CN113111476A - 一种提高电网韧性的人-车-物应急资源优化调度方法 - Google Patents

一种提高电网韧性的人-车-物应急资源优化调度方法 Download PDF

Info

Publication number
CN113111476A
CN113111476A CN202110475558.5A CN202110475558A CN113111476A CN 113111476 A CN113111476 A CN 113111476A CN 202110475558 A CN202110475558 A CN 202110475558A CN 113111476 A CN113111476 A CN 113111476A
Authority
CN
China
Prior art keywords
emergency
point
fault point
fault
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110475558.5A
Other languages
English (en)
Other versions
CN113111476B (zh
Inventor
刘念
李晨晨
陈刘东
刘亮
姚一鸣
蒋鑫
魏苒
王康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Electric Power University
Electric Power Research Institute of State Grid Jibei Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Electric Power University
Electric Power Research Institute of State Grid Jibei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Electric Power University, Electric Power Research Institute of State Grid Jibei Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202110475558.5A priority Critical patent/CN113111476B/zh
Publication of CN113111476A publication Critical patent/CN113111476A/zh
Application granted granted Critical
Publication of CN113111476B publication Critical patent/CN113111476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种提高电网韧性的人‑车‑物应急资源优化调度方法,所述优化调度方法包括如下步骤:构建应急资源调度框架;基于应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;基于应急资源调度框架确定联合优化模型的约束条件;基于约束条件求解所述联合优化模型,确定最优调度方案。本发明考虑人员、应急电源车、物资三种应急资源,确定考虑停电时间、甩负荷量及调配成本,实现应急资源的最优调配,提出综合考虑停电时间、甩负荷及调配成本的联合优化模型,实现三个目标的协同优化,提高电网的韧性。

Description

一种提高电网韧性的人-车-物应急资源优化调度方法
技术领域
本发明涉及资源调度技术领域,特别是涉及一种提高电网韧性的人-车-物应急资源优化调度方法及系统。
背景技术
随着高比例新能源以及电力电子装置的接入,电网的韧性及可靠性降低,更容易受到气候与自然灾害的影响,因此针对电网故障的管理迫在眉睫。优化调度应急资源是一种有效提高电网韧性的方法,通过应急资源的合理配置及调度,减少电网故障对电网正常运行的影响。传统的应急调度方法研究了不同自然灾害的特性,通过对灾害进行建模,从电网的角度,分析灾前灾后对电力系统正常运行的影响;对故障电网的恢复研究了分布式能源的优化调度,通过配电网重构等方式选择分布式电源接入电网的位置以及出力;针对应急调度中可能出现的修理时间和需求的不确定性,通过随机优化方法进行两阶段的优化调度。而后引入了人员修理到电网的恢复中,对电网及修理人员进行联合调度,并考虑不同种类型人员在修理中的作用,其中的优化目标多为最小化修理时间以及停电负荷。近年来,应急电源车逐渐在电网故障的应急抢修中发挥作用,并且随着投入应急抢修的人员与物资数量不断增加,应急抢修成本也成为了一个重要的影响因素,鲜有研究考虑应急电源车和修理人员之间的耦合关系,即应急电源车介入能对人员修理产生何种影响,以及二者受到成本制约后的最优调度方案,导致现有的调度方案通常不能达最优,降低电网的韧性。
发明内容
本发明的目的是提供一种提高电网韧性的人-车-物应急资源优化调度方法及系统,以实现调度方案的更加优化,提高电网的韧性。
为实现上述目的,本发明提供了如下方案:
本发明提供一种提高电网韧性的人-车-物应急资源优化调度方法,所述优化调度方法包括如下步骤:
构建应急资源调度框架,所述应急资源调度框架包含道路网、电网和多个应急保障点,所述应急保障点包括人员、应急电源车和物资;
基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;
基于所述应急资源调度框架确定所述联合优化模型的约束条件;
基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。
可选的,所述第一应急资源调配模型为:
T=Trou+Tre
Figure BDA0003047273490000021
Figure BDA0003047273490000022
其中,T为停电时间,Trou为路程时间,F和K分别为故障点的数量和应急保障点的数量,βk,f表示应急保障点k是否为故障点f提供应急服务,若提供服务,则βk,f=1,否则,βk,f=0,β'k,f表示应急人员和物资是否在故障点f与故障点(f+1)之间转移,若是,β'k,f=1,否则,β'k,f=0,Lk,f为应急保障点k与故障点f之间的地理距离,L′k,f为故障点f与故障点(f+1)之间的地理距离,[·]-表示矩阵的转置,v为行进速度;Tre表示维修时间,C为应急人员的数量,αc,f表示应急人员c是否维修故障点f,若维修,则αc,f=1,否则,αc,f=0,Tf,c表示应急人员c维修故障点f的所需时间,mf,k为应急保障点k对故障点f调度的应急物资。
可选的,所述第二应急资源调配模型为:
Figure BDA0003047273490000031
Figure BDA0003047273490000032
其中,PL是甩负荷总量,Fk为应急保障点k所负责的故障点集合,Pf’为故障点f’的甩负荷,xk,q表示应急保障点k是否派遣应急电源车q,若派遣,则xk,q=1,否则,xk,q=0,Q为所有应急保障点配备的应急电源车的最大数量,yk,f″表示是否从应急保障点k派遣应急电源车到故障点f”,若派遣,则yk,f″=1,否则,yk,f″=0,y′k,f″表示应急电源车是否在故障点f″与故障点(f″+1)之间转移,若是,yk,f″=1,否则,y′k,f″=0,Ek,q为应急保障点k的应急电源车q的发电量;Lk,f″为应急保障点k与故障点f”之间的地理距离,L′k,f″为故障点f”与故障点(f”+1)之间的地理距离;
t表示甩负荷持续时间,αc,f'表示应急人员c是否维修故障点f',若维修,则αc,f'=1,否则,αc,f'=0;Tc,f'表示应急人员c维修故障点f'的所需时间,mf',k为应急保障点k对故障点f'调度的应急物资;βk,f'表示应急保障点k是否为故障点f'提供应急服务,若提供服务,则βk,f'=1,否则,βk,f'=0,βk,f'表示应急人员和物资是否在故障点f'与故障点(f'+1)之间转移,若是,β′k,f'=1,否则,β′k,f'=0。
可选的,所述第三应急资源调配模型为:
Figure BDA0003047273490000033
其中,S为应急资源的调配成本,sm为使用应急物资m的成本,sc为应急人员c的工资,Qk为应急保障点k配备的应急电源车的最大数量,sq为应急电源车q的成本,pri为应急电源车的单位发电量的发电成本。
可选的,所述联合优化模型为:
obj:y1·T+Y2·PL+Y3·S
其中,γ1、γ2、γ3分别为停电时间、甩负荷量及调配成本的权重系数。
可选的,所述约束条件为:
Figure BDA0003047273490000041
其中,Mk为应急保障点k的物资总量,k*为由应急保障点k负责的故障点集合,k'为k*的元素,z为故障点集合中的元素;
Yk为应急保障点k配备的应急电源车的总数,Ek,q_max是应急保障点k的应急电源车q的发电量上限;
Pb为电网中支路b的实际传输功率,Ui为电网中节点i的实际电压值,F(·)为潮流计算函数,Pi和Qi分别为电网中节点i的有功负荷和无功负荷,rb和xb分别为电网中支路b的电阻和电抗;Pb_min、Pb_max分别是电网中支路b最小传输功率及最大传输功率;Ui_min和Ui_max分别是电网正常运行的最低电压和最高电压。
一种提高电网韧性的人-车-物应急资源优化调度系统,所述优化调度系统包括:
应急资源调度框架构建模块,用于构建应急资源调度框架,所述应急资源调度框架包含道路网、电网和多个应急保障点,所述应急保障点包括人员、应急电源车和物资;
联合优化模型建立模块,用于基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;
约束条件确定模块,用于基于所述应急资源调度框架确定所述联合优化模型的约束条件;
最优调度方案确定模块,用于基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。
可选的,所述第一应急资源调配模型为:
T=Trou+Tre
Figure BDA0003047273490000051
Figure BDA0003047273490000052
其中,T为停电时间,Trou为路程时间,F和K分别为故障点的数量和应急保障点的数量,βk,f表示应急保障点k是否为故障点f提供应急服务,若提供服务,则βk,f=1,否则,βk,f=0,β'k,f表示应急人员和物资是否在故障点f与故障点(f+1)之间转移,若是,β'k,f=1,否则,β'k,f=0,Lk,f为应急保障点k与故障点f之间的地理距离,L′k,f为故障点f与故障点(f+1)之间的地理距离,[·]-表示矩阵的转置,v为行进速度;Tre表示维修时间,C为应急人员的数量,αc,f表示应急人员c是否维修故障点f,若维修,则αc,f=1,否则,αc,f=0,Tf,c表示应急人员c维修故障点f的所需时间,mf,k为应急保障点k对故障点f调度的应急物资。
可选的,所述第二应急资源调配模型为:
Figure BDA0003047273490000061
Figure BDA0003047273490000062
其中,PL是甩负荷总量,Fk为应急保障点k所负责的故障点集合,Pf’为故障点f’的甩负荷,xk,q表示应急保障点k是否派遣应急电源车q,若派遣,则xk,q=1,否则,xk,q=0,Q为所有应急保障点配备的应急电源车的最大数量,yk,f″表示是否从应急保障点k派遣应急电源车到故障点f”,若派遣,则yk,f″=1,否则,yk,f″=0,y′k,f″表示应急电源车是否在故障点f″与故障点(f″+1)之间转移,若是,y′k,f″=1,否则,y′k,f″=0,Ek,q为应急保障点k的应急电源车q的发电量;Lk,f″为应急保障点k与故障点f”之间的地理距离,L′k,f″为故障点f”与故障点(f”+1)之间的地理距离;
t表示甩负荷持续时间,αc,f'表示应急人员c是否维修故障点f',若维修,则αc,f'=1,否则,αc,f'=0;Tc,f'表示应急人员c维修故障点f'的所需时间,mf',k为应急保障点k对故障点f'调度的应急物资;βk,f'表示应急保障点k是否为故障点f'提供应急服务,若提供服务,则βk,f'=1,否则,βk,f'=0,β′k,f'表示应急人员和物资是否在故障点f'与故障点(f'+1)之间转移,若是,β′k,f'=1,否则,β′k,f'=0。
可选的,所述第三应急资源调配模型为:
Figure BDA0003047273490000071
其中,S为应急资源的调配成本,sm为使用应急物资m的成本,sc为应急人员c的工资,Qk为应急保障点k配备的应急电源车的最大数量,sq为应急电源车q的成本,pri为应急电源车的单位发电量的发电成本。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明公开了一种提高电网韧性的人-车-物应急资源优化调度方法,所述优化调度方法包括如下步骤:构建应急资源调度框架;基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;基于所述应急资源调度框架确定所述联合优化模型的约束条件;基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。本发明考虑人员、应急电源车、物资三种应急资源,确定考虑停电时间、甩负荷量及调配成本,实现应急资源的最优调配,提出综合考虑停电时间、甩负荷及调配成本的联合优化模型,实现三个目标的协同优化,提高电网的韧性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种提高电网韧性的人-车-物应急资源优化调度方法的原理图;
图2为本发明提供的一种提高电网韧性的人-车-物应急资源优化调度方法的流程图;
图3为本发明提供的应急资源调度框架的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种提高电网韧性的人-车-物应急资源优化调度方法及系统,以实现调度方案的更加优化,提高电网的韧性。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明提供一种提高电网韧性的人-车-物应急资源优化调度方法,首先,构建包含道路网与电网的应急资源调度框架,分析应急保障点中的人员调度、应急电源车派遣、物资调度的耦合关系,并明确应急资源调度中需要考虑停电时间、甩负荷量及调配成本,为应急资源的优化调度奠定基础。之后提出最小化停电时间的人、车、物应急资源调配模型,停电时间由路程时间和维修时间两部分组成,路程时间可由所选路径的长度与速度计算得到,维修时间由故障特性、应急人员的维修能力及物资数量决定,通过最小化停电时间模型,缩短故障点的停电时间。建立以甩负荷量最小为目标的人、车、物的应急资源调配模型,考虑故障点停电持续时间的影响,以甩负荷量与其持续时间的乘积作为目标函数,对于应急电源车接入的故障点,其持续时间为应急电源车的路径时间,而对于无应急电源车接入的故障点,其持续时间为停电时间。考虑到故障点维修的优先次序,采用递归方法计算持续时间。然后建立最小化应急资源调配成本的人、车、物的应急资源调配模型,考虑不同种类物资的使用成本、具有不同维修能力的应急人员的工资水平、派遣不同应急电源车的成本以及应急电源车的发电成本,实现满足故障点需求的情况下,最小化应急资源的调配成本。最后基于已建立的最小停电时间模型、最小甩负荷量模型及最小应急资源调配成本模型,构建应急资源的联合优化模型,并在人员、应急电源车、物资数量及网络正常运行约束下进行优化求解,完成人、车、物的最优调配,提高电网的韧性。
如图2所示,本发明的优化调度方法包括如下步骤:
步骤101,构建应急资源调度框架,如图3所示,所述应急资源调度框架包含道路网、电网和多个应急保障点,所述应急保障点包括人员、应急电源车和物资。
本发明考虑人员、应急电源车、物资三种应急资源提出道路网与电网相结合的应急资源调度框架,如图3所示,其中,道路网为人员、应急电源车及物资提供从应急保障点到故障点的多条运送通道,电网由负荷节点、电力线路及联络开关组成。当电网中发生故障时,人员、应急电源车及物资可以通过路网运输到故障点,执行抢修作业,从而快速修复故障,并恢复负荷节点的供电,提高电网韧性。
本发明考虑人员、应急电源车、物资三种应急资源、道路网与电网相结合的应急资源调度框架,确定在应急资源调度中考虑停电时间、甩负荷量及调配成本。针对故障点处故障的特点,调配各应急保障点的人员及物资数量,派遣应急电源车接入故障点,并优化对应路径,在较低调配成本的基础上最小化停电时间及甩负荷量。
本发明提出的应急保障点中包含人员、应急电源车、物资三种应急资源,针对电网中不同类型的故障,调度相应数量及种类的应急资源。在调度过程中,增加应急人员的数量,会缩短维修时间,但增加了维修成本,当人员数量增大到一定程度时,维修时间几乎不变,但维修成本持续上升,应急物资的数量与维修时间、维修成本的关系与之类似。应急电源车接入故障点,可以立即为故障点的负荷供电,减小甩负荷及其持续时间,并且当故障修复后断开与电网的连接。此外,考虑到发生故障会对电网稳定性等造成损害,因此本发明通过考虑停电时间、甩负荷量及调配成本等目标进行应急资源的优化调控。
步骤102,基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型。
步骤1、基于步骤101中的应急资源调度框架,提出最小化停电时间的人、车、物综合调配模型。
本发明中考虑的停电时间由路程时间与维修时间两部分组成,其中,路程时间是指人员、应急电源车、物资从应急保障点或上一个故障点到该故障点的时间,路程时间与所选路径长度决定。维修时间是指应急人员修复故障所需的时间,针对不同类别的故障,不同维修能力的应急人员及不同数量的物资都会影响维修时间。本发明的最小化停电时间的第一应急资源调配模型,将停电时间分为运输人员、物资的路程时间和人员的维修时间两部分,并分别建立其计算模型,路程时间受所选路径的长度影响,维修时间由应急人员的维修能力、物资数量及故障特性决定,通过合理调配应急人员及物资,优化运输路径,缩短故障点的停电时间,提高电网韧性。
(1)路程时间
路程时间为路程与速度的比值,本发明中每个应急保障点需要为一个或多个故障点提供应急服务,因此需要决定对应的最短路径,从而获得最短的路程时间。路程时间的计算模型如下所示:
Figure BDA0003047273490000101
式中,Trou为路程时间,F、K分别为故障与应急保障点的数量。βk,f表示应急保障点k是否为故障点f提供应急服务,若提供服务,则βk,f=1,否则,βk,f=0。β'k,f表示应急人员和物资是否在故障点f与故障点(f+1)之间转移,若是,β'k,f=1,否则,β'k,f=0。Lk,f为应急保障点k与故障点f之间的地理距离,L'k,f为故障点f与故障点(f+1)之间的地理距离。[·]-表示矩阵的转置,v为行进速度。
(2)维修时间
在维修过程中,维修时间取决于故障类别、应急人员的数量及维修能力、物资数量,本发明综合考虑上述因素建立如下维修时间的模型。
Figure BDA0003047273490000102
式中,Tre为故障的维修时间,C为应急人员的数量。αc,f表示应急人员c是否维修故障k,若维修,则αc,f=1,否则,αc,f=0。Tf,c表示应急人员c维修故障点f的所需时间。mf,k为应急保障点k对故障点f调度的应急物资。
针对电力故障,应急人员具有一定的维修时间,多个应急人员合作将会缩短维修时间,本发明中定义多人合作的速度为各自速度之和,因此,
Figure BDA0003047273490000111
为多个应急人员针对故障的维修时间。
基于上述路程时间及维修时间模型,得到停电时间T为:
T=Trou+Tre (3)
考虑到实际应用情况,一个应急人员在某一时刻仅能维修一个故障点,如式4所示;每个故障点必须至少有一个应急人员来维修,如式(5)所示;调度派遣的应急人员数量应该小于应急人员总数,如式(6)所示;调度派发的应急物资的数量应该不超过物资总数量,如式(7)所示;应急人员从应急保障点出发,按维修顺序维修完所有由该应急保障点负责的故障点后,从最后一个故障点返回到应急保障点,如式(8a)和(8b)所示,其中,式(8a)是指找到由应急保障点负责的故障点集合,式(8b)确保了应急人员和物资在顺序维修故障时,直接在相邻的两个故障点之间移动;此外,每个故障点至少由一个应急保障点负责,如式(9)所示。
Figure BDA0003047273490000112
Figure BDA0003047273490000113
Figure BDA0003047273490000114
Figure BDA0003047273490000115
k*={k'|find(βk,f==1),f∈F} (8a)
Figure BDA0003047273490000116
Figure BDA0003047273490000117
式中,Mk为应急保障点k的物资总量,k*为由应急保障点k负责的故障点集合,k'为k*的元素。
步骤2、基于步骤101中的应急资源调度框架,以甩负荷量最小为目标构建人、车、物的应急资源综合调配模型
甩负荷对电网的影响与其持续时间有关,因此本发明以甩负荷量与其持续时间的乘积作为目标函数,从而降低甩负荷对电网的影响。考虑到应急电源车的作用,该模型考虑直接修复故障、应急电源车接入后再修复故障两种场景。
本发明最小化甩负荷量的第二应急资源调配模型,考虑到甩负荷对电网的影响与其持续时间有关,以甩负荷量与其持续时间的乘积作为目标函数。多故障发生时,故障点的应急服务具有一定的维修次序,因此采用递归方法计算甩负荷量对应的持续时间;应急电源车接入故障点可以进行立刻供电,此故障点甩负荷的持续时间即为应急电源车的路程时间,无应急电源车的故障,其甩负荷的持续时间为停电时间,基于此建立最小化甩负荷模型,减小故障点对电网的影响。
(1)直接修复故障
直接修复故障情况下,甩负荷量的持续时间包括路程时间和维修时间。考虑到一个应急保障点可能负责多个故障点的维修,多个故障点的故障处理存在一定的维修次序,也就是说排在后面的故障点需要等排在前面的故障点清除故障后再进行维修。此时的甩负荷的路程时间为从应急保障点按照维修顺序到该故障点的时间之和,维修时间为排在该故障之前的所有故障的维修时间之和,并借助递归的方法进行计算。因此,直接修复故障的目标函数是故障点的甩负荷量与其相应持续时间的乘积。
(2)应急电源车接入后再修复故障
应急电源车接入故障点后,可以立刻满足部分或全部甩负荷量。对于已恢复供电的负荷,其持续时间为应急电源车的路程时间,其计算方法与应急人员及物资的路程时间计算方法相同,所以该部分的目标函数为应急电源车的路程时间与所满足的负荷的乘积。对于未能恢复供电的负荷,其持续时间及目标函数的计算方法与直接修复故障情况的计算方法相同。
综合考虑上述两种情况,本发明提出如下所示以甩负荷量与其持续时间的乘积作为目标函数的最小化甩负荷模型。
Figure BDA0003047273490000121
Figure BDA0003047273490000131
Figure BDA0003047273490000132
式中,PL是最小化甩负荷的目标函数,Fk为应急保障点k所负责的故障点集合,Pf’为故障点f’的甩负荷,xk,q表示应急保障点k是否派遣应急电源车q,若派遣,则xk,q=1,否则,xk,q=0,Q为所有应急保障点配备的应急电源车的最大数量,yk,f″表示是否从应急保障点k派遣应急电源车到故障点f”,若派遣,则yk,f″=1,否则,yk,f″=0。y′k,f″表示应急电源车是否在故障点f与故障点(f+1)之间转移,若是,y′k,f″=1,否则,y′k,f″=0。Ek,q为应急保障点k的应急电源车q的发电量,Pf’为故障点f’的甩负荷量。
考虑到实际应用,在优化甩负荷时,除了满足步骤1中式(4-9)的约束,还需要增加两个约束条件,第一个是每个应急保障点派遣的应急电源车的数量不超过应急保障点配备的应急电源车的总数,另一个是应急电源车的发电量应该在正常发电范围内,如下所示。
Figure BDA0003047273490000133
Ek,q≤Ek,q_max, (13)
式中,Yk为应急保障点k配备的应急电源车的总数,Ek,q_max是应急保障点k的应急电源车q的发电量上限。
步骤3:基于步骤101中的应急资源调度框架,以应急资源调配成本最小为目标,构建人、车、物的综合调配模型。
基于步骤101中的应急资源调度框架,可以得到应急资源调配的成本主要来自应急人员的工资、调度应急电源车的成本、应急电源车的发电成本和应急物资的使用成本。不同种类的应急物资用于维修不同的故障,并且每种应急物资的使用成本不同;应急人员维修故障的专业能力不同,因此应急人员的工资也是不同的;此外,派遣不同的应急电源车的成本也存在差异。然而,应急电源车的单位发电量的发电成本相同,本发明基于此建立应急资源调配成本模型,如下所示。
Figure BDA0003047273490000141
式中,S为应急资源的调配成本,sm为使用应急物资m的成本,sc为应急人员c的工资,sy为应急电源车q的成本,pri为应急电源车的单位发电量的发电成本。
本发明最小化应急资源调配成本的第三应急资源调配模型,考虑了应急人员的工资、调度应急电源车的成本、应急电源车的发电成本及应急物资的使用成本。此外,考虑了具有不同专业能力的应急人员的工资差异,不同种类应急物资的使用成本差异,派遣不同应急电源车的成本差异,从而在满足维修故障的情况下,最小化应急资源的调配成本。
此外,在成本优化中,需要同时考虑步骤1中式(4-7)、步骤2中式(12-13)所表示的约束条件。
步骤4:基于步骤1、2、3所提的应急资源调配模型,分析停电时间、甩负荷量以及调配成本之间的相互影响,建立联合优化停电时间、甩负荷量以及调配成本的模型,得到人员、应急电源车以及物资的最优调配方案。
在进行应急资源优化调度时,需要同时满足最小化停电时间、甩负荷量及调配成本。因此,本发明基于步骤1、2、3所提的应急资源调配模型,建立如下所示的联合优化模型:
obj:γ1·T+γ2·PL+γ3·S, (15)
式中,γ1、γ2、γ3分别为停电时间、甩负荷量及调配成本的权重系数,用于调整三个目标的重要程度。
本发明的联合优化模型,基于步骤1、2、3所提的应急资源调配模型,考虑各目标之间的耦合关系,并根据各目标的重要程度建立应急资源联合优化模型。在优化求解中,综合考虑人员、应急电源车及物资数量等实际约束与网络正常运行约束,得到人员、应急电源车以及应急物资的最优调配方案,提高电网韧性。
在联合优化模型中,最小化停电时间、最小化甩负荷量与最小化调配成本存在耦合关系。最小化停电时间的变量αc,f、βc,f会影响甩负荷量与调配成本,最小化甩负荷量中的应急电源车变量yk,f”,xk,q也会影响调配成本。此外,停电时间越短、甩负荷量越小,则调配成本越高,但当停电时间减少到一定程度时,调配成本会继续增加,但是停电时间与甩负荷量的下降并不明显。
步骤103,基于所述应急资源调度框架确定所述联合优化模型的约束条件。
在进行应急资源调度时,还应该满足电网的潮流约束,即支路功率不超过输电线的传输容量,节点电压在电网正常运行的电压范围内。
s.t.{Pb,Ui}=F(Pi,Qi,rb,xb), (16)
Pb_min≤Pb≤Pb_max, (17)
Ui_min≤Ui≤Ui_max, (18)
式中,Pb为支路b的实际传输功率,Ui为节点i的实际电压值,F(·)为潮流计算函数,Pi、Qi、分别为节点i的有功负荷和无功负荷,rb、xb分别为支路b的电阻和电抗。Pb_min、Pb_max分别是支路b最小传输功率及最大传输功率。Ui_min、Ui_max分别是电网正常运行的最低电压和最高电压。
结合步骤102中的步骤1所提的最小化停电时间模型、步骤2所提的最小化甩负荷模型,步骤3所提的最小化调配成本模型及网络约束,得到应急资源联合优化模型中的约束条件为式(4)-(9),(12)-(13),(16)-(18)。
步骤104,基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。
基于已建立的联合优化模型,进行优化求解,从而得到人员、应急电源车以及应急物资的最优调配方案,提高电网的恢复效率,减小所造成的停电负荷,提高电网韧性。
一种提高电网韧性的人-车-物应急资源优化调度系统,所述优化调度系统包括:
应急资源调度框架构建模块,用于构建应急资源调度框架,所述应急资源调度框架包含道路网、电网和多个应急保障点,所述应急保障点包括人员、应急电源车和物资;
联合优化模型建立模块,用于基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;
约束条件确定模块,用于基于所述应急资源调度框架确定所述联合优化模型的约束条件;
最优调度方案确定模块,用于基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。
可选的,所述第一应急资源调配模型为:
T=Trou+Tre
Figure BDA0003047273490000161
Figure BDA0003047273490000162
其中,T为停电时间,Trou为路程时间,F和K分别为故障点的数量和应急保障点的数量,βk,f表示应急保障点k是否为故障点f提供应急服务,若提供服务,则βk,f=1,否则,βk,f=0,β'k,f表示应急人员和物资是否在故障点f与故障点(f+1)之间转移,若是,β'k,f=1,否则,β'k,f=0,Lk,f为应急保障点k与故障点f之间的地理距离,L'k,f为故障点f与故障点(f+1)之间的地理距离,[·]-表示矩阵的转置,v为行进速度;C为应急人员的数量,αc,f表示应急人员c是否维修故障点f,若维修,则αc,f=1,否则,αc,f=0,Tf,c表示应急人员c维修故障点f的所需时间,mf,k为应急保障点k对故障点f调度的应急物资。
可选的,所述第二应急资源调配模型为:
Figure BDA0003047273490000171
Figure BDA0003047273490000172
其中,PL是甩负荷总量,Fk为应急保障点k所负责的故障点集合,Pf’为故障点f’的甩负荷,xk,q表示应急保障点k是否派遣应急电源车q,若派遣,则xk,q=1,否则,xk,q=0,Q为所有应急保障点配备的应急电源车的最大数量,yk,f″表示是否从应急保障点k派遣应急电源车到故障点f”,若派遣,则yk,f″=1,否则,yk,f″=0,y′k,f″表示应急电源车是否在故障点f″与故障点(f″+1)之间转移,若是,y′k,f″=1,否则,y′k,f″=0,Ek,q为应急保障点k的应急电源车q的发电量;Lk,f″为应急保障点k与故障点f”之间的地理距离,L′k,f″为故障点f”与故障点(f”+1)之间的地理距离;
t表示甩负荷持续时间,αc,f'表示应急人员c是否维修故障点f',若维修,则αc,f'=1,否则,αc,f'=0;Tc,f'表示应急人员c维修故障点f'的所需时间,mf',k为应急保障点k对故障点f'调度的应急物资;βk,f'表示应急保障点k是否为故障点f'提供应急服务,若提供服务,则βk,f'=1,否则,βk,f'=0,β'k,f'表示应急人员和物资是否在故障点f'与故障点(f'+1)之间转移,若是,β'k,f'=1,否则,β'k,f'=0。
可选的,所述第三应急资源调配模型为:
Figure BDA0003047273490000173
其中,S为应急资源的调配成本,sm为使用应急物资m的成本,sc为应急人员c的工资,Qk为应急保障点k配备的应急电源车的最大数量,sq为应急电源车q的成本,pri为应急电源车的单位发电量的发电成本。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明公开了一种提高电网韧性的人-车-物应急资源优化调度方法,所述优化调度方法包括如下步骤:构建应急资源调度框架;基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;基于所述应急资源调度框架确定所述联合优化模型的约束条件;基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。本发明考虑人员、应急电源车、物资三种应急资源,确定考虑停电时间、甩负荷量及调配成本,实现应急资源的最优调配,提出综合考虑停电时间、甩负荷及调配成本的联合优化模型,实现三个目标的协同优化,提高电网的韧性。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种提高电网韧性的人-车-物应急资源优化调度方法,其特征在于,所述优化调度方法包括如下步骤:
构建应急资源调度框架,所述应急资源调度框架包含道路网、电网和多个应急保障点,所述应急保障点包括人员、应急电源车和物资;
基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;
基于所述应急资源调度框架确定所述联合优化模型的约束条件;
基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。
2.根据权利要求1提高电网韧性的人-车-物应急资源优化调度方法,其特征在于,所述第一应急资源调配模型为:
T=Trou+Tre
Figure FDA0003047273480000011
Figure FDA0003047273480000012
其中,T为停电时间,Trou为路程时间,F和K分别为故障点的数量和应急保障点的数量,βk,f表示应急保障点k是否为故障点f提供应急服务,若提供服务,则βk,f=1,否则,βk,f=0,β’k,f表示应急人员和物资是否在故障点f与故障点(f+1)之间转移,若是,β’k,f=1,否则,β’k,f=0,Lk,f为应急保障点k与故障点f之间的地理距离,Lk,f为故障点f与故障点(f+1)之间的地理距离,[·]-表示矩阵的转置,v为行进速度;Tre表示维修时间,C为应急人员的数量,αc,f表示应急人员c是否维修故障点f,若维修,则αc,f=1,否则,αc,f=0,Tf,c表示应急人员c维修故障点f的所需时间,mf,k为应急保障点k对故障点f调度的应急物资。
3.根据权利要求2提高电网韧性的人-车-物应急资源优化调度方法,其特征在于,所述第二应急资源调配模型为:
Figure FDA0003047273480000021
Figure FDA0003047273480000022
其中,PL是甩负荷总量,Fk为应急保障点k所负责的故障点集合,Pf’为故障点f′的甩负荷,xk,q表示应急保障点k是否派遣应急电源车q,若派遣,则xk,q=1,否则,xk,q=0,Q为所有应急保障点配备的应急电源车的最大数量,yk,f″表示是否从应急保障点k派遣应急电源车到故障点f″,若派遣,则yk,f″=1,否则,yk,f″=0,y’k,f″表示应急电源车是否在故障点f″与故障点(f″+1)之间转移,若是,y’k,f″=1,否则,y’k,f″=0,Ek,q为应急保障点k的应急电源车q的发电量;Lk,f″为应急保障点k与故障点f″之间的地理距离,L’k,f″为故障点f″与故障点(f″+1)之间的地理距离;
t表示甩负荷持续时间,αc,f′表示应急人员c是否维修故障点f′,若维修,则αc,f′=1,否则,αc,f′=0;Tc,f′表示应急人员c维修故障点f′的所需时间,mf′,k为应急保障点k对故障点f′调度的应急物资;βk,f′表示应急保障点k是否为故障点f′提供应急服务,若提供服务,则βk,f′=1,否则,βk,f′=0,β′k,f′表示应急人员和物资是否在故障点f′与故障点(f′+1)之间转移,若是,β′k,f′=1,否则,β′k,f’=0。
4.根据权利要求3提高电网韧性的人-车-物应急资源优化调度方法,其特征在于,所述第三应急资源调配模型为:
Figure FDA0003047273480000023
其中,S为应急资源的调配成本,sm为使用应急物资m的成本,sc为应急人员c的工资,Qk为应急保障点k配备的应急电源车的最大数量,sq为应急电源车q的成本,pri为应急电源车的单位发电量的发电成本。
5.根据权利要求4提高电网韧性的人-车-物应急资源优化调度方法,其特征在于,所述联合优化模型为:
obj:γ1·T+γ2·PL+γ3·S
其中,γ1、γ2、γ3分别为停电时间、甩负荷量及调配成本的权重系数。
6.根据权利要求5提高电网韧性的人-车-物应急资源优化调度方法,其特征在于,所述约束条件为:
Figure FDA0003047273480000031
Figure FDA0003047273480000032
Figure FDA0003047273480000033
其中,Mk为应急保障点k的物资总量,k*为由应急保障点k负责的故障点集合,k′为k*的元素,z为故障点集合中的元素;
Yk为应急保障点k配备的应急电源车的总数,Ek,q_max是应急保障点k的应急电源车q的发电量上限;
Pb为电网中支路b的实际传输功率,Ui为电网中节点i的实际电压值,F(·)为潮流计算函数,Pi和Qi分别为电网中节点i的有功负荷和无功负荷,rb和xb分别为电网中支路b的电阻和电抗;Pb_min、Pb_max分别是电网中支路b最小传输功率及最大传输功率;Ui_min和Ui_max分别是电网正常运行的最低电压和最高电压。
7.一种提高电网韧性的人-车-物应急资源优化调度系统,其特征在于,所述优化调度系统包括:
应急资源调度框架构建模块,用于构建应急资源调度框架,所述应急资源调度框架包含道路网、电网和多个应急保障点,所述应急保障点包括人员、应急电源车和物资;
联合优化模型建立模块,用于基于所述应急资源调度框架构建包含以停电时间最小化为目标的第一应急资源调配模型、以甩负荷最小化为目标的第二应急资源调配模型,以应急资源调度成本最小化为目标的第三应急资源调配模型的联合优化模型;
约束条件确定模块,用于基于所述应急资源调度框架确定所述联合优化模型的约束条件;
最优调度方案确定模块,用于基于所述约束条件求解所述联合优化模型,确定完成所有所述故障点的抢修的最优调度方案。
8.根据权利要求7提高电网韧性的人-车-物应急资源优化调度系统,其特征在于,所述第一应急资源调配模型为:
T=Trou+Tre
Figure FDA0003047273480000041
Figure FDA0003047273480000042
其中,T为停电时间,Trou为路程时间,F和K分别为故障点的数量和应急保障点的数量,βk,f表示应急保障点k是否为故障点f提供应急服务,若提供服务,则βk,f=1,否则,βk,f=0,β′k,f表示应急人员和物资是否在故障点f与故障点(f+1)之间转移,若是,β′k,f=1,否则,β′k,f=0,Lk,f为应急保障点k与故障点f之间的地理距离,L′k,f为故障点f与故障点(f+1)之间的地理距离,[·]-表示矩阵的转置,v为行进速度;Tre表示维修时间,C为应急人员的数量,αc,f表示应急人员c是否维修故障点f,若维修,则αc,f=1,否则,αc,f=0,Tf,c表示应急人员c维修故障点f的所需时间,mf,k为应急保障点k对故障点f调度的应急物资。
9.根据权利要求8提高电网韧性的人-车-物应急资源优化调度系统,其特征在于,所述第二应急资源调配模型为:
Figure FDA0003047273480000051
Figure FDA0003047273480000052
其中,PL是甩负荷总量,Fk为应急保障点k所负责的故障点集合,Pf’为故障点f′的甩负荷,xk,q表示应急保障点k是否派遣应急电源车q,若派遣,则xk,q=1,否则,xk,q=0,Q为所有应急保障点配备的应急电源车的最大数量,yk,f″表示是否从应急保障点k派遣应急电源车到故障点f″,若派遣,则yk,f″=1,否则,yk,f″=0,y′k,f″表示应急电源车是否在故障点f″与故障点(f″+1)之间转移,若是,y′k,f″=1,否则,y′k,f″=0,Ek,q为应急保障点k的应急电源车q的发电量;Lk,f″为应急保障点k与故障点f″之间的地理距离,L′k,f″为故障点f″与故障点(f″+1)之间的地理距离;
t表示甩负荷持续时间,αc,f′表示应急人员c是否维修故障点f′,若维修,则αc,f′=1,否则,αc,f′=0;Tc,f′表示应急人员c维修故障点f′的所需时间,mf′,k为应急保障点k对故障点f′调度的应急物资;βk,f′表示应急保障点k是否为故障点f′提供应急服务,若提供服务,则βk,f′=1,否则,βk,f′=0,β′k,f′表示应急人员和物资是否在故障点f′与故障点(f′+1)之间转移,若是,β′k,f′=1,否则,β′k,f′=0。
10.根据权利要求9提高电网韧性的人-车-物应急资源优化调度系统,其特征在于,所述第三应急资源调配模型为:
Figure FDA0003047273480000061
其中,S为应急资源的调配成本,sm为使用应急物资m的成本,sc为应急人员c的工资,Qk为应急保障点k配备的应急电源车的最大数量,sq为应急电源车q的成本,pri为应急电源车的单位发电量的发电成本。
CN202110475558.5A 2021-04-29 2021-04-29 一种提高电网韧性的人-车-物应急资源优化调度方法 Active CN113111476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110475558.5A CN113111476B (zh) 2021-04-29 2021-04-29 一种提高电网韧性的人-车-物应急资源优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110475558.5A CN113111476B (zh) 2021-04-29 2021-04-29 一种提高电网韧性的人-车-物应急资源优化调度方法

Publications (2)

Publication Number Publication Date
CN113111476A true CN113111476A (zh) 2021-07-13
CN113111476B CN113111476B (zh) 2024-06-14

Family

ID=76720471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110475558.5A Active CN113111476B (zh) 2021-04-29 2021-04-29 一种提高电网韧性的人-车-物应急资源优化调度方法

Country Status (1)

Country Link
CN (1) CN113111476B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113887946A (zh) * 2021-09-30 2022-01-04 煤炭科学研究总院 氢能源驱动不停车传输的应急物资运输调度方法、装置及存储介质
CN114884129A (zh) * 2022-06-08 2022-08-09 福州大学 考虑电源车协同调度的配电网应急抢修恢复方法
CN115313487A (zh) * 2022-08-22 2022-11-08 西安交通大学 一种考虑检修流的移动氢能微网调度方法
CN115483700A (zh) * 2022-08-22 2022-12-16 西安交通大学 一种移动氢能微电网系统及其调度方法
CN117974115A (zh) * 2024-03-28 2024-05-03 国网山东省电力公司梁山县供电公司 一种配电网维修调度方法、系统、存储介质及设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110087514A1 (en) * 2009-10-09 2011-04-14 International Business Machines Corporation Modeling distribution of emergency relief supplies for disaster response operations
CN106339772A (zh) * 2016-08-11 2017-01-18 清华大学 基于供热管网储热效益的热‑电联合优化调度方法
CN107766988A (zh) * 2017-11-03 2018-03-06 国网湖南省电力公司 一种城市区域内防灾应急电源优化配置方法及装置
CN108537338A (zh) * 2018-04-11 2018-09-14 西安电子科技大学 基于多智能体遗传算法的灾害救援应急资源调度方法
CN109818352A (zh) * 2019-03-26 2019-05-28 南京铭越创信电气有限公司 一种基于近似动态规划算法的配电网应急电源车调度方法
CN110852627A (zh) * 2019-11-13 2020-02-28 国电南瑞科技股份有限公司 配电网灾后抢修决策方法和装置
CN111125887A (zh) * 2019-12-04 2020-05-08 广东电网有限责任公司 一种配电网应急恢复的资源优化配置模型建立方法
CN111815106A (zh) * 2020-05-21 2020-10-23 南瑞集团有限公司 一种基于多源信息的电网应急方法
CN112165118A (zh) * 2020-09-29 2021-01-01 国网上海市电力公司 一种配电网多故障供电恢复方法
CN112330099A (zh) * 2020-10-16 2021-02-05 华北电力大学 配电系统在极端自然灾害天气下的资源调度方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110087514A1 (en) * 2009-10-09 2011-04-14 International Business Machines Corporation Modeling distribution of emergency relief supplies for disaster response operations
CN106339772A (zh) * 2016-08-11 2017-01-18 清华大学 基于供热管网储热效益的热‑电联合优化调度方法
CN107766988A (zh) * 2017-11-03 2018-03-06 国网湖南省电力公司 一种城市区域内防灾应急电源优化配置方法及装置
CN108537338A (zh) * 2018-04-11 2018-09-14 西安电子科技大学 基于多智能体遗传算法的灾害救援应急资源调度方法
CN109818352A (zh) * 2019-03-26 2019-05-28 南京铭越创信电气有限公司 一种基于近似动态规划算法的配电网应急电源车调度方法
CN110852627A (zh) * 2019-11-13 2020-02-28 国电南瑞科技股份有限公司 配电网灾后抢修决策方法和装置
CN111125887A (zh) * 2019-12-04 2020-05-08 广东电网有限责任公司 一种配电网应急恢复的资源优化配置模型建立方法
CN111815106A (zh) * 2020-05-21 2020-10-23 南瑞集团有限公司 一种基于多源信息的电网应急方法
CN112165118A (zh) * 2020-09-29 2021-01-01 国网上海市电力公司 一种配电网多故障供电恢复方法
CN112330099A (zh) * 2020-10-16 2021-02-05 华北电力大学 配电系统在极端自然灾害天气下的资源调度方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NANSHENG PANG ET AL.: "Emergency rush repair task scheduling of distribution networks int large-scale blackouts", 《ELECTRICAL POWER AND ENERGY SYSTEMS》, vol. 82, 30 November 2016 (2016-11-30), pages 373 - 381, XP029569979, DOI: 10.1016/j.ijepes.2016.03.014 *
TIE QIU ET AL.: "A Local-Optimization Emergency Scheduling Scheme With Self-Recovery for a Smart Grid", 《IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS》, vol. 13, no. 6, 16 June 2017 (2017-06-16), pages 3195 - 3205 *
王宏: "电力系统应急规划、调度与恢复的优化模型与方法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, no. 7, 15 July 2014 (2014-07-15), pages 042 - 542 *
肖攀: "供电应急物资多目标配送调度优化模型研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, no. 2, 15 February 2017 (2017-02-15), pages 042 - 2157 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113887946A (zh) * 2021-09-30 2022-01-04 煤炭科学研究总院 氢能源驱动不停车传输的应急物资运输调度方法、装置及存储介质
CN114884129A (zh) * 2022-06-08 2022-08-09 福州大学 考虑电源车协同调度的配电网应急抢修恢复方法
CN115313487A (zh) * 2022-08-22 2022-11-08 西安交通大学 一种考虑检修流的移动氢能微网调度方法
CN115483700A (zh) * 2022-08-22 2022-12-16 西安交通大学 一种移动氢能微电网系统及其调度方法
CN117974115A (zh) * 2024-03-28 2024-05-03 国网山东省电力公司梁山县供电公司 一种配电网维修调度方法、系统、存储介质及设备

Also Published As

Publication number Publication date
CN113111476B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
CN113111476A (zh) 一种提高电网韧性的人-车-物应急资源优化调度方法
Gan et al. Security constrained co-planning of transmission expansion and energy storage
Egerer et al. Two price zones for the German electricity market—Market implications and distributional effects
Sheu et al. A method for designing centralized emergency supply network to respond to large-scale natural disasters
CN108053037B (zh) 一种基于两网融合的配电网抢修策略制定方法及装置
CN111125887B (zh) 一种配电网应急恢复的资源优化配置模型建立方法
CN103870649B (zh) 一种基于分布式智能计算的主动配电网自治化仿真方法
CN106549420B (zh) 考虑风险和风力发电的电力系统运行备用优化方法
CN106982144B (zh) 一种电力通信网故障恢复方法
CN102063563A (zh) 网省地一体化的母线负荷预测方法
CN107016467A (zh) 一种区域能源互联网全自动站网布局优化方法
CN105243600A (zh) 一种电网发电调节方法
Bahrami et al. Multi-step island formation and repair dispatch reinforced by mutual assistance after natural disasters
CN111211560B (zh) 一种基于最优环路的微电网拓扑规划
Hashemifar et al. Two-layer robust optimization framework for resilience enhancement of microgrids considering hydrogen and electrical energy storage systems
CN105912767A (zh) 基于bs架构的多级电网异地协同联合计算方法
CN110061525A (zh) 基于电网输电断面约束的风电有功控制方法及系统
CN109167351A (zh) 基于广义Benders分解法的源荷备用协同优化方法
CN116882552A (zh) 计及电力与交通耦合网络的移动应急资源调度优化方法
Chandrasekaran et al. SCUC problem for solar/thermal power system addressing smart grid issues using FF algorithm
CN116993022A (zh) 一种机组检修和水电电量的调配方法和装置
Wang et al. Post-event electric taxis dispatch for enhancing resilience of distribution systems
Chang et al. DER allocation and line repair scheduling for storm-induced failures in distribution networks
Bari et al. Planning and optimization of a post disaster multi-echelon humanitarian logistics network: a case study in bangladesh perspective
CN115829285A (zh) 城市配电网与交通系统灾后协同抢修调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant