击穿的关键。
尽管如此,绝缘子在各种电力设备和许多真空器件中被大量使用,同时在伪火花开关中也得到了广泛的应用,主要起到真空密封、结构支撑和高压绝缘的作用。目前伪火花开关产品(如图1所示)所使用的绝缘材料均为95%氧化铝,其介电常数在9-12之间,而伪火花开关内真空介电常数为1,两者相差近一个数量级,存在着场强畸变,当在其两端施加电压时,场强畸变不断增强,金属电极、真空和绝缘材料表面三者结合处的局部电场强度较高,此处发生场致电子发射,产生一次电子。一次电子在电场的作用下被加速获得能量并撞击绝缘子表面,产生二次电子,电子数不断的增加,绝缘材料表面发射二次电子后留下了正电荷,而后不断发生的一次电子碰撞、二次电子发射、二次电子再次碰撞绝缘陶瓷材料表面等,使绝缘陶瓷材料表面积累了大量的正电荷,并导致产生二次电子发射雪崩,在电场的作用下向阳极移动。该过程中还伴随着部分气体分子解吸附后而发生电离,在电场的作用下,带电的气体分子也随着电子崩向阳极移动。上述过程在足够高的电压下构成正反馈,最终造成了击穿。
如果高压绝缘陶瓷材料的耐压性能不满足要求,不仅影响伪火花开关器件的性能参数,并且通常会出现放电击穿现象,严重影响了伪火花开关器件的使用寿命和工作的可靠性与稳定性,电击穿对伪火花开关而言是致命的问题。
针对上述造成伪火花开关沿面闪络的主要因素,国内外学者研究表明在绝缘材料表面制备一层低二次电子发射系数的涂层可有效的提高其沿面闪络耐压值,进而提高其工作稳定性与使用寿命等。然而,大部分研究都只是停留在直接选用一种或两种低二次电子发射的粉体进行涂覆的方式,而针对提高伪火花开关绝缘材料沿面闪络耐压涂层用的复合粉体的相关研制工作等鲜有报道。
发明内容
鉴于此,本发明的目的是从真空绝缘工件沿面闪络原理出发,提供一种采用高能球磨工艺方式制备的低介低二次电子发射系数的复合粉体,该种复合粉体可以通过刷涂、喷涂等多种施工工艺对真空绝缘材料进行涂层制备,达到提高真空绝缘工件,尤其是伪火花开关沿面闪络耐压的目的。
本发明一方面提供了一种低介低二次电子发射系数复合粉体,按摩尔量计,包括如下组分:Al:85.0~92.0份、Cr:1.0~10.0份、Mn:1.0~8.0份、Ti:1.0~3.5份、Mo:0.01~0.09份、Si:0.02~0.18份、La:0.01~0.09份、Eu:0.01~0.09份、Y:0.01~2.0份、Ho:0.01~2.0份、Mg:0.05~1.0份、Cu:0.05~3.0份。
本发明还提供了一种上述低介低二次电子发射系数复合粉体的制备方法,包括如下步骤:
步骤1:按摩尔量,将掺杂剂Cr、Mn、Ti、Mo、Si、Mg和Cu以氧化物形式引入,La、Eu、Y、Ho以硝酸盐形式引入,加入到高能球磨设备的容量腔内进行一次球磨,球磨介质为去离子水和无水乙醇,球磨转数为3000-6000转/min,球磨时间为30-60min,球磨中加入分散剂;
步骤2:将氧化铝粉体缓慢加入到高能球磨设备容量腔内,与步骤1中球磨的掺杂剂进行二次高能球磨,得氧化铝基球磨浆料,球磨转数为3000-6000转/min,球磨时间为60-120min,球磨期间,不断加入球磨介质与分散剂;
步骤3:将步骤2中获得的氧化铝基球磨浆料取出,采用真空冷冻干燥技术进行干燥,后进行300~450℃低温煅烧,得到粒度分布范围窄、分散性良好的氧化铝基复合粉体。
优选,步骤1和步骤2中,球磨介质中,去离子水与无水乙醇,按体积比1:5引入。
进一步优选,步骤1中,加入的分散剂的体积占掺杂剂物料总体积的0.001-0.01。
进一步优选,步骤2中,以球磨介质与氧化铝基球磨浆料的质量比为1:1的比例不断加入球磨介质,加入的分散剂的体积占氧化铝基球磨浆料体积的0.001-0.01。
本发明还提供了一种上述低介低二次电子发射系数复合粉体的应用,首先,向所述复合粉体中添加质量为5%~10%的聚乙烯醇(PVA)溶液进行造粒,得复合造粒粉体,之后,将所述复合造粒粉体作为粉料在氧化铝陶瓷基片上进行涂层制备。
优选,所述涂层的厚度为20~100μm。
本发明针对目前真空绝缘材料尤其是伪火花开关用绝缘材料发生沿面闪络的原因,采用高能球磨工艺,在氧化铝基础粉体中通过进行掺杂改性来优化复合粉体介电性能、降低二次电子发射系数,提高抗还原性等掺杂剂进行改性,制得的粉体具有低的介电常数、低二次电子发射系数、成分均匀、粒度细、分布范围窄、分散性好等优点,保证了后续制备涂层后应用中的稳定性与可靠性。
附图说明
下面结合附图及实施方式对本发明作进一步详细的说明:
图1为伪火花开关的结构示意图;
图中,1、阳极;2、空心阴极;3、绝缘陶瓷;4、触发单元;5、氢储存器。
具体实施方式
为了解决现有技术中存在的问题,本发明一方面提供了一种低介低二次电子发射系数复合粉体,按摩尔量计,包括如下组分:Al:85.0~92.0份、Cr:1.0~10.0份、Mn:1.0~8.0份、Ti:1.0~3.5份、Mo:0.01~0.09份、Si:0.02~0.18份、La:0.01~0.09份、Eu:0.01~0.09份、Y:0.01~2.0份、Ho:0.01~2.0份、Mg:0.05~1.0份、Cu:0.05~3.0份。
该低介低二次电子发射系数复合粉体,以氧化铝粉体为母体材料,进行其他元素的引入,Cr、Mn、Ti、Mo、Cu由于具有较低的二次电子发射系数,主要起到降低主体材料二次电子发射系数的目的,其他几种元素的引入,主要用于协同调整主体材料的介电常数,从而获得一种低介低二次电子发射系数的复合粉体。
本发明还提供了一种上述低介低二次电子发射系数复合粉体的制备方法,包括如下步骤:
步骤1:按摩尔量,将掺杂剂Cr、Mn、Ti、Mo、Si、Mg和Cu以氧化物形式引入,La、Eu、Y、Ho以硝酸盐形式引入,加入到高能球磨设备的容量腔内进行一次球磨,球磨介质为去离子水和无水乙醇,球磨转数为3000-6000转/min,球磨时间为30-60min,球磨中加入分散剂;
步骤2:将氧化铝粉体缓慢加入到高能球磨设备容量腔内,与步骤1中球磨的掺杂剂进行二次高能球磨,得氧化铝基球磨浆料,球磨转数为3000-6000转/min,球磨时间为60-120min,球磨期间,不断加入球磨介质与分散剂;
步骤3:将步骤2中获得的氧化铝基球磨浆料取出,采用真空冷冻干燥技术进行干燥,后进行300~450℃低温煅烧,得到粒度分布范围窄、分散性良好的氧化铝基复合粉体。
优选,步骤1中,球磨介质中,去离子水与无水乙醇,按体积比1:5引入。
进一步优选,步骤1中,加入的分散剂的体积占掺杂剂物料总体积的0.001-0.01。
进一步优选,步骤2中,以球磨介质与氧化铝基球磨浆料的质量比为1:1的比例不断加入球磨介质,加入的分散剂的体积占氧化铝基球磨浆料体积的0.001-0.01。
本发明还提供了上述低介低二次电子发射系数复合粉体的应用:首先,向所述复合粉体中添加占粉体质量为5%~10%的聚乙烯醇(PVA)溶液进行造粒,得复合造粒粉体,之后,将所述复合造粒粉体作为粉料在氧化铝陶瓷基片上进行涂层制备,优选,所述涂层的厚度为20~100um。
该涂层可有效降低绝缘材料表面的介电常数和二次电子发射系数,进而大幅度的提高了沿面闪络耐压。
下面将以具体的实施例对本发明进行进一步的解释说明,但并不用于限制本发明的保护范围。
实施例1:
低介低二次电子发射系数复合粉体,按摩尔量计,包括如下组分:Al:85.0份、Cr:10.0份、Mn:1.0份、Ti:3.5份、Mo:0.01份、Si:0.02份、La:0.09份、Eu:0.01份、Y:0.01份、Ho:2.0份、Mg:0.05份、Cu:3.0份。
按照如下步骤制备上述低介低二次电子发射系数复合粉体:
步骤1:按摩尔量,将掺杂剂Cr、Mn、Ti、Mo、Si、Mg和Cu以氧化物形式引入,La、Eu、Y、Ho以硝酸盐形式引入,加入到高能球磨设备的容量腔内进行一次球磨,球磨介质为去离子水和无水乙醇,其中,去离子水与无水乙醇,按体积比1:5引入,球磨转数为3000转/min,球磨时间为60min,球磨期间,按分散剂的体积占掺杂剂物料总体积的0.001加入分散剂;
步骤2:将氧化铝粉体缓慢加入到高能球磨设备容量腔内,与步骤1中球磨的掺杂剂进行二次高能球磨,得氧化铝基球磨浆料,球磨转数为3000转/min,球磨时间为120min,球磨期间,以球磨介质与氧化铝基球磨浆料的质量比为1:1的比例不断加入球磨介质,同时,按分散剂的体积占氧化铝基球磨浆料体积的0.001加入分散剂;
步骤3:将步骤2中获得的氧化铝基球磨浆料取出,采用真空冷冻干燥技术进行干燥,后进行300℃低温煅烧,得到粒度分布范围窄、分散性良好的氧化铝基复合粉体,之后,向所述粉体中添加占粉体质量为5%的聚乙烯醇(PVA)溶液进行造粒,得复合造粒粉体,之后,将所述复合造粒粉体作为粉料在氧化铝陶瓷基片上进行涂层制备,其中,所述涂层采用超音速等离子喷涂工艺进行制备,涂层厚度为20um。
实施例2
低介低二次电子发射系数复合粉体,按摩尔量计,包括如下组分:Al:92.0份、Cr:1.0份、Mn:8.0份、Ti:1.0份、Mo:0.09份、Si:0.18份、La:0.01份、Eu:0.09份、Y:2.0份、Ho:0.01份、Mg:1.0份、Cu:0.05份。
按照如下步骤制备上述低介低二次电子发射系数复合粉体:
步骤1:按摩尔量,将掺杂剂Cr、Mn、Ti、Mo、Si、Mg和Cu以氧化物形式引入,La、Eu、Y、Ho以硝酸盐形式引入,加入到高能球磨设备的容量腔内进行一次球磨,球磨介质为去离子水和无水乙醇,其中,去离子水与无水乙醇,按体积比1:5引入,球磨转数为6000转/min,球磨时间为30min,球磨期间,按分散剂的体积占掺杂剂物料总体积的0.01加入分散剂;
步骤2:将氧化铝粉体缓慢加入到高能球磨设备容量腔内,与步骤1中球磨的掺杂剂进行二次高能球磨,得氧化铝基球磨浆料,球磨转数为6000转/min,球磨时间为60min,球磨期间,以球磨介质与氧化铝基球磨浆料的质量比为1:1的比例不断加入球磨介质,同时,按分散剂的体积占氧化铝基球磨浆料体积的0.01加入分散剂;
步骤3:将步骤2中获得的氧化铝基球磨浆料取出,采用真空冷冻干燥技术进行干燥,后进行450℃低温煅烧,得到粒度分布范围窄、分散性良好的氧化铝基复合粉体,之后,向所述粉体中添加占粉体质量为10%的聚乙烯醇(PVA)溶液进行造粒,得复合造粒粉体,之后,将所述复合造粒粉体作为粉料在氧化铝陶瓷基片上进行涂层制备,其中,所述涂层采用超音速等离子喷涂工艺进行制备,涂层厚度为100um。
实施例3
低介低二次电子发射系数复合粉体,按摩尔量计,包括如下组分:Al:90.0份、Cr:5.0份、Mn:5.0份、Ti:2.0份、Mo:0.05份、Si:0.10份、La:0.05份、Eu:0.05份、Y:1.0份、Ho:1.0份、Mg:0.08份、Cu:1.5份。
按照如下步骤制备上述低介低二次电子发射系数复合粉体:
步骤1:按摩尔量,将掺杂剂Cr、Mn、Ti、Mo、Si、Mg和Cu以氧化物形式引入,La、Eu、Y、Ho以硝酸盐形式引入,加入到高能球磨设备的容量腔内进行一次球磨,球磨介质为去离子水和无水乙醇,其中,去离子水与无水乙醇,按体积比1:5引入,球磨转数为4500转/min,球磨时间为45min,球磨期间,按分散剂的体积占掺杂剂总体积的0.005加入分散剂;
步骤2:将氧化铝粉体缓慢加入到高能球磨设备容量腔内,与步骤1中球磨的掺杂剂进行二次高能球磨,得氧化铝基球磨浆料,球磨转数为4500转/min,球磨时间为100min,球磨期间,以球磨介质与氧化铝基球磨浆料的质量比为1:1的比例不断加入球磨介质,同时,按分散剂的体积占氧化铝基球磨浆料体积的0.005加入分散剂;
步骤3:将步骤2中获得的氧化铝基球磨浆料取出,采用真空冷冻干燥技术进行干燥,后进行400℃低温煅烧,得到粒度分布范围窄、分散性良好的氧化铝基复合粉体,之后,向所述粉体中添加占粉体质量为8%的聚乙烯醇(PVA)溶液进行造粒,得复合造粒粉体,之后,将所述复合造粒粉体作为粉料在氧化铝陶瓷基片上进行涂层制备,该处的涂层采用超音速等离子喷涂工艺进行制备,涂层厚度为60um。
取实施例1至实施例3得到的涂层及95%氧化铝绝缘材料进行测试,得到的测试结果见表1。
表1
结论:通过本发明制备的复合粉体介电常数低,相比伪火花开关用95%氧化铝绝缘材料同比降低了20%~40%,二次电子发射系数低,相比伪火花开关用95%氧化铝绝缘材料降低了30%~40%,还可有效提高绝缘材料沿面耐压。

Claims (5)

1.一种低介低二次电子发射系数复合粉体的应用,其特征在于:首先,向低介低二次电子发射系数复合粉体中添加占粉体质量为5%~10%的聚乙烯醇溶液进行造粒,得复合造粒粉体,之后,将所述复合造粒粉体作为粉料在氧化铝陶瓷基片上进行涂层制备;其中,所述低介低二次电子发射系数复合粉体按摩尔量计,包括如下组分:Al:85.0 ~92.0份、Cr:1.0~10.0份、Mn:1.0~8.0 份、Ti:1.0~3.5份、Mo:0.01~0.09份、Si:0.02~0.18份 、La:0.01~0.09份、Eu:0.01~0.09份、Y:0.01~2.0份、Ho:0.01~2.0份、Mg:0.05 ~1.0份、Cu:0.05~3.0份,所述低介低二次电子发射系数复合粉体的制备方法包括如下步骤:
步骤1:按摩尔量,将掺杂剂Cr、Mn、Ti、Mo、Si、Mg和Cu以氧化物形式引入,La、Eu、Y、Ho以硝酸盐形式引入,加入到高能球磨设备的容量腔内进行一次球磨,球磨介质为去离子水和无水乙醇,球磨转数为3000-6000转/min,球磨时间为30-60min,球磨中加入分散剂;
步骤2:将氧化铝粉体缓慢加入到高能球磨设备容量腔内,与步骤1中球磨的掺杂剂进行二次高能球磨,得氧化铝基球磨浆料,球磨转数为3000-6000转/min,球磨时间为60-120min,球磨期间,不断加入球磨介质与分散剂;
步骤3:将步骤2中获得的氧化铝基球磨浆料取出,采用真空冷冻干燥技术进行干燥,后进行300~450℃低温煅烧,得到粒度分布范围窄、分散性良好的氧化铝基复合粉体。
2.按照权利要求1所述低介低二次电子发射系数复合粉体的应用,其特征在于:步骤1和步骤2中,球磨介质中,去离子水与无水乙醇,按体积比1:5引入。
3.按照权利要求1所述低介低二次电子发射系数复合粉体的应用,其特征在于:步骤1中,加入的分散剂的体积占掺杂剂物料总体积的0.001-0.01。
4.按照权利要求1所述低介低二次电子发射系数复合粉体的应用,其特征在于:步骤2中,以球磨介质与氧化铝基球磨浆料的质量比为1:1的比例不断加入球磨介质,加入的分散剂的体积占氧化铝基球磨浆料体积的0.001-0.01。
5.按照权利要求1所述低介低二次电子发射系数复合粉体的应用,其特征在于:所述涂层的厚度为20~100μm。
CN201911389649.6A 2019-12-30 2019-12-30 一种低介低二次电子发射系数复合粉体、制备方法及应用 Active CN113121207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911389649.6A CN113121207B (zh) 2019-12-30 2019-12-30 一种低介低二次电子发射系数复合粉体、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911389649.6A CN113121207B (zh) 2019-12-30 2019-12-30 一种低介低二次电子发射系数复合粉体、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113121207A CN113121207A (zh) 2021-07-16
CN113121207B true CN113121207B (zh) 2023-10-13

Family

ID=76767357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911389649.6A Active CN113121207B (zh) 2019-12-30 2019-12-30 一种低介低二次电子发射系数复合粉体、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113121207B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115412A2 (en) * 1983-01-27 1984-08-08 United Kingdom Atomic Energy Authority Coating for electronic substrate
CN1736957A (zh) * 2004-08-17 2006-02-22 中国科学院合肥物质科学研究院 致密陶瓷绝缘涂层及制备方法
CN101183574A (zh) * 2007-11-16 2008-05-21 西安交通大学 一种提高真空绝缘介质沿面闪络电压的方法
CN102087944A (zh) * 2010-09-30 2011-06-08 四川虹欧显示器件有限公司 等离子体显示面板的复合介质保护膜及其制备方法
CN102424576A (zh) * 2011-08-31 2012-04-25 清华大学 具有自适应均匀电场作用的非线性复合材料的制备方法
CN109369158A (zh) * 2018-11-15 2019-02-22 广东省新材料研究所 一种绝缘导热复合陶瓷粉末及其制备方法与应用、绝缘导热涂层
CN110136901A (zh) * 2019-06-13 2019-08-16 西北核技术研究院 一种提高陶瓷绝缘子闪络电压的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115412A2 (en) * 1983-01-27 1984-08-08 United Kingdom Atomic Energy Authority Coating for electronic substrate
CN1736957A (zh) * 2004-08-17 2006-02-22 中国科学院合肥物质科学研究院 致密陶瓷绝缘涂层及制备方法
CN101183574A (zh) * 2007-11-16 2008-05-21 西安交通大学 一种提高真空绝缘介质沿面闪络电压的方法
CN102087944A (zh) * 2010-09-30 2011-06-08 四川虹欧显示器件有限公司 等离子体显示面板的复合介质保护膜及其制备方法
CN102424576A (zh) * 2011-08-31 2012-04-25 清华大学 具有自适应均匀电场作用的非线性复合材料的制备方法
CN109369158A (zh) * 2018-11-15 2019-02-22 广东省新材料研究所 一种绝缘导热复合陶瓷粉末及其制备方法与应用、绝缘导热涂层
CN110136901A (zh) * 2019-06-13 2019-08-16 西北核技术研究院 一种提高陶瓷绝缘子闪络电压的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
电机轴承用Al2O3基复合陶瓷绝缘涂层的制备及性能研究;李庆林;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;B022-350 *
高压绝缘氧化铝陶瓷涂覆层组织结构分析;郑家贵等;《材料工程》(第01期);第15-18页 *
黄拿灿.现代模具强化新技术新工艺.《现代模具强化新技术新工艺》.国防工业出版社,2008,第281页. *

Also Published As

Publication number Publication date
CN113121207A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
Hosono et al. Surface charges on alumina in vacuum with varying surface roughness and electric field distribution
Miller Improving the voltage holdoff performance of alumina insulators in vacuum through quasimetallizing
CN113121207B (zh) 一种低介低二次电子发射系数复合粉体、制备方法及应用
Saito Surface breakdown phenomena in alumina rf windows
Jaitly et al. Novel insulator designs for superior DC hold-off in bridged vacuum gaps
Kojima et al. Conditioning mechanism of Cu-Cr electrode based on electrode surface state under impulse voltage application in vacuum
Hawley et al. Insulating properties of high vacuum
US7525409B2 (en) Method of manufacturing a varistor
CN113121206B (zh) 一种伪火花开关用内壁陶瓷涂层的制备方法
Gortler et al. Investigations of pulsed surface flashovers for the triggering of pseudospark high-power switches
Li et al. Gas desorption induced discharge in vacuum and its polarity effect
Chernyshova et al. Deposition of nanolayers by means of dense plasma focus
Miller The effect of doping on the voltage holdoff performance of alumina insulators in vacuum
Yao et al. A high-voltage and high-current triggered vacuum switch
Zhong et al. Time characteristics of fast pulsed flashover in vacuum
Cheng et al. Study on the vacuum surface flashover characteristics of epoxy composites with different fillers under steep high-voltage impulse
Yu et al. Influence of pulse steepness on vacuum flashover of casting epoxy resin
Haq et al. Graded surface roughness of epoxy: a novel approach of surface modification to enhance surface flashover voltage
CN101183574A (zh) 一种提高真空绝缘介质沿面闪络电压的方法
Zhou et al. Plasma stability in a triggered vacuum switch
Kojima et al. Charge behavior and partial discharge characteristics on alumina dielectrics under ac voltage application in vacuum
Zhang et al. A Miniaturized Surface Flash Triggered Vacuum Switch with Low Trigger Delay Time and High Working Life
Zhang et al. Atmosphere dependence of DC surface flashover voltage of insulators
Kita et al. Electrode material adhesion between anode and cathode in spark conditioning in vacuum
Katagiri et al. Relaxation of electric field by covering cathode-edge with vanadate glass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant